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Summary

We prove that for a sequence of integrable Banach space valued random vectors (Xn)

on non-atomic probability space the following equivalence holds: E(Xn|A) → 0 a.s. for any

σ-field A of events iff Xn → 0 a.s. and E sup
n

‖Xn‖ <∞.

Thus we extend certain results obtained by Paszkiewicz [3], [4] for real valued random

variables.
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1. Introduction

The almost sure convergence of all conditionings for sequences of real valued random

variables was studied by Paszkiewicz [3] for positive tending to zero random variables

and [4] for arbitrary integrable ones.

A particular version of the main result of [4] can be formulated as follows:

Theorem 1.1. ([4]) For any non-atomic probability space (Ω,F , P ) and any se-

quence (Xn) of integrable random variables the following conditions are equivalent

(i) E(Xn|A)→ 0 a.s. for any σ − field A ⊂ F ;

(ii) Xn → 0 a.s. , E sup
n
|Xn| <∞.

[11]
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Remark. We emphasize that the assumption that (Ω,F , P ) is non-atomic is essen-

tial (Prop.1.4 in [3]).

The aim of the present paper is to prove an analogue of Theorem 1.1 for random

vectors with values in a Banach space.

2. Preliminaries and notation

Let (X, ‖ · ‖) be a real separable Banach space. X∗ denotes the topological dual of X

and for a∗ ∈ X∗ we write 〈x, a∗〉 := a∗(x), x ∈ X.

Let us recall that for a given probability space (Ω,F , P ), an X-valued random

vector is a mapping X : Ω → X such that for every Borel set B ⊂ X, the set

(X ∈ B) := {ω ∈ Ω : X(ω) ∈ B} belongs to F . A random vector is called simple if

it takes on only a finite number of values.

It follows from the separability of X that X : Ω → X is an X-valued random vec-

tor iff for every a∗ ∈ X∗, 〈X, a∗〉 : Ω→ R is a random variable (see e.g. [2], Prop.1.3).

The X-valued random vector X is integrable (or Bochner integrable) if

(2.1) E‖X‖ :=

∫

Ω

‖X(ω)‖P (dω) <∞ .

If (2.1) holds, then there exists a sequence (Xm) of simple random vectors such

that the sequence (‖X(ω) − Xm(ω)‖)m decreases to zero for all ω ∈ Ω (see e.g.

[2], Lem.1.1) and hence E‖X − Xm‖ ↓ 0 as m → ∞. Therefore the integral of X

(Bochner’s integral) can be defined by

(2.2) EX :=

∫

Ω

X(ω)P (dω) = lim
m

∫

Ω

Xm(ω)P (dω) := lim
m

EXm ,

where EXm is defined in the standard way. Moreover, the limit in (2.2) does not

depend on approximating sequence (Xm) of simple random vectors satisfying

E‖X −Xm‖ → 0, and the estimate holds:

(2.3) ‖EX‖ 6 E ‖X‖ .

(For details see e.g [2], Sec.1.1.)

For an integrable X-valued random vector X and a σ-field A ⊂ F
the conditional expectation of X given A, denoted as EAX or E(X|A), is defined as
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follows.

If X is simple, X =
K∑

k=1

ak1Ak
, where ak ∈ X, Ak ∈ F , k = i, . . . , K, one defines

(2.4) EAX =
K∑

k=1

akEA1Ak
,

where EA1Ak
is the standard conditional expectation of indicator random variable,

and then (2.4) implies

(2.5) E‖EAX‖ 6 E‖X‖ .

If X is an arbitrary integrable X-valued random vector, one can define EAX by

approximating X by simple random vectors as in (2.2) and using the estimate (2.5).

(See for instance [2], pp 27-28 for more details.)

Then EAX is a unique (up to a set of probability zero) integrable X-valued random

vector, measurable with respect to A, such that∫

A

EAXdP =

∫

A

XdP, for every A ∈ A .

(see e.g. [2], Prop. 1.10).

Moreover,

(2.6) ‖EAX‖ 6 EA‖X‖ .

In the sequel we will refer to the following known property of conditional expec-

tation in R:

Proposition 2.1 (see e.g. [1], Thm 34.2 (v)). Let Xn, n ∈ N, X, Y be ran-

dom variables defined on a probability space (Ω,F , P ). If Xn → X a.s. and for all

n, |Xn| 6 Y a.s., where Y is integrable, then for any σ-field A ⊂ F , EA → EAY a.s. .

3. Main Theorem

We can now formulate our main result that extends Theorem 1.1 to the case of

Banach space valued random vectors. Thus our Theorem 3.1 below generalizes the

main result of [3] and is a partial generalization of the main theorem of [4].

Theorem 3.1. Let (X, ‖ · ‖) be a real separable Banach space. For any non-atomic

probability space (Ω,F , P ) and any sequence of X-valued random vectors (Xn) the

following conditions (i) and (ii) are equivalent
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(i) Xn are integrable for all n and E(Xn|A) →
n→∞

0 a.s. for any σ-field A ⊂ F ;

(ii) (iia) Xn → 0 a.s. and

(iib) E(sup
n
‖ Xn ‖) <∞ .

As an immediate consequence of Theorems 1.1 and 3.1 we obtain:

Corollary 3.2. Under the assumptions of Theorem 1.2 for any sequence (Xn) of

integrable X-valued random vectors, the following conditions are equivalent:

(v) E(Xn|A)→ 0 a.s. for any σ-field A ⊂ F ;

(vv) E(‖Xn‖ | A)→ 0 a.s. for any σ-field A ⊂ F .

Remark. A complete generalization of the main result of [4] is under consideration

and it can be stated as follows:

Theorem. Let (X, ‖ · ‖) be a real Banach space. For any non-atomic probability

space and any sequence (Xn) of integrable X-valued random vectors the following

conditions are equivalent:

(i’) for any σ-field A ⊂ F , the sequence (EAXn) is convergent a.s ;

(ii’) (Xn) is convergent a.s. and E(sup
n
‖Xn‖) <∞ .

It is worth pointing out that in the proof of this theorem, an essentially new argument

is needed. The result will appear in a subsequent publication.

4. Proof of Theorem 3.1

Let us note that here the implication ”(i) ⇒ (ii)” is essential and we prove it by

reducing to the relevant problem in R and then using Theorem 1.1.

I. Proof of ”(ii)⇒ (i)”.

By assumption, the real random variables Un := ‖Xn‖ → 0 a.s. and for all

n ∈ N,

0 6 Un 6 Y := sup
n

Un ,

where Y is integrable.

Hence, by Proposition 2.1, for any σ-field A ⊂ F ,

EAUn → 0 a.s. if n→∞.
This and (2.6) imply (i).

II. Proof of ”(i)⇒ (ii)”.

Taking A = F , we obtain (iia) Xn → 0 a.s.
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To prove (iib) assume on contrary that

(4.1) E sup
n
‖Xn‖ =∞ .

For any fixed m let (Ymk) be a sequence of simple random vectors such that

E‖Xm − Ymk‖ → 0 as k →∞
(see Preliminaries).

Hence

∀
m
∃
km

∀
k>km

E‖Xm − Ymk‖ < 4−m

and denoting Ym := Ymkm , we have

(4.2) ∀
m

E‖Xm − Ym‖ < 4−m .

Since

sup
m
‖Xm − Ym‖ 6

∞∑

m=1

‖Xm − Ym‖ ,

we obtain by (4.2)

(4.3) E sup
m
‖Xm − Ym‖ 6

∞∑

m=1

4−m =
1

3
.

From the triangle inequality

‖Xm‖ 6 ‖Ym‖+ ‖Xm − Ym‖
we have

sup
m
‖Xm‖ 6 sup

m
‖Ym‖+ sup

m
‖ Xm − Ym‖ .

This and (4.3) imply

E sup
m
‖ Ym ‖ > E sup

m
‖ Xm ‖ −

1

3

and hence by (4.1)

(4.4) E sup
m
‖ Ym ‖ =∞ .

Fix m. Since Ym is simple, it can be written in the form
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(4.5) Ym(ω) =

Km∑

i=1

ami1Ami
(ω)

where ami ∈ X and (Ami, i = 1, . . . ,Km) are pairwise disjoint events such that

Ω = Am1 ∪ . . . ∪AmKm
, P (Ami) > 0 for all i .

Hence for fixed k ∈ {1, . . . ,Km},

(4.6) for ω ∈ Amk, ‖Ym(ω)‖ = ‖amk‖ =

Km∑

i=1

‖ami‖ 1Ami
(ω) .

Next, for each i ∈ {1, . . . ,Km} we take a∗mi ∈ X∗ such that

(4.7) ‖a∗mi‖ = 1 and 〈ami, a
∗
mi〉 = ‖ami‖ ,

where ami are from (4.5).

Let

Vmk := 〈Ym, a∗mk〉 =

Km∑

i=1

〈ami, a
∗
mk〉 1Ami

, k = 1, . . . ,Km .

Then from (4.6) and (4.7),

(4.8) for ω ∈ Amk, ‖Ym(ω)‖ = 〈amk, a
∗
mk〉 = Vmk(ω) 6 max

16i6Km

|Vmi(ω)|.

Let (Wn) denote the sequence of random variables

V11, . . . , V1K1
, V21, . . . , V2K2

, . . . .

Hence by (4.8),

sup
m
‖Ym(ω)‖ 6 sup

m
max

16i6Km

|Vmi(ω)| = sup
n
|Wn(ω)|

and by (4.4) we obtain

(4.9) E sup
n
|Wn| =∞ .

Observe that for each n ∈ N there exist uniquely determined m, k ∈ N such that

(4.10) n = K0 + . . .+Km−1 + k, k ∈ {1, . . . ,Km}, where K0 := 0 .



On conditionings of tending to zero sequences of random vectors in Banach spaces 17

Then for n,m, k satisfying (4.10) we have for ω ∈ Ω

(4.11) |Wn(ω)| = |Vmk(ω)| = |〈Ym(ω), a∗km〉| 6 ‖ Ym(ω) ‖ ,

(where the inequality holds, because ‖a∗km‖ = 1).

We now show that

(4.12) ‖Ym‖ → 0 a.s. if m→∞ .

First, from (4.2) we obtain the estimate:

P (‖Xm − Ym‖ > 2−m) 6 2mE‖Xm − Ym‖ 6 2m · 4−m = 2−m, m ∈ N .

Then the series
∞∑

m=1
P (‖Xm − Ym‖ 6 2−m) is convergent and by the Borel-Cantelli

Lemma we conclude that

(4.13) ‖Xm − Ym‖ → 0 a.s. if m→∞ .

From this, (iia) and triangle inequality, the convergence (4.12) follows.

Next, from (4.11) and (4.12) we conclude that for the real valued random variables

(Wn),

(4.14) lim
n
Wn(ω) = 0 a.s. ,

(since for n,m in (4.11) we obviously have: n→∞ iff m→∞).

Now, by Theorem 1.1 , from (4.9) and (4.14) we deduce that for some σ-field A0 ⊂ F ,

(4.15) EA0
Wn 9 0 a.s. if n→∞ .

But for n,m, k as in (4.10) we have

|EA0
Wn| = |EA0

〈Ym, a∗km〉| = |〈EA0
Ym, a

∗
km〉| 6 ‖EA0

Ym‖ a.s. ,
which implies that

(4.16) EA0Ym 9 0 a.s. if m→∞ .

Finally, we show that
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(4.17) EA0Xm 9 0 a.s. .

Conversely, suppose that

(4.18) EA0
Xm → 0 a.s. if m→∞ .

By triangle inequality, the linearity of EA0(·) and (2.6) we have a.s.

(4.19) ‖EA0
Ym‖ 6 ‖EA0

Xm‖+ ‖EA0
(Ym −Xm)‖ 6 ‖EA0

Xm‖+ EA0
‖Xm − Ym‖ .

But ‖Xm − Ym‖ → 0 a.s. and E sup
m
‖Xm − Ym‖ < ∞ (see (4.13) and (4.3)), hence

by Proposition 2.1 we obtain

EA0‖Xm − Ym‖ → 0 a.s. .

Combining this with (4.18) and (4.19) we deduce that

EA0Ym → 0 a.s. ,

contrary to (4.16). Therefore (4.17) holds, which contradicts the assumption (i).

Thus (iib) is proved and the proof of Theorem 3.1 is complete.
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O WARUNKOWANIACH DLA ZBIEŻNYCH DO ZERA CIA̧GÓW

WEKTORÓW LOSOWYCH W PRZESTRZENIACH BANACHA

S t r e s z c z e n i e
Dowodzimy, że dla cia̧gu ca lkowalnych wektorów losowych (Xn) o wartościach w przes-

trzeni Banacha, określonych na bezatomowej przestrzeni probabilistycznej, zachodzi nastȩ-
puja̧ca równoważność:
E(Xn|A) → 0 a.s. dla dowolnego σ-cia la A zdarzeń wtedy i tylko wtedy, gdy Xn → 0 a.s.
i E sup

n
‖Xn‖ <∞.

Tym samym uogólniamy pewne wyniki Paszkiewicza [3], [4] otrzymane dla rzeczywistych
zmiennych losowych.

S lowa kluczowe: zbieżność prawie pewna (a.s.), warunkowe wartości oczekiwane, wektory

losowe w przestrzeniach Banacha




