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Summary

This is the fourth part of the papers which is written under the same title [30, 31, 16].

In the first and second parts, we have seen that binary and ternary structures can describe

evolutions of systems, for example, quarks, atoms, galaxies, RNA, DNA and languages. In

the third paper, we have given the evolution of languages and shown that it has an intimate

connection to that in physics. In this part we shall develop a ”general evolution theory” for

the systems with binary and ternary structures at first. Then we will show how evolutionary

systems create so called complexity systems as the border of the evolutionary system. We

consider the evolution based on the following principle:

The principle of evolution

(1) Every system in this universe must obey the law of increase of entropy (Boltzmann’s

principle) ([35]).

(2) Evolutionary systems perform against the Boltzmann principle (Schrödinger’s principle

or Bergson’s philosophy) ([3])
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Introduction

We have found the structure of non-commutative binary and ternary Galois exten-

sions in evolutionary systems and introduced a concept of the BTBB-structure in

various fields in a unified manner ([30], [31]). Here we will introduce a concept of

evolution entropy and describe the theory of evolutions in terms of the entropy. Then

we can find the origins of fractal/chaotic structures and the power law distributions.

The total evolutions to be considered

We begin with recalling the evolution of the universe. We state the BTBB-structure

of the evolutions in the universe in Figure 1.

We give a short description on the evolutions and their BTBB-structure:

(I) From Big Bang time to 10−33 second: Quarks are born and baryons, mesons are

created (These physics have the BTBB-structure (Section 3 in Part I [30])).

(II) From 10−33 second to 3-minutes: The atoms C, O, N,..., Fe are created from H

and He. The typical BTBB-structure can be observed.

(III) From 3-minutes to 5 billion years: In this long term, stars and galaxies are

created. The BTBB-structure cannot be observed. We will give the reason for this

in this part (Section 8).

(IV) After 10 billion years: The life is born and RNA, DNA and proteins are created.

The typical BTBB-structure can be observed.

(V) The human beings are created and the language structure is created. The BTBB-

structure and the complexity structure are discussed in Part III([16]).

The scheme of the evolution is given in Figure 2.

The total hierarchy structure of evolutions

(I) The generations of the BTBB-system and the complexity system.

(II) The repetition of the process (I) creates the total hierarchy structure of the

evolutionary system:

(1) We denote the set of seeds by L0

(2) We denote the system generated by the BTBB-structure and its complexity

system by L1.
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Fig. 1. (a) Evolutions of the universe (b) The total evolutionary tree.
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Fig. 2. The scheme of the evolution.

(3) Replacing L0 with L1 and we follow the processes (1), (2). Then we obtain

the system L2.

(4) Repeating this process we obtain the system Ln (n = 1, 2, . . .) which we can

call the system Ln, the evolutionary system of level n.

Remark: We can observe the fact that the evolution of (I) is drastic and new and

that the evolution in (II) is systematized based on the evolution in (I). We can

introduce the ”curriculum vitae” of the evolution. This will be discussed in the final

section.
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1. The entropy of evolution

Here we recall some basic facts on entropy and introduce the concept of ”entropy of

evolution([30]).

The basic concepts of entropy

The concept of entropy is introduced by Boltzmann which describes the tendency

of physical phenomena ([35]). The set of possible physical states is denoted by X.

We put S(X) = k log #(X), where #(X) is the number of states and k is a positive

constant. S(X) is called the entropy of the states. We can describe the entropy in

terms of probability pj (
∑M
j=1 pj = 1, pj > 0):

S = −k
M∑

j=1

pi log pi. (1)

Next we state some basic properties:

(1) Addition formula: Let {pi(A)}, {pj(B)} be two probabilities. Put pij(AB) =

pi(A)pj(B). Then we have a new probability {pij(AB)}. Then we have

SAB = SA + SB .

(2) The maximal distribution: For an entropy function S, putting

pj = exp(−bEi)/ZBG, where ZBG =
∑M
i=1 exp(bEj), we can obtain the distribution

which realizes the maximum entropy ([34]).

Remark The entropy of the states of a simple random walk attains the maximal

entropy.

Shannon entropy The Shannon entropy is defined by the events of information.

We take a system of N kinds of events of information: Namely when we are given

p1, p2, . . . , pN with
∑M
i=1 pi = 1, then the Shannon entropy is given in the same

manner as (1).

The entropy of evolution

Next we introduce a concept of the entropy of the evolution and consider the basic

process of the evolution in the following manner:

Process (I): From the origin to the creation of ”sea of seeds

Process (II): The evolution begins and the self organization starts.

We may draw the process in the following configuration:

Figure 3
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We notice that not necessary all seeds are chosen to create the organization.

Such seeds are called symmetry breaking elements. We describe the entropy of the

evolution in each process:

Process I

By the big explosion, we have the following structure:

(1) The origin creates not necessarily unique seeds |0>a. Also |0>a constitutes the

states |0>a= {X(a)
j }.

(2) We assume that {X(a)
j } behave completely randomly. Namely, {X(a)

j } make a

simple random walk. Namely, it makes a Brownian motion.

(3) We introduce the entropy of the seeds S(X) = k log #(X), where X = {X(a)
j }.

It is called the entropy of the evolution. We notice that S(X) gives the ”size” of

evolution.

Process II

We describe the evolution process. We begin with a time evolution from the big

explosion. We take states X = X(0) of seeds at the beginning. We consider the time

evolution X(t) (t > 0), where time is the usual Newtonian time. The entropy at time

t is denoted by Sin(t). Sin(t) is called of evolution type, when

Sin(t) ≥ Sin(t′) (t < t).

Figure 4

Here we assume the existence of the ambient space Xout of the original space Xin.

We denote the entropy of Xin (resp. Xout) by Sin or Sout, respectively. Here we

have to notice that the total entropy should increase by the Boltzmann principle.

Hence there exists an additional entropy which is called ”emission entropy” which is

emitted from Sin(t) to Sout(t) and we have

Sin(t) + Sout(t) ≥ S(0).

Next we give several examples:

Example 1 (Big-Bang)

The universe begins with the Big Bang and its inflation. Here we have to notice

that we have our visible world and its ambient world, invisible world (or the ”dark

world”) at the same time. The states make a simple random walk (Process I). Then

the structure of the universe is constructed. The original evolution entropy decreases

and some amount of entropy should be emitted to the ambient space (Process II).

The details will be given in Section 6.
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Example 2 (The universe)

We can discuss the evolution of the universe in an analogous manner. We may choose

the Process I in various manners:

(1) The equilibrium state of protons and neutrons: We begin with the dis-

tribution of the proton p and neutron n. They make an equilibrium state between

them: p ⇔ n. The entropy is given by the set of states of p and n in the early time

of the Big Bang (Process I).

(2) The stars of the 3.8×105 years old universe. We may choose the distribution

of stars of the 3.8×105 years old universe. They make a distribution of the blackbody

radiation. Hence we see that they make a simple random walk.

Then the self organization starts and galaxies are created and their distribution

makes that of a power law type. This will be discussed later (in Section 6) (Process

II).

Example 3 (Life thing)

Usually the life things with sex make the following mating process:

Figure 5

where ∗ is the birth of life. The entropy defined by the distribution of eggs and sperm

(Process I). Here we have to notice the following fact: After mating only one (or very

few) egg survives and remained eggs die. Then the egg-division happens and the

body construction begins (Process II).

Example 4 (Polymers)

The seeds of the evolution are the total set of monomers:

Figure 6

The entropy might be chosen as the total set of monomers (Process I). We have the

emission of the entropy/heat from the polymers to the ambient space (Process II).
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Example 5 (Natural language) ([16])

We have discussed the evolution of natural languages in Part III. There we may

choose the origin as the intelligence of language creation. We may find seeds which are

composed of sequences of alphabets (Process I). Here we choose the Shannon entropy.

The process II creates sentences. We notice that the Shannon entropy gives the

grammar of the natural language. The entropy of the information of words decreases

in the process of the creation of sentences. When the constructed sentence is correct,

the entropy becomes its minimum.

Figure 7

Example 6 (The original Galois theory) ([37])

We will treat the evolution theory of the classical Galois theory in Part V.

(1) The origin is the choice of the field of mathematics: ”Galois theory. (2) We

choose the total set of the complex numbers (Process I), (3) The successive Galois

extensions of the fields from the solutions {aj : (j = 1, 2, . . . , N)} of an algebraic

equation f(x) = 0: f(aj) = 0, where the coefficient field is the rational numbers Q
(Process II). The details will be given in Part V ([17]).

2. The several evolution processes (Entropy transformation)

In this section we introduce a concept of entropy transformation and discuss evolu-

tions of general type.

The general evolutionary System

We have restricted ourselves to the evolution which decreases the evolutionary en-

tropy. Here we treat the evolutions of general type. We can classify the evolutions

into the following types: (1) Top down type evolution (2) Bottom up type evolution

(3) Mixed type evolution.

(1) The top-down evolution

We have discussed this type evolution which can be observed in the self organization

of systems. The evolution begins and the evolution entropy is prepared. Then the

structures are constructed by decreasing its entropy.

Figure 8
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and finishes the evolution when it attains its minimum. Here we have to notice that

the entropy creates ”in a moment from the origin. Hence we can obtain the evolution

entropy in the very beginning.

(2) The bottom up evolution

This evolution creates the structure ”slowly” and the entropy increases moderately.

Finally the evolution attains the stable state at last. Then we may expect the fol-

lowing types of the end of the evolution: (i) Blow up of system, or (ii) Stable system.

Figure 9

(3) The mixed type evolution

In order to treat the general evolutions including Darwinian evolutions, for example,

we have to prepare the both types of evolutions at the same time. Typical examples

can be observed in the stability of ecological system (for example Voltera-Lotka

equation ([26])) (Also see Figure 12).

Generating function of evolutionary system and the evolution transfor-

mation

We introduce a concept of generating function for the distribution of an evolutionary

system and discuss the evolution in terms of generating functions. We choose an

arbitrary evolutionary system at first. We take the distribution of the elements gn of

n-th generation and consider the following formal power series:

F (z) = 1 + g1z + g2z
2 + g3z

3 + . . .

which is called the generating function of the evolutionary system. Correspondingly,

we put

FS(z) = 1 + S(g1)z + S(g2)z2 + S(g3)z3 + . . . ,

where S(gn) denotes the entropy of the state gn.

Example 1. We take a system of a simple random walk. We describe the process in

terms of the piecewise lines with a direction whose distribution of length n is denoted

by gn:

Figure 10
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Example 2. (1) The set of n-points.

(2) The set of binary (resp. ternary) elements:

Entropy transformation of top-down type

We can introduce a concept of evolutionary transformation which transforms from

one distribution, for example:

to another distribution, for example:

which is defined by F : F (z) → F̂ (z), F (gn) = ĝn is called entropy transformation

when S(gn) ≥ S(ĝn). We give several examples.

Example 1 (Random walks) (1) (Sections 4, 5)

(1) For a simple random walk, we consider the distribution of possible n− elements,

which is denoted by gn. Then we have the generating function:

F (z) = 1 + g1z + g2z
2 + g3z

3 + . . .

We see that S(gn) = (2d)n (d = the lattice dimension).

(2) For a self avoiding random walk, we have the corresponding generating function:

F (z) = 1 + ĝ1z + ĝ2z
2 + . . .

We see that ĝn = nγ , where γ is the critical exponent. Then F : F (z) → F̂ (z)

describes the self-organization.

Example 2 (Borel transformation)

We consider a set of n points: {1, 2, . . . , n}. We consider the permutations of n-points

which are denoted by

gn = {s(1), s(2), . . . , s(n) : s ∈ Sn}.
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Then we see that S(gn) = n! We make a congruence of these points into a single

set which is denoted by ĝn. Then we see that S(ĝn) = 1. Then the transformation

can be understood as follows: The entropy transformation: T : F (z) → F̂ (z) gives

F (
∑
n!zn) =

∑
ẑn. T is called Borel transformation.

The evolution transformation of bottom-up type

In order to describe the egg division, or phase change from ice to water, we have

to treat the inverse evolutionary transformation. F : F (z) → F̂ (z), F (gn) = ĝn is

called inverse entropy transformation when S(gn) ≤ S(ĝn).

Example 1: The typical example of the inverse transformation can be observed in

the cell division of life thing: This process happens when some energy is brought

from the ambient space.

Example 2: Another example can be found in the self-organization of the phase

transition from ice to water, for example.

The transformation of mixed type

In order to treat the evolution process totally, we consider the transformations on the

original space Xin and the ambient space Xout at the same time. For an evolution

transformation: Fin : Fin(z) → Fin(ẑ), we can associate the transformation: Fout :

Fout(z) → F̂out(z). We have to consider the both transform at the same time. In

order to preserve the Boltzmann principle, we have the following conditions:

S(gin(n)) + S(gout(n)) ≤ S(ĝin(n)) + S(ĝout(n)),

S(gin(n)) ≥ S(ĝin(n)), S(gout(n)) ≤ S(gout(n)).

Figure 11

Including the creation of the galaxies, the original Darwinian evolution theory and

environmental problems, we have to consider several systems, X1, X2, . . . , Xn in a

common ambient space Xout and describe the interchange entropies between (1) Xi

and Xj , (2) Xin and Xout at the same time ([6]).
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Figure 12

3. Simple random walks in evolutions (Seeds)

In this section we recall some basic facts on simple random walk. As for simple

random walk, see also ([7], [30]).

(Simple random walk on the n-dimensional lattice)

We take a simple random walk on the n-dimensional lattice.

simple random walk

r = a1 + a2 + . . .+ aN .

Figure 13

The random walk gives the distribution of Gaussian type:

P (x, y, z) = CN−1/2 exp

( −x2
2〈x2〉

)
N−1/2 exp

( −y2
2〈y2〉

)
N−1/2 exp

( −z2
2〈z2〉

)

∼ N−3/2 exp

( −3r2

2〈Na2〉

)
,

where r = a1 + a2 + . . . + aN , r2 = | |2 (| |2 = x2 + y2 + z2) and N is the step

number.

We notice the following basic properties:

(1) The state of simple random walks describes a certain kind of uniform distribution

of elements. This distribution can describe well the distribution of the seeds at the

beginning of the evolution. This can be also supported by the fact that the Brownian

motion can describe the simple random walks.
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(2) We notice that Lévy theorem ensures the existence of symmetry breaking without

any bias.

Lévy-theorem ([7])

We consider a coin toss game. Then we have a 1-dim. random walk. We can have the

following surprising fact: When we begin to win (i.e., we have an one-side appearance

tendency), then the situation continues easily. Namely, when we win, we continue to

win!! (see also ([29])).

Application of Lévy-theorem to symmetry breaking ([29])

We can observe many symmetry breakings in nature: (1) The symmetry breaking

between particles and anti-particles, (2) The uniformity breaking in the distribution

of galaxies, (3) The difference of number of protons and neutrons in the atom genera-

tion, (4) The difference of numbers in egg-divisions and body-constructions. Usually

we can not find the theoretical back ground of the symmetry breaking. Hence we

say ”because of some certain but unknown reasons, we have a symmetry breaking”.

When we accept Levi theorem, we can appreciate the symmetry breaking easily. The

reason why we will not accept the symmetry breaking might be found in the tra-

ditional philosophy, which is called ”The principle reason of sufficiency” (Leibniz).

Also we have a strong belief in probability theory ([18], [26], [28]).

4. Self avoiding random walks in evolutions
(Self organization: The power law distribution)

de Gennes has developed the theory of polymers in terms of the scale (critical expo-

nent)” of the distribution of polymers ([8]). Also he put his mathematical foundation

of his theory on self avoiding (s.a.) random walks. At first we recall some basic facts

on s.a. random walk. Then we will see how s. a. random walk can describe poly-

mer physics. We notice that the transition from simple random walk to self avoiding

random walk decreases the entropies. We take a self-avoiding random walk on the

lattice:

Self avoiding Random walk

Figure 14
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When the path is constrained under the condition: The final point is the nearest

neighbor point of the initial point (see, Figure 14). Then the self avoiding random

walks give the following distribution with power law:

pN (a) = (1/Rd)N (1−r).

Here we notice that r is universal constant: r ≈ 7/6 for dim = 3, r ≈ 4/3 for dim = 2.

Remark. Simple random walks have been discussed widely. But we can find very

few references on self-avoiding random walks.

The phenomena of power law distribution and the evolutionary system

In the remainder of this section we will show how we can derive the power law

distribution from the evolutionary system.

(1) Recently people have found many phenomena whose distribution make power

law type.

Example 1: Zipf’s law, Example 2: The distribution of galaxies, Example 3:

Pareto’s law, Example 4: The citation numbers of papers, Example 5: The dis-

tribution of populations of cities, Example 6: The distribution of the size of earth-

quakes.

Although we have so many examples and treatments of these phenomena we have

still not its origin of the distributions ([35]).

(2) Next we will show how the evolutionary systems generate self-avoiding random

walks and hence we may expect to treat the phenomena by the theory of evolutions.

At first we notice that we can find phenomena which may be described in terms of

self-avoiding random walks:

Example 1: (Polymer generation)

Example 2: (Transcription mechanism)

Example 3: (Cells of bacteria): We can find many examples of the body con-

structions of linear type:
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Actinomycetes Gram-negative bacteria Gram-negative bacteria

Example 4 (Cosmology ([27])) We can expect to find the constructions of galax-

ies of the linear type. We can observe the type in the computer simulations:

Figure 15

Remark. This observation suggests a possibility of string theory in cosmology.

Example 5 (The power law distributions of sentences) Here we give the

generation of sentences and we show that the distribution of sentences supply that

of power law type. Then we may derive the well known Zipfs law on the base of this

observation.

Generation of sentences

We can find a linear structure in the generation of sentences by words:

I sleep ⇔ I+”sleep, I give you a book ⇔ I+give +you+a book

Next we will show that the generation of sentences can be described in terms of

the theory of the self avoiding random walk. We take a set of some units:

Y1 , Y2 , Y3 , ... , Yn

which make a simple random walk. The evolution begins and they make a structure

of the linear structure:

Y1 + Y2 ⇒ Y1 + Y2 + Y3 ⇒ Y1 + Y2 + Y3 + Y4 ⇒ . . .
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We notice that these sequences can be obtained by the successive binary exten-

sions. Then we see that the set of these sequences generate self avoiding random

walks. We can observe the BTBB-structure in the sequence of elements. We can de-

scribe it in terms of the block representation of binary extension, or ternary extension

(see [16]):

⇒ binary extension

⇒ ternary extension

Hence the BTBB structure can be observed in the following manner: For example

⇒ ⇒ ⇒ . . .

(The words in the blocks are omitted). Hence we can make tapes of sequences in terms

of block representations. This has been already given in Part III and the details are

omitted here ([16]). By these observations, we can obtain sequences which constitute

self avoiding random walks. Hence the distribution becomes the type of power law.

Example 6 (The power law distributions in economy - Paretos law)

Here we will understand the Pareto’s law from the evolutionary point of view. We

consider the economy in the following steps: (1) The automaton structure of primitive

gains of money, (2) The binary and ternary extensions in economics (the classic

economy and the Keynesian economics) (3) The evolution in economics and the

Pareto’s law:

(1) The automaton structure of primitive gains of money

We consider how people can gain/spend moneys. We may assume that moneys are

floating and they constitute a simple random walk:

The primitive collection of moneys can be understood as making sequences of

coins. In the most primitive level moneys are collected not for the practice use /

commerce use, but for the presentation of social status. This can be observed in the

shape of coins, namely, we have the holes on the center of coins. Hence we see that

they have the structure of automatons (or regular languages):

Hence we can find the structure of self-avoiding random walk. Hence they make a

distribution with power law.
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(2) The binary structure of collections of money

The next step might be the introduction of commerce. Then gain and expense of

moneys both appear. We call gain of moneys as positive moneys, expense of moneys

as negative moneys, respectively. We denote the scheme as follows:

Y Y : positive money

+

Z Z : negative money

We may understand the pair as the binary extension of the collection of money

in (1). The typical examples of negative moneys are usual payments for buying daily

things or houses. Hence a perfect budget is the equality of the positive and negative

moneys. Then people would be happy, when they have enough food daily to eat. This

is an analogy of the acceptability condition of the basic binary sentence: S+V.

(3) The ternary structure of collecting moneys

The most important character of gaining moneys is that positive monesy Y and

negative moneys Z create new moneys which are called benefit W (or W ) when they

are positive (resp. negative). This process can be understood as the ternary extension

process. We can give examples of this process:

(1) Y : capital, Z: investment to innovation ⇒ W : positive or negative benefit.

(2) Y : money, Z: investment to stocks ⇒ W : benefit / loss

It is more convenient to understand this process by comparing the sentence gen-

eration.

Then following the analogy to the creation of sentences we can create moneys in a

more complex manner. We can also observe the BTBB-structure in these processes.

We may check this to be realistic or not. We may understand that this process can be

understood as the creation of the self avoiding random walk and hence we may expect

that the distribution becomes that of power law. We may expect to understand the

Paretos law from these observations.

Remark: We may find binary and ternary structure in economy and construct the

evolution theory for economy:
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The binary and ternary structures in economics

J. M. Keynes has discussed economics in terms of GDP. We can find the following

binary and ternary structures:

5. The fractal structure of the evolutionary system

Here we recall some basic facts on fractals and discuss the fractal structure of the

evolutionary system in the following process:

(1) We will obtain the power law distribution for the evolutionary system.

(2) On the base of this fact we can consider the Tsallis entropy for the obtained

exponent q of the system and make its q-analysis. Then we can find the roles of

Tsallis entropy in the complexity systems ([35]).

(3) Finally we will be concerned with the phase transition of evolutionary systems.

The system evolutes from the seeds of the evolution and creates the BTBB structure.

Then the complexity system is generated and it describes the structure of ”fractals

of branched type”. The boundary of the fractal set becomes fractal of flower type

and it makes the state of the phase transition. By this we can describe several phase

transitions in physics, cosmology and biology. We know that the boundary of the

universe constitutes with black holes. Hence we see that the black holes may be

understood as the flower of our universe”. We can also describe the wall of cells as

the flower of the generation of inner bodies (see, Figure 19). By these observations

we can obtain the following description of evolutions:
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Fractal description of the evolution

(1) The seeds of the evolution are given

⇓
(2) The complexity system is created from the BTBB-structure and suc-

cessive binary extensions on the BTBB-structure. It becomes a fractal set

of branch type

⇓
(3) The border of the complexity system becomes a fractal set of flower

type and it makes a simple random walk on the border (We may use the

Tsallis entropy here)

⇓
(4) A new evolution begins from the seeds on the border.

⇓
. . . . . .

Next we will give the exact description of the fractal structure of the generating

system.

Some basic facts on fractal sets

We treat the following two kinds of fractal sets: (1) flower type (2) branch type:

(1) Fractal set of flower type: We choose a compact set K0, for example, a closed

interval and a system of contractions {sj : K0 → K0 : i = 1, 2, . . . ,M}. Then we

put {Kn : n = 1, 2, . . . ,M} by

Kn =
m⋃

j=1

sj(Kn−1).

Here we assume the separation condition si(K
0
n−1) ∩ sj(K0

n−1) = ∅ (i 6= j), where

E0 is the open kernel of E. Then we have the sequence:

K0 ⊃ K1 ⊃ K2 ⊃ Kn ⊃ · · · .
Putting K =

⋂∞
n=0Kn, we have the fractal set of flower type. We notice that K is

sj-invariant, i.e., sj(K) = K (j = 1, 2, . . . ,M).

Figure 16
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(2) The fractal set of branch type (or evolution type): Let K0 be a compact

set and let sj (j = 1, 2, . . .M) be a system of contractions on K0 with the separation

condition. Also we prepare a shift s0 with s0(K0) ∩K0 = ∅. Putting

Kn = K0 ∪ s0(
M⋃

j=1

sj(Kn−1), n = 1, 2, . . .

we have

K0 ⊂ K1 ⊂ K2 ⊂ Kn ⊂ · · · .
Then we have the following relation between these fractals: We call the set: K \⋃∞
j=0Kj the main boundary of K which is denoted by bK. Then we can obtain the

fractal set bK of flower type. For the understanding the relationship between these

two kinds of fractal sets, we give well known fractals of Cauliflower type. We may

say that the boundary of the Cauliflower is just the flower of the Cauliflower.

Figure 17

The fractal structure of the evolutionary systems

Applying the above observation to the evolutionary system, we can find the fractal

structure of branch type on the evolutionary system and the fractal structure of

flower type on its boundary respectively. We will describe the fractal structure of

the evolutionary system in the following manner: We begin with the BTBB-system

of the evolution which is denoted by A0. Then the complexity system is generated

by binary extension by Ai (i = 1, 2, . . .). Then we may find several types of the

generations: For example,

(1) Linear type

(2) Planar type
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(3) Complexity type

We can find much more complicated fractal sets, for example, 3rd and 4th cells in

molecular biology ([9]).

Figure 18

The fractal set of Hilbert type: We see that the body A is dense in Acl, where

Acl is the closure of A, by definition. The fractal sets which have the condition: the

boundary bAcl is also dense in Acl is called a fractal set of Hilbert type. We can

discuss how ”the parts and the whole” relate in organs in terms of the fractal set:

(1) The parts are equivalent to the whole. The sponge has the uniform structure.

Hence, when it is divided, each part becomes a sponge (Example 1 in Figure 19).

(2) The parts are connected to the headquarter: the neuronal or blood system has

a headquarter ”brain/heart” and ”nerve ending/capillary” (see Example 3 in Figure

19).

We consider the fractal set of the bounded type, i.e., the total fractal set is the

bounded (compact) set, because the universe itself is bounded:
⋃∞
j=0Aj is a compact

set. Hence we see that the diameter |An| → 0 (n→∞).

The power law distribution of the fractal sets

At first we notice that paths starting from the origin *make a self avoiding random

walk. Hence we see that the distribution of paths makes that with power law. Also

we notice that the fractal set of the boundary makes a simple random walk. Next

we introduce the Hausdorff measures on A and bA, respectively, whose Hausdorff

dimension is denoted by q and q’, respectively. Then we can consider the Tsallis

q-entropy on A and the Tsallis q’-entropy on bA, respectively ([35]).
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Example 1 (Cells): We have the following two hypotheses on the creation of cells

Collection construction Subdivision construction

We give several examples of creations:

(1) The linear construction (2) The boundary construction

(3) The body construction

Example 2 (Geometric type) Example 3 (The recurrence system)

The recurrence system is a typical sys-

tem of Hilbert type.
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Figure 19

Example 3 (Tool kit system) The tool kit is a method of the body construction

which can be given by successive binary extensions. The genes which are called

Hox genes operate on DNA as on-off mechanism and create the desired the body.

Remarkable facts are that Hox genes have the universal sequence independent from

the species and on-off mechanisms create the varieties of the life things. When the

evolution proceed, then the duplications happen in Hox-genes and they can operate

in a more complex manner. We may understand these evolutions by the binary

succesive extensions:

(i) A ⇒ A’ + A (A, A is a sequence of DNA)

(ii) A + B ⇒ (A + B) (where B is a cell)

(iii) A + B ⇒ (A + B) or A (”switch on/off”)

We give two examples:

(1) Fly (2) Mouse

Figure 20

6. The evolutions of physics/cosmology

We will describe the BTBB-structures of the following three evolutions:

(1) The evolution of the space-time, (2) The evolution of the elementary particle

physics, (3) The evolution of the generation of atoms and the universe.

(1) The evolution of the space-time:
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The BTBB-structure of the evolution of the space-time

(0) There exists the Penrose-Hawking singularity of the universe ([23], [27]). We

may associate the origin of the evolution to the singularity. We may assume that

the seeds of the space-time make a simple random walk (Process 1) (Remarks 1,

2, 3).

⇓
(1) The first binary extension creates our world and the ambient space by the

Big- Bang and the Inflation. We call the ambient space ”dark world (Remark

4). Here we want to notice that we have to assume the existence of the ambient

space of this world (Remark 5).

⇓
(2)The ternary extension creates the 3-dimensional space (Remark 6).

⇓
(3) The second binary extension creates the time which separates the past and

the future. Also it makes a simple random walk. The past and the future are still

not determined (Remark 7).

⇓
(4) The final binary extension introduces a concept of the entropy and the direc-

tion of the evolution is determined (Process II) (Remark 6).

Remark 1: The singularity is obtained by solving the Freedman equation ([27]):

1

a

d2a

dt2
= −4πG

3c2
(ρc2 + 3P ),

where a: the scale factor of the universe, ρc2 : the mass density of the universe, P :

pressure.

Remark 2: The cosmological principle supports our assertion ([27]).

Remark 3: The quantization of the solutions of the Freedman equation gives the

quantum gravity wave function Ψ(a) which is given by the Wheeler-DeWitt equation:
[
−~2 d

2

da2
+

(
3π

2G

)2(
a2 − a4

`2

)]
Ψ(a) = 0,

where ` is horizon radius. Usually people treat the equation under the boundary

condition of the separation of the space and time and obtain the real wave function

by the tunnel effect. We suggest to set the boundary condition on the boundary

between this world and dark ([23]).

Remark 4: The Lévy theorem says that there exist a symmetry breaking between

this world and the dark world and nothing is determined and just fluctuated. After

the entropy is introduced the flow of the evolution is determined.
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Remark 5: It seems to authors peculiar that we do not assume the existence of the

ambient world, because we cannot imagine an extension of this world without the

ambient space. We may associate the dark matters and dark energy to the border of

these worlds.

Remark 6: The quantized wave functions have no times. Hence they are stable

waves. At this stage the 3-dimensional space is created. This is the natural conse-

quence of the potential function f of the gravity which has the form f ∼ 1/r, where

r is the distance to the singularity. This is the basic observation on the gravity by

Laplace ([27]). If we choose the other dimensions, then we see that the universe

would be much poorer. The gravity has only the attractive power. This implies that

the universe has begun with an explosion. This implies that each material has the

common ancestor. This suggests us that we can introduce the concept of the gravity

for other entropies. In fact, E. Verlinde has introduced a concept of entropic gravity

and try to construct the relativity theory in the entropy level ([37]).

Figure 21

Remark 7: The Newtonian mechanics or Einstein theory cannot determine the

past/ future. Some people try to deduce the past and future from the theory (for

example, [23]). But they have not succeeded in it. We assert that the only entropy

can describe the process from past to future.

(2) The evolution of elementary particles (From the birth to 10−33 sec.):

(1) At the Big Bang time the space is filled with photons. This is the origin of ele-

mentary particles. (2) The first binary extension creates particles and anti-particles:

q ⇔ q* + γ, where γ is photon. They make simple random walk and they are

fluctuated. By the Lévy theorem particles in this world appear for a period or anti-

particles appear in the other period (Process I). (3) The ternary extension creates

colors of quarks. Mesons and baryons are also created. (4), (5) The successive binary

extensions create quark families: t-quark and b-quark are created at the third bi-

nary extension and c-quarks, s-qarks from t-quarks and u-quarks and d-quarks from

b-quarks, respectively. We notice that weak bosons and leptons are created at the

same time as the emission of entropy for the creation of baryons. This creation gives

the duality between baryons and leptons.

Remark 8: The duality may be described in terms of the Galois group of the

BTBB-structure. Also we may expect that the gauge theory cna be described in the

analogous manner.
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(3) The evolution of generations of atoms (From 10−33 sec. to 3 minutes):

After the creation of the quark family, the u-quark and d-quark remain. Then proton:

p and neutron: n are created and they make an equilibrium state and make a simple

random walk by p ⇔ n + e, where e is an electron. (1) The origin of the evolution

of atomic physics is the birth of protons and neutrons. They make a simple random

walk and they make a symmetry breaking. (2) The first binary extension creates

H and He by Gamov process (Process I). (3) The ternary extension creates C by

Salpeter process. (4) The successive binary extensions create O, N, etc., by α process

or β decay process. At this stage the complexity system begins to be created and the

light atoms are created until Fe (Process II) ([27]).

(4) The birth of the stars and galaxies (3.8×105 years)

Before 3.8×105 years of the birth of the universe, electrons behave free from atoms

because of the high temperature. The photon states and material states make an

equilibrium state and atoms behave as free particles. They make a simple random

walk which has been observed as black radiation by COBE. This can be chosen as

the first stage of the evolutions of the universe ([27]).

Figure 22

From this stage, the same process in the previous process (3) creates stars under

the effect of gravity powers (see Remark). For example, light stars in the principal

sequence are created by Gamov process (Process I). This process continues to the

creation of rather heavier stars which are created by Salpeter process and the succes-

sive binary extensions. The quite heavy stars, hypernova are created and they grow

to black holes (see Figure 24). Then the stars are floating in the universe and they

make a simple random walk (Process I’). Next the Gamov process and the Salpeter

process happen repeatedly and the galaxies are created. Then the complexity system

is created and we can observe the non-homogenous distribution of the galaxies (see

Figure 23).
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Figure 23

At present, the border between our universe and the ambient universe is filled with

black holes and dark energy. The dark energy might be the emission of energy of

the creation of stars and galaxies. Then stars and galaxies will be absorbed into the

border of the universe and the final Big Crunch will happen and the end of this

universe creates the birth of the new universe (Process II).

Example (Black holes)

Figure 24
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Remark. We can find a new ternary extension process. The generations of stars and

galaxies are performed by the same process of the atom generations. At the end of

Section 8 we make a comparison between physics and biology.

7. The evolution in polymer physics (de Gennes theory on poly-
mers)

de Gennes developed the theory on polymers. His main idea is the scaling assumption

on the distribution of polymers. The heart of his theory is the application of the self

avoiding random walk to polymers. We give the basic generation table of polymers

connected hydrocarbon polymer. Then we can find binary and ternary structures in

polymers and find its evolution theory.

(1) The binary generation of polymers

(2) The ternary generation of polymers

Figure 25
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The complexity system of polymers

At first we recall the basic idea on de Gennes theory on polymers. We can associate

polymers to random walks in the following manner:

(I) We consider a large box filled with balls of the same size without free space.

Figure 26

(i) We choose a referred ball O and move

to the right. Then the empty space of the

balls is filled with some another ball. Hence

we can move to the right.

(ii) Repeating this process the ball can

make a simple random walk on the lattice.

(II) Next we consider a polymer which constitutes with several (long) monomers

with two hands for simplicity sake

— O — O — O — O — O — O —

Here we assume that the polymer is easily bended. Then it makes a similar move

to that of monomers. But it can not make self-interactions. Hence it makes a self-

avoiding random walk. On the basis of these facts, de Gennes has developed the

polymer physics. The key point of his idea is the appearance of the distribution of

power law. By this he developed the scaling theory of polymers. Here we consider

the complexity system of polymers and try to find the binary and ternary structures

in polymers.

(1) At first we notice that these polymers make self avoiding random walks and that

their distributions constitute those of power law.

(2) Polymers constitute knots/braid structures

Figure 27

Here we notice that we may expect to describe the structure in terms of knot

structure. In fact, we know the binary and ternary structures in the generation of

knots/braides can be given by Reidemeister moves. Comparing the structures of lin-

ear polymers with those of knots/braids, we may find binary and ternary structures

in the complex structure of the polymers. This will be discussed in Part V ([17]).

Reidemeister move (I), (II), (III)⇔ α-spiral structure, β-spiral structure, collagen

3-line spiral, respectively (see Figure 27).
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(3) The entropy of the states of polymers plays an essential role for the description

of the states (see Figure 28).

Figure 28

The evolution theory of polymers

We can treat the evolution theory of polymers in our scheme (see Figure 29).
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8. The evolutions in biology

In this section, we will treat evolutions in biology and find binary and ternary struc-

tures in them and their generations of complex systems. Then we can find the es-

sential change in the evolution from molecular biology level to system biology level.

Comparing the both evolutions in physics/cosmology and biology, we can find the

possibility of system physics/cosmology. We begin with the evolutionary tree of bi-

ology.

Figure 30

Following our method we can find three stages of evolutions (see Figure 30):

(I): The chemical evolution

(II-1): The biological evolution (The birth of life)
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(II-2): The biological evolution (Generation of big-size cells)

(III): The biological evolution (The birth of system biology)

(I) The chemical evolution

This evolution is a continuation of that of polymers. About 35×108 years before, the

basic material in biology i.e. RNA, DNA and proteins are created. We can observe

the binary and ternary extension structures in these generations. We can observe the

BTBB-structure in the generation of RNA, DNA and proteins.

The BTBB-structure and complexity system in the chemical

evolution

(1) The origin of the evolution is the RNA

⇓
(2) The first binary extension creates DNA

⇓
(3) The ternary extension creates proteins

⇓
(4) The successive binary extensions create the variety of proteins

⇓
(5) The final binary extension creates the entropy which makes the difference

between ”Inner world” (body) and ”Outer world” (environment) of the cells

Remark: The mutations in the cell make a neutral evolution ([18]). Hence we see

that the set of proteins make a simple random walk.

(II-1) The biological evolution (The birth of life)

The origin of the birth of lives exists but it is unclear ([3]).

The BTBB-structure and complexity system in the biological

evolution (II-1)

(1) The origin of the evolution is the creation of life

⇓
(2) The first binary extension creates the duplication of genes (EF-1 and EF-2)

⇓
(3) The ternary extension creates 3-domains (archeas, bacteria eukaryota)

⇓
(4) The succesive binary extensions create the organization of cells

⇓
(5) The effect of the entropy creates cells, but the borders are not necessarily

clear
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Remarks: (1) The evolution of this state is supported by genome analysis by Woose

and Iwabe, etc ([11]). (2) The horizontal evolutions happen frequently between cells.

(II-2) The biological evolution (The birth of big and complicated cells)

Choosing the same process in (II-1) with additional various binary extensions, we see

that the size of the cells have become bigger and more complicated in this evolution.

The BTBB-structure and complexity system in the biological

evolution (II-2)

We can observe the BTBB-structure in the birth of big cells.

(1) The beginning of the evolution is the final state of (II-1)

⇓
(2) Then the first binary extensions happen (symbiotic evolutions, tool-kit evo-

lutions duplications, mutations, etc...).

⇓
(3) The first ternary extension creates 3-families (parazoa type, deuterosome

type, protosome type).

⇓
(4), (5) Then the successive binary extensions create the organizations of cells.

Remarks. (1) We can find the same kinds of other evolutions which create the

big cells, replacing (3) with the following ternary extension: (3)’ The creation of

3-families (animal, plant, fungi).

(2) We can observe many kinds of binary extensions which generate many structures,

for example, (1) The appearance of sex, (2) The generation of duplication ([21]). (3)

The appearance of the tool kit mechanism (as for the mechanism, see Section 5).

(4) The symbiotic evolution (L. Margulis) ([9]). Hence it is natural to think that

some of them are chosen for the completion of the BTBB-structure. After succesive

binary extensions, we have obtained cells with complex structures (see Section 5).

We want to notice that these evolutions can be decsribed in terms of succesive binary

extensions.

(3) Whitteker 5 world theory or Margulis 5 world theory describes the evolution of

this stage ([9]).

(III) The biological evolution (The birth system of biology)

At the end of the second stage multi cells are constructed. Moreover, the structure

of the cells is enough complicated. The luxury genes appeared and multi-cells make

groups and began to create the total body (see Section 5, Figure 19). We notice
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that there happens essential change in the evolution. The evolutions performed not

in the genes level, but in the system of genes. So we have to treat them in terms

of system biology. Then we have the ”Big Cambrian Explosion. We will find the

BTBB-structure in this level.

The BTBB-structure and complexity system in the biological

evolution (III)

(0) The life things with big sized cells have lived without enemies and they

enjoyed their lives very much. This implies that they made a simple random

walk in the ”space of shapes or forms” (Huxley’s apple barrel).

⇓
(1) The first binary extension: We can see that luxury genes are created and

they create the system of cells.

⇓
(2) The first ternary extension: We may choose the following three types in

the body form level as in the previous stage: (i) The parazoa type (radial

symmetry) (ii) The deuterstome type (linear symmetry) (iii) The protostome

type (Up mod down, symmetry)

⇓
(3)∼(5) The successive binary extensions. The influences from the outer/inner

world changes the body from ”non-understandable” forms” to reasonable”.

Remark 1: The set of multi cells makes a simple random walk. Typical examples

are bolbox, or nostoc (see Figure 19, Section 5).

Remark 2: We give several examples of each type.

(1) The parazoa type (2) The deuterostome type (3) The protosomo type

In the Cambrian years, the animals with complicated and non-understandable

structures appeared. We may see that these full non-deterministic structures make

a simple random walk in the space of varieties of forms. We give several examples of

changes from non-understandable forms to understandable forms.
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(1) non-understandable forms

⇓

(2) understandable forms

Figure 32

Summary and future problems
(A method of system analysis to physics/cosmology)

Here we will summarize the results of this paper and shall try to find a method

of system analysis to physics/cosmology. We have discussed the evolutions by non-

commutative Galois theory and we have found the following two stages:

(I) The generation of BTBB-system and the complexity system

(II) The repetition of the process (I) creates the total hierarchy structure of the

evolutionary system, performing this process recursively and we have obtained the

hierarchy system Ln (n = 1, 2 . . .), (see Remark in the Introduction).

The process (I) can be detected by finding the ternary extension. Then we can

find the process (II). We can observe the fact that the evolution of (I) is drastic

and new. The evolution becomes systematized in (II) on the base of the results of

the evolution in (I). Hence we can find the curriculum vitae of the evolution. The

evolution (I) (resp. (II)) is called young (resp. adult) evolution. We have observed

both young and adult evolutions in an evolution.

Our main interest is to know at what stage the referenced stage places in the

evolution process. Namely, we want to know wheather the referenced stage is young,

adult or old.
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System biology vs system physics

As we have seen in Section 8, the observation in biology tells that there exists a

big change from the molecular biology (the stage (I), (II)) to system biology (the

stage (III)). The same kind of the change can be also observed in the evolution of

the universe. In fact, we cannot find a new ternary extension in the evolution of

stars and galaxies (see Remark below Figure 24). Hence we may understand thus

the creations of stars and galaxies perform along the same creation process of atoms.

We may understand that the atomic level evolution completed and the evolution of

the total system of stars and galaxies began under the influence of gravity. Hence we

may have the following comparison table:

Biology Physics/Cosmology

(1) Molecular generation (RNA, DNA) (1’) Elementary particles generation

(2) Cell creation (2’) Atom creation

(3) Big and complicated body (3’) Stars and galaxies

(Luxury genes) (Gravity effect)

Problem: Is the present universe young, adult or old? Will/did there exist the

Cambrian explosion in the universe?
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preparation.

[18] S. Kaufman, Investigations, Oxford University Press, 2000.

[19] M. Kimura, The neutral theory of molecular evolution, Cambridge University Press,

1983.
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STRUKTURY BINARNE I TERNARNE W EWOLUCJI

WSZECHŚWIATA (ŚWIAT 2× 3× 2× . . . WYMIAROWY) IV

ENTROPICZNY OPIS EWOLUCJI

S t r e s z c z e n i e
Niniejszy artyku l jest czwarta̧ czȩścia̧ artyku lów napisanych pod tym samym tytu lem

[30, 31, 33]. W pierwszej i w drugiej czȩści widzielísmy, że struktury binarne i ternarne
moga̧ opisywać ewolucjȩ systemów, na przyk lad kwarków, atomów, galaktyk, RNA, DNA
i jȩzyków. W trzecim artykule przedstawilísmy ewolucjȩ jȩzyków i pokazalísmy, że ma ona
ścis ly zwia̧zek z ta̧ w fizyce. W tej czȩści rozwiniemy najpierw ogólna̧ teoriȩ ewolucji dla sys-
temów o strukturach binarnych i ternarnych. Nastȩpnie pokażemy, jak systemy ewolucyjne
tworza̧ tak zwane systemy z lożoności jako granicȩ systemu ewolucyjnego. Rozważamy
ewolucjȩ w oparciu o nastȩpuja̧ce zasady:
Zasady ewolucji:
(1) Wszystko w tym wszechświecie musi podlegać prawu wzrostu entropii (zasadzie Boltz-
manna) ([35]);
(2) Systemy ewolucyjne dzia laja̧ wbrew zasadzie Boltzmanna (zasadzie Schrödingera lub
filozofii Bergsona) ([3]).

S lowa kluczowe: entropia, b la̧dzenie losowe, ewolucja wszechświata, nieprzemienna teoria

Galois


