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Summary

Various aspects of binary, ternary, quaternary, quinary, and senary structures for alloys,

polymers and, in particular, proteins are studied. We refer to quinary and senary structures

in some polymers indicating the role of total energy maxima in the infrared and Raman

activity energy spectra. Decomposition of quinary structures to ternary structures is dis-

cussed. A complex analytical method of binary and ternary Galois extension is proposed as

well as its realization in terms of Riemann surfaces. Slightly wavy behaviour of the system

of hexagons in a polymer leaf is investigated.
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Introduction and aim of the paper

We are studying various aspects of binary, ternary, quaternary, quinary, and senary

structures for alloys, polymers and proteins. In particular, we refer to quinary and

senary structures in some polymers indicating the role of total energy maxima in

the infrared and Raman activity energy spectra [6, 18]. Decomposition of quinary

structures to ternary structures is discussed.

Next we apply complex analytical method of binary and ternary Galois extension.

Then we realize the Galois extensions in terms of Riemann surfaces. Slightly wavy

behaviour of the system of hexagons in a polymer leaf is investigated.

1. Basic facts about polymers

We recall the basic facts about polymers which supply bases of our observations:

(i) the binary and ternary bond structure of atoms of carbon, C;

(ii) classification of polymers.

(i) The binary nad ternary bond structure of atoms of carbon

At first we notice the electronic structure of carbon:

We have the following three types of monomers of carbon:

We have the following polymers

(ii) Classification of polymers

We may classify polymers in the following manner:

(1) Polymers of linear type
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(2) Polymers of non-linear type

Remarks

(1) DNA, RNA of life things are copolymers of linear type.

(2) DNA, RNA of primitive forms of life, for example, archea, are of circular type.

(3) Planar types can be found in polymers including Si.

Alloys, polymers, proteins - structural similarities and differences

In the case of alloys Fig. 3 in [6] shows that we have some freedom in mathematical

description and choice of the potential and metric within the Hamiltonian. In the

case of polymers we have two basic regular polygons within the strucutre. Pentagons

or hexagons with atoms of carbon in the edges:

Proteins are built of aminoacids bound with peptide bonds. Each aminoacid is

formed of atoms of carbon, hydrogene, NH2 group, carboxylic group COOH and

some acid residue - these might be sugars, sulfur etc., as shown below.
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We have two basic structures of of amino acids: linear and cylindrical. The cylin-

drical contain pentagonal, hexagonal or both pentagonal and cylindrical ring of car-

bons or carbon and nitrogen. The linear ones do not contain any ”rings”. The exam-

ples of amino acids are shown in Fig. 1.

2. de Genne theory on polymers

The most important part of de Genne theory on polymer physics can give the distri-

bution with of power law in polymer physics. In the traditional physics and statistic

the distribution of exponential type appears commonly, for example simple random

walk, Brownian motion, and Maxwell distribution in statistic mechanics. de Genne

has introduced the concept of self-avoiding random walk (= s.a. random walk) [2]

and obtained the distribution of power law type for polymers.

Here we state his idea briefly.

Let us consider a large box filled with balls of the same size without free space.

(i) We choose a reference ball and move it ro the right. Then the left space of

the ball is filled with another ball. Hence we can move it to the right. The move to

other directions can be prformed in the same manner.

(ii) Repeating the process, the ball can make a random walk in the lattice.

Next let us consider a polymer composed of several (long) monomers with two

hands, for simplicity sake:

Here we assume the polymer is easily bent. Then it makes a similar move to that

of monomers but it cannot make self-interactions. Hence it makes a self-avoiding

random walks.
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Fig. 1. Examples of aminoacids (on the left) and their polymerization (on the right) (a)
linear, (b) cylindrical with hexagonal ring, (c) cylindrical with pentagonal ring, (d) cylin-
drical with both pentagonal and hexagonal ring. During the process of polymerization H2O
is produced.
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3. Total energy maxima; infrared and Raman energy activity
maxima their structural role in the molecular motors

Total energy calculations for polymers as well as infrared and Raman energy activity

already have been discussed in our previous papers [6, 4]. We have to take into

account the economizing of energy caused by zigzags, meanders and wavy soliton-like

structures. A good account on the role of these aspects of total energy calculations

can be found in [1].

An important element of the corresponding comparison of the procedure of the

quoted energy is their rescaling connected with fixing each of the main two maxima

at the same point (Fig. 2).

Fig. 2. Total energy (absorbance) vs infrared activity of pentacene molecule thin film after
rescaling according to the sharp maxima points, cf. [18], Figs. 4, 5, 6.

4. Complex analytical method for polymers

We propose a complex analytical method for polymers and determine polymers of

planar type. The basic idea can be stated as follows:

(1) First we realize the binary and ternary bonds of carbon C on a ramified covering
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over P1.

(2) Next we shall realize the process from monomers to polymers by use of the

universal covering of the Riemann surface in (1).

(3) Analyzing the process (2) we can determine the polymers.

We shall describe each step in the succesive subsections separately.

4.1. The realization of binary and ternary bonds by Galois extensions

as Riemann surface

We begin with recalling basic Riemann surfaces and try to associate the binary and

ternary bonds of monomers to Riemann surfaces.

By binary (ternary) non-commutative Galois extension A(z) of the algebra A we

mean the following

A =⇒ A(z), z /∈ A,

where z2 ∈ A (z3 ∈ A, resp.), and where the algebra A need not be commutative

[7, 8, 9]. We can observe the correspondence between Galois extensions of algebras

and chemical structures of both polymers and proteins (c.f. [4]). We can construct

polymers from the Galois extension in the following way. The classical Galois exten-

sion can be descibed in terms of the root of polynomials:

f(x) = 0.

We can realize the roots by a Riemann surface defined by

y = f(z).

In order to realize the solvable group we see that the Riemann surface can be gener-

ated by the binary and ternary covering surface:
√
z − a, 3

√
z − b.

We can realize Galois extensions in the form of Riemann surfaces as can be shown

in the diagrams below:
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Here we will try to associate the binary and ternary bonds of monomers to these

coverings:

We may expect to associate more general monomers to more general Riemann sur-

faces.

Example (Butaine)

4.2. Construction of a self-avoiding path in the universal covering

We have observed that a self-avoiding path can be identified with a path of the form:

The path is connected with indefinite number of line segments. On the other hand

we have an arbitrary path which includes a closed path as a subpath, for example
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We can make a difference between these two kinds of paths in the universal covering

Riemann surface. For this we choose a point α ∈ C and make the infinite covering of

the form: w = log(z − α):

We classify the paths into two types depending on whether it surrounds α or not,

which shall be called Type I or Type II, respectively. In the case of Type I path we

can make a polymerization, and remain unchanged for Type II path.

Hence we can associate a self-avoiding path to Type I and that of general type to

Type II.

We can realize self-avoiding paths or polymerisation in the universal covering in

the following manner:
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Remark. We may expect to realize the polymerizations of planar type by the

Schwartz-Christoffel mapping:

4.3 The determination of polymers of planar type

Using the observations given in Section 4.2 we can list up the polymers of planar

type with binary and ternary bonds by the use of the following

Theorem. For finite or infinite coverings with q-branch points we have the following

diagram which is defined by the deck-transformation in the case of q=2 or q=3: (Let

us pay our attention to the appearance of the binary and ternary structures [10])

(1) q = 2

(2) q = 3

Polyacetylene Magnetic body Zeolite Graphite Zeolite?

5. The generation and decomposition problems of complex
systems of polymers and alloys

In this section we shall consider the complex systems which are generated by mono-

mers and discuss the basic problems:

(1) The generation problems

(2) The decomposition problem
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Fig. 3. Polymer structures involving binary, ternary, and both binary and ternary elements
together (cf. [18]).
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5.1 Generation problems

Here we will describe the generation of hydrocarbon polymers of linear type in terms

of binary extensions. We begin with examples of binary, ternary generation of poly-

mers as seen in Fig. 3. Next we proceed to the generations of monomers and polymers.

We give two generation families:

Examples of ethylene family

Examples of acetylene family

Then we can propose the following problems:

Problem 1. How can we generate hydrocarbon polymers of general type from (1)

methane, or (2) ethylene, or (3) acetylene?

Problem 2. How can we generate polymers of general type by polymerizations of

monomers in the answers of problem 1?
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We will treat this problem by the use of binary and ternary and their succesive

non-commutative Galois extensions. For example, we may check the BTBB-structure

of the structure. Namely, we may check whether there exists or not a sequence of the

following extensions:

B1 → T1 → B2 → B3,

where Bi (T1) denote the binary (ternary, respectively) extension, i = 1, 2, 3.

We notice that we can describe the polymerization by succesive binary extensions.

We choose a sequence of monomers: X1, X2, . . . , Xn, . . . and make a polymer by the

succesive binary extensions:

Here we will construct the BTBB-structure for the hydro-carbon polymers/mono-

mers. We follow the scheme of evolutions in [16].

(0) We choose {C,H} as the seeds. (1) We choose the binary extension B1 as the

ethylene. (2) We choose the ternary extension T1 as the acetylene. (3) We choose the

succesive binary extensions B2, B3 as the generations on the ethylene and acetylene

family. This might be the construction of the BTBB structure. (4) We may associate

the complexity structure to the polymers.

Then we can find partial answers to the problems posed on the base of the given

families:

The BTBB and its complexity system of ethylene

The BTBB and its complexity system of acetylene
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Remark. The polymers which appear in biology are completely different from the

hydro carbon type polymers. Also polymers including Si (including C of diamonds)

may be of another type. Hence we can propose the problem:

Problem 3. Classify polymers.

5.2 The decomposition problem for quinary and senary structures of poly-

mers and proteins

Here we discuss the decomposition problem which is converse of the generation prob-

lem.

In connection with the reduction procedure of quinary and senary structures to

binary and ternary structures resp. we may consider polymer structures involving

quinary and senary structures together and decompose them to structures involving

binary and ternary elements together (Fig. 3). In case of proteins we have four

different atoms: carbon C, hydrogen H, nitrogene N, oxygen O and sometimes sulfur

S. It seems impossible to reduce proteins to binary and ternary structures but rather

to ternary and quaternary structures. Nonion and duodevicenion algebras are of help

to describe this situation [11, 12, 13].

6. An outlook of complex systems/foliations determined by
polymers and alloys

Here we discuss the complex systems of polymers and alloys.

(1) The basic structure of the distribution of polymers.
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(2) The complex analytical description of the distributions.

(3) The foliations determined by polymers and alloys.

6.1 The basic structure of the distribution of polymers

(1) de Genne theory tells that the polymers make self-avoiding random walks and

their distribution is given by power law

(2) The entropy of the states of polymers plays essential roles in the description of

the states.

(3) Polymers constitute knots/braid structures

Here we notice that we may expect to describe the structure in terms knots/braid

structure. In fact, we know the binary and ternary structures in the generation of

knots/braides by Reidemeister moves. Comparing the structures in proteins and

those of knos/braids, we may find binary and ternary structures in the complex

structures of proteins.
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Binary and ternary structures

Reidemeister I α-spiral structure

move ?

Reidemeister II ⇐⇒ β-structure

move

Reidemeister III collagen 3-line spirals

move

6.2 The complex analytic description of the distribution

Finally we will give explicit descriptions of the distributions in terms of complex

analysis. We can show that the distribution gives the solutions of differential equation

of Fuchsian type. The solution gives regular singularities which may give the critical

exponents of the original distributions [15].

We give several examples:

We may expect that the integral function
∫ z
f(w)dw gives the distribution of the

paths of self-avoiding random walks. We notice that z gives the parameter of the

paths.

This will be discussed in detali in another paper.

6.3 Foliations determined by polymers and alloys

In analogy to Section 3 we may consider left and right twisted leaves in one foliation

characterizing more complex situation in the polymer or protein concerned (see Fig.

4).

Fig. 4. Left and right twisted leaves in a polymer structure foliation.
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Perspectives for further research

The perspectives for further research in the context of tihis paper are going it the

direction of generealizing, similarly to [4] in the direction of replacing binary and

ternary components by ternary and quaternary ones involving, besides of C and H,

also N, O and S. The mathematical part of the pattern requires separation theorems

concerning ternary and quaternary structures in terms of composition formaulae

developed in [11, 12, 13].
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ROLA SYSTEMÓW BINARNYCH I TERNARNYCH W BADANIU

BIA LEK

S t r e s z c z e n i e
Rozważamy rozmaite aspekty struktur binarnych, ternarnych, kwaternarnych i senar-

nych dla stopów, polimerów i protein. W szczególności odnosimy siȩ do struktur kwinarnych
i senarnych w niektórych polimerach wskazuja̧c na rolȩ maksimów energii w spektrach pod-
czerwieni i aktywności Ramana. Dyskutujemy rozk lad struktur kwinarnych do ternarnych.
Proponujemy zespolona̧ metodȩ analityczna̧ dla binarnych i ternarnych rozszerzeń Ga-
lois, jak również ich realizacjȩ na powierzchniach Riemanna. Omawiamy lekko faluja̧ce
zachowanie uk ladu sześcioka̧tów w lísciu polimeru.

S lowa kluczowe: binarna struktura fizyczna, ternarna struktura fizyczna, kwaternarna struk-

tura fizyczna, kwinarna struktura fizyczna, sennarna struktura fizyczna, stop, pentacen,

polimer, bia lko, peptyd, aminokwas, rozszerzenie Galois, powierzchnia Riemanna


