B U L L E T I N

DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE ŁÓDŹ
2018
Vol. LXVIII
Recherches sur les déformations
no. 3
pp. 21-38
Dedicated to the memory of
Professor Yurii B. Zelinskii

Agnieszka Szumera

PROBABILISTIC REGRESSION STRUCTURES

Summary

A new approach generalizing the classical regression idea has been widely presented in [5] and [6] in the environment of an arbitrary Hilbert space. The problem of transforming this idea to a probability space is considered in the present paper.

Keywords and phrases: nonlinear regression, polynomial regression, probability space, regression functions, regression structure

Introduction

In [5] and [6] the general problem of regression was discussed and solved. The authors introduced the concept of the regression structures $\mathfrak{R}:=(A, B, \delta ; x, y)$, where:
I.1. A and B are nonempty sets;
I.2. $x: \Omega_{1} \rightarrow A$ and $y: \Omega_{2} \rightarrow B$ are functions defined on given nonempty sets Ω_{1} and Ω_{2}; they can be interpreted as experimental data of the regression model. Therefore we call them empirical data functions;
I.3. $\delta:\left(\Omega_{1} \rightarrow B\right) \times\left(\Omega_{2} \rightarrow B\right) \rightarrow \overline{\mathbb{R}}$ is a function which can be interpreted as a deviation criterion of the theoretic functions from the empirical data.

For a given regression structure \mathfrak{R} we consider the family of functions \mathcal{F} included in the family $A \rightarrow B$ of all functions acting from A to B, i.e. $\mathcal{F} \subset(A \rightarrow B)$. The family \mathcal{F} is said to be a theoretic functional model of the observed phenomena, i.e., \mathcal{F} consists of all functions describing theoretically the considered phenomena. In the
sequel we will restrict our considerations to the case where $B=\mathbb{R}$ or $B=\mathbb{C}$ and \mathcal{F} is a linear set with respect to the standard operations of adding and multiplying functions, i.e.,

$$
f+g, \quad \lambda \cdot f \in \mathcal{F} \quad \text { for } \quad f, g \in \mathcal{F} \quad \text { and } \quad \lambda \in B .
$$

A natural question for a given regression structure \mathfrak{R} is the study and evaluation the optimal functions of theoretic functional model \mathcal{F}, which are, with respect to the criterion δ, the best fitted to the empirical data, represented by the empirical data functions x and y. To be more precise, we consider the extremal problem of determining all functions $f_{0} \in \mathcal{F}$, minimizing the functional

$$
\begin{equation*}
\mathcal{F} \ni f \rightarrow F(f):=\delta(f \circ x, y) \in \overline{\mathbb{R}} \tag{0.1}
\end{equation*}
$$

i.e., all functions $f_{0} \in \mathcal{F}$ satisfying the following inequality

$$
\begin{equation*}
F(f) \geq F\left(f_{0}\right) \quad \text { for } \quad f \in \mathcal{F} \tag{0.2}
\end{equation*}
$$

The set of all $f_{0} \in \mathcal{F}$ satisfying the inequality (0.2) will be denoted by $\operatorname{Reg}(\mathcal{F}, \mathfrak{R})$; c.f. [6]. Each function $f_{0} \in \operatorname{Reg}(\mathcal{F}, \mathfrak{R})$ is said to be the regression function in \mathcal{F} with respect to \mathfrak{R}. The problem of describing all regression functions in \mathcal{F} with respect to \mathfrak{R}, we call the regression problem for \mathcal{F} with respect to \mathfrak{R}.

Given a nonempty set Ω and σ-field \mathcal{B} of its subsets, we denote by $\mathrm{L}(\Omega, \mathcal{B})$ the family of all complex valued functions on Ω, measurable with respect to \mathcal{B}. Further on we denote by $\mathbf{L}(\Omega, \mathcal{B})$ the linear space supported by the set $\mathrm{L}(\Omega, \mathcal{B})$ and equipped with the standard operations of adding and multiplying of functions, i.e., $\mathbf{L}(\Omega, \mathcal{B}):=$ $(\mathrm{L}(\Omega, \mathcal{B}),+, \cdot)$.

For a given measure $\mu: \mathcal{B} \rightarrow[0,+\infty)$ and $p \geq 1$, let $\mathrm{L}^{p}(\Omega, \mathcal{B}, \mu)$ stand for the class of all functions $f \in \mathrm{~L}(\Omega, \mathcal{B})$ such that

We recall that for each $p \geq 1$, the class $\mathrm{L}^{p}(\Omega, \mathcal{B}, \mu)$ is a linear set in $\mathbf{L}(\Omega, \mathcal{B})$ and $\|\cdot\|_{p}$ is a pseudo-norm in the linear space $\left(\mathrm{L}^{p}(\Omega, \mathcal{B}, \mu),+, \cdot\right)$ satisfying the following condition

$$
\begin{equation*}
\|f\|_{p}=0 \Longleftrightarrow \mu(\{\omega \in \Omega: f(\omega) \neq 0\})=0 \tag{0.4}
\end{equation*}
$$

Hence the structure

$$
\mathbf{L}^{p}(\Omega, \mathcal{B}, \mu):=\left(\mathrm{L}^{p}(\Omega, \mathcal{B}, \mu),+, \cdot,\|\cdot\|_{p}\right)
$$

is a pseudo-Banach space, i.e., a complete pseudo-normed space.

1. Probabilistic regression structure

Following the general concept of regression structures, cf. [6, Definition 2.1 and Definition 7.1], we introduce a special type of regression structures on the basis of probability theory.

Definition 1.1. By a probabilistic regression structure we mean any regression structure $\mathfrak{P}:=(A, B, \delta ; x, y)$ determined by a probability space $\mathcal{P}=(\Omega, \mathcal{A}, P)$, which satisfies the following conditions:
II.1. A is nonempty set and $B=\mathbb{R}$ or $B=\mathbb{C}$;
II.2. $x: \Omega \rightarrow A$ and $y: \Omega \rightarrow B$;
II.3. the function $\delta:(\Omega \rightarrow B) \times(\Omega \rightarrow B) \rightarrow \overline{\mathbb{R}}$ satisfies the equality

$$
\begin{equation*}
\delta(u, v)=\int_{\Omega}|u(\omega)-v(\omega)|^{2} \mathrm{~d} P(\omega) \tag{1.1}
\end{equation*}
$$

provided both the functions u and v are \mathcal{A}-measurable, and $\delta(u, v)=+\infty$ otherwise.

Under the above conditions the regression problem for a probabilistic regression structure \mathfrak{P} is the extremal problem of determining all functions $f_{0} \in \mathcal{F}$ minimizing the functional F given - in the wake of (0.1) i (1.1) - by the following formula

$$
\begin{equation*}
F(f)=\delta(f \circ x, y)=\int_{\Omega}|f \circ x(\omega)-y(\omega)|^{2} \mathrm{~d} P(\omega), \quad f \in \mathcal{F} \tag{1.2}
\end{equation*}
$$

For a given probabilistic regression structure \mathfrak{P} we define

$$
\begin{equation*}
\mathcal{A}_{x}:=\left\{V \in 2^{A}: x^{-1}(V) \in \mathcal{A}\right\} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{A}_{x} \ni V \mapsto P_{x}(V):=P\left(x^{-1}(V)\right) . \tag{1.4}
\end{equation*}
$$

It is clear that \mathcal{A}_{x} is a σ-field on A and P_{x} is a probability measure on \mathcal{A}_{x}.
For the further discussion we quote the following fact, cf. [1], [2].
Theorem 1.2. For every measurable space (Ω, \mathcal{A}, P) and every function $x: \Omega \rightarrow$ A, the structure $\left(A, \mathcal{A}_{x}, P_{x}\right)$ is also a measurable space. Moreover, for every \mathcal{A}_{x} measurable function $u: A \rightarrow B$,

$$
u \in \mathrm{~L}^{1}\left(A, \mathcal{A}_{x}, P_{x}\right) \Longleftrightarrow u \circ x \in \mathrm{~L}^{1}(\Omega, \mathcal{A}, P)
$$

as well as

$$
\begin{equation*}
\int_{\Omega} u \circ x(\omega) \mathrm{d} P(\omega)=\int_{A} u(t) \mathrm{d} P_{x}(t), \quad u \in \mathrm{~L}^{1}\left(A, \mathcal{A}_{x}, P_{x}\right) \tag{1.5}
\end{equation*}
$$

Remark 1.3. It is well known that the function

$$
\begin{equation*}
\mathrm{L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right) \times \mathrm{L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right) \ni(u, v) \mapsto\langle u \mid v\rangle:=\int_{A} u(t) \cdot \overline{v(t)} \mathrm{d} P_{x}(t) \tag{1.6}
\end{equation*}
$$

is well defined and the following properties

$$
\begin{align*}
\left\langle\lambda_{1} u+\lambda_{2} v \mid w\right\rangle & =\frac{\lambda_{1}\langle u \mid w\rangle+\lambda_{2}\langle v \mid w\rangle ;}{\langle v \mid u\rangle} ; \\
\langle u \mid v\rangle & =0, \tag{1.7}
\end{align*}
$$

hold for all $\lambda_{1}, \lambda_{2} \in B$ and $u, v, w \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$. Moreover the functional

$$
\begin{equation*}
\mathrm{L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right) \ni u \mapsto\|u\|:=\sqrt{\langle u \mid u\rangle}=\left(\int_{A}|u(t)|^{2} \mathrm{~d} P_{x}(t)\right)^{1 / 2} \tag{1.8}
\end{equation*}
$$

has the following properties

$$
\|\lambda u\|=|\lambda| \cdot\|u\| \quad \text { and } \quad\|u+v\| \leq\|u\|+\|v\|
$$

as well as

$$
\|u\|=0 \Longleftrightarrow P_{x}(\{t \in A: u(t) \neq 0\})=0
$$

for all $\lambda \in B$ and $u, v \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$, cf. [9]. Therefore, $\|\cdot\|$ is a pseudo-norm on the linear space $\left(\mathrm{L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right),+, \cdot\right)$.
From the properties (1.7) the following Schwarz inequality

$$
\begin{equation*}
|\langle u \mid v\rangle| \leq\|u\| \cdot\|v\|, \quad u, v \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right) \tag{1.9}
\end{equation*}
$$

can be derived in the standard way, cf. [11].
Since the space $\mathbf{L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$ is complete, cf. [1], we see that the structure $\mathbf{H}(\mathfrak{P}):=$ ($\left.\mathrm{L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right),+, \cdot,\langle\cdot \mid \cdot\rangle\right)$ is a pseudo-Hilbert space (complex if $B=\mathbb{C}$ or real if $B=\mathbb{R})$, i.e., the structure $\left(\mathrm{L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right),+, \cdot,\|\cdot\|\right)$ is a pseudo-Banach space.

Similarly to (1.3) and (1.4) we see that

$$
\begin{equation*}
\mathcal{A}_{y}:=\left\{V \in 2^{B}: y^{-1}(V) \in \mathcal{A}\right\} \tag{1.10}
\end{equation*}
$$

is a σ-field on B and

$$
\begin{equation*}
\mathcal{A}_{y} \ni V \mapsto P_{y}(V):=P\left(y^{-1}(V)\right) \tag{1.11}
\end{equation*}
$$

is a probabilistic measure on \mathcal{A}_{y}.
Remark 1.4. Given $u \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$ and $g \in \mathrm{~L}^{2}\left(B, \mathcal{A}_{y}, P_{y}\right)$ we see that $|u|^{2} \in$ $\mathrm{L}^{1}\left(A, \mathcal{A}_{x}, P_{x}\right)$ and $|g|^{2} \in \mathrm{~L}^{1}\left(B, \mathcal{A}_{y}, P_{y}\right)$. Since $|u|^{2} \circ x=|u \circ x|^{2}$ and $|g|^{2} \circ y=|g \circ y|^{2}$, we conclude from (1.3), (1.4), (1.10), (1.11) and Theorem 1.2 that $u \circ x, g \circ y \in$ $\mathrm{L}^{2}(\Omega, \mathcal{A}, P)$ and

$$
\int_{\Omega}|u \circ x(\omega)|^{2} \mathrm{~d} P(\omega)=\int_{A}|u(t)|^{2} \mathrm{~d} P_{x}(t), \quad u \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)
$$

Hence

$$
M_{g}:=\left(\int_{\Omega}|g \circ y(\omega)|^{2} \mathrm{~d} P(\omega)\right)^{1 / 2}<+\infty
$$

and applying the Schwarz inequality for Lebesgue integral we have

$$
\begin{align*}
\int_{\Omega} \mid u \circ x(\omega) & \cdot \overline{g \circ y(\omega)} \mid \mathrm{d} P(\omega) \tag{1.12}\\
& \leq\left(\int_{\Omega}|u \circ x(\omega)|^{2} \mathrm{~d} P(\omega)\right)^{1 / 2} \cdot\left(\int_{\Omega}|g \circ y(\omega)|^{2} \mathrm{~d} P(\omega)\right)^{1 / 2} \\
& =M_{g}\left(\int_{A}|u(t)|^{2} \mathrm{~d} P_{x}(t)\right)^{1 / 2}=M_{g} \cdot\|u\|
\end{align*}
$$

Therefore for every $g \in \mathrm{~L}^{2}\left(B, \mathcal{A}_{y}, P_{y}\right)$ the functional $g^{*}: \mathrm{L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right) \rightarrow B$ is welldefined by the formula

$$
\begin{equation*}
\mathrm{L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right) \ni u \rightarrow g^{*}(u):=\int_{\Omega} u \circ x(\omega) \overline{g \circ y(\omega)} \mathrm{d} P(\omega) \tag{1.13}
\end{equation*}
$$

and by (1.12) we obtain

$$
\begin{equation*}
\left|g^{*}(u)\right| \leq M_{g} \cdot\|u\|, \quad u \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right) \tag{1.14}
\end{equation*}
$$

Thus g^{*} is a linear and bounded functional on $\left(\mathrm{L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right),+, \cdot,\|\cdot\|\right)$ for every $g \in \mathrm{~L}^{2}\left(B, \mathcal{A}_{y}, P_{y}\right)$.

2. The regression problem for the probabilistic regression structures

Let $\mathfrak{P}:=(A, B, \delta ; x, y)$ be a probabilistic regression structure determined by a probability space $\mathcal{P}=(\Omega, \mathcal{A}, P)$. Then for a given $g: B \rightarrow B$,

$$
\mathfrak{P}_{g}:=(A, B, \delta ; x, g \circ y)
$$

is a probabilistic regression structure determined by \mathcal{P}. We interpret the function g as a scaling function of the data function y.

From now on we shall study the regression problem for \mathcal{F} with respect to \mathfrak{P}_{g}, where \mathcal{F} is a linear functional model with standard operations of adding and multiplying functions.

The following result is a counterpart of [6, Lemma 3.1].
Theorem 2.1. If $\mathcal{F} \neq \emptyset$ is a linear set in $\mathbf{H}(\mathfrak{P})$ and $g \in \mathrm{~L}^{2}\left(B, \mathcal{A}_{y}, P_{y}\right)$, then for every $f \in \mathcal{F}$ the following condition holds:

$$
\begin{equation*}
f \in \operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right) \Longleftrightarrow\langle h \mid f\rangle=g^{*}(h), \quad h \in \mathcal{F} \tag{2.1}
\end{equation*}
$$

Proof. Given $g \in \mathrm{~L}^{2}\left(B, \mathcal{A}_{y}, P_{y}\right)$ we define the functional

$$
(A \rightarrow B) \ni f \mapsto F_{g}(f):=\delta(f \circ x, g \circ y)
$$

From the property II. 3 it follows that

$$
\begin{equation*}
F_{g}(f)=\int_{\Omega}|f \circ x(\omega)-g \circ y(\omega)|^{2} \mathrm{~d} P(\omega), \quad f \in \mathcal{F} \tag{2.2}
\end{equation*}
$$

Fix $f, h \in \mathcal{F}$ and $\lambda \in B$. Then by (2.2), we have

$$
\begin{aligned}
F_{g}(f+\lambda h)= & \int_{\Omega}|(f+\lambda h) \circ x(\omega)-g \circ y(\omega)|^{2} \mathrm{~d} P(\omega) \\
= & \int_{\Omega}|f \circ x(\omega)+\lambda h \circ x(\omega)-g \circ y(\omega)|^{2} \mathrm{~d} P(\omega) \\
= & \int_{\Omega}\left(|f \circ x(\omega)-g \circ y(\omega)|^{2}+2 \operatorname{Re}[(f \circ x(\omega)-g \circ y(\omega)) \overline{\lambda h \circ x(\omega)}]\right. \\
& \left.\quad+|\lambda|^{2}|h \circ x(\omega)|^{2}\right) \mathrm{d} P(\omega) \\
= & \int_{\Omega}|f \circ x(\omega)-g \circ y(\omega)|^{2} \mathrm{~d} P(\omega) \\
& \quad+2 \int_{\Omega} \operatorname{Re}[(f \circ x(\omega)-g \circ y(\omega)) \overline{\lambda h \circ x(\omega)}] \mathrm{d} P(\omega) \\
& \quad+|\lambda|^{2} \int_{\Omega}|h \circ x(\omega)|^{2} \mathrm{~d} P(\omega) .
\end{aligned}
$$

Hence, by (2.2), (1.8) and (1.5), we get

$$
\begin{aligned}
F_{g}(f+\lambda h)=F_{g}(f)+|\lambda|^{2}\|h\|^{2} & +2 \operatorname{Re} \int_{\Omega} f \circ x(\omega) \overline{\lambda h \circ x(\omega)} \mathrm{d} P(\omega) \\
& -2 \operatorname{Re} \int_{\Omega} g \circ y(\omega) \overline{\lambda h \circ x(\omega)} \mathrm{d} P(\omega)
\end{aligned}
$$

From (1.6), (1.13) and (1.5) we conclude that

$$
F_{g}(f+\lambda h)=F_{g}(f)+|\lambda|^{2}\|h\|^{2}+2 \operatorname{Re}\left[\lambda\left(\langle h \mid f\rangle-g^{*}(h)\right)\right]
$$

Therefore, for $\lambda \in B$ and $f, h \in \mathcal{F}$, we have

$$
\begin{equation*}
F_{g}(f+\lambda h)-F_{g}(f)=2 \operatorname{Re}\left[\lambda\left(\langle h \mid f\rangle-g^{*}(h)\right)\right]+|\lambda|^{2}\|h\|^{2} \tag{2.3}
\end{equation*}
$$

Fix $f \in \mathcal{F}$ satisfying $\langle h \mid f\rangle=g^{*}(h), h \in \mathcal{F}$. Applying (2.3) with $\lambda:=1$ we obtain

$$
F_{g}(f+h)-F_{g}(f)=\|h\|^{2} \geq 0
$$

and so

$$
F_{g}(f+h) \geq F_{g}(f), \quad h \in \mathcal{F},
$$

which means that $f \in \operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)$.
Conversely, assume now that $f \in \operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)$. Then from (2.3) we conclude that

$$
\begin{equation*}
2 \operatorname{Re}\left[\lambda\left(\langle h \mid f\rangle-g^{*}(h)\right)\right]+|\lambda|^{2}\|h\|^{2} \geq 0, \quad h \in \mathcal{F}, \lambda \in B \tag{2.4}
\end{equation*}
$$

Replacing h by $-h$ in (2.4) we get

$$
\begin{equation*}
-2 \operatorname{Re}\left[\lambda\left(\langle h \mid f\rangle-g^{*}(h)\right)\right]+|\lambda|^{2}\|h\|^{2} \geq 0 \tag{2.5}
\end{equation*}
$$

Combining (2.4) and (2.5) we can see that

$$
-\frac{1}{2}|\lambda|^{2}\|h\|^{2} \leq \operatorname{Re}\left[\lambda\left(\langle h \mid f\rangle-g^{*}(h)\right)\right] \leq \frac{1}{2}|\lambda|^{2}\|h\|^{2}, \quad h \in \mathcal{F}, \lambda \in B
$$

Fixing $h \in \mathcal{F}, \alpha \in \mathbb{R}$ and assuming that $\lambda=|\lambda| e^{i \alpha}$ we get

$$
-\frac{1}{2}|\lambda|\|h\|^{2} \leq \operatorname{Re}\left[e^{i \alpha}\left(\langle h \mid f\rangle-g^{*}(h)\right)\right] \leq \frac{1}{2}|\lambda|\|h\|^{2} .
$$

In the limiting case as $|\lambda| \rightarrow 0$, the following equality holds

$$
\operatorname{Re}\left[e^{i \alpha}\left(\langle h \mid f\rangle-g^{*}(h)\right)\right]=0, \quad h \in \mathcal{F}, \alpha \in \mathbb{R}
$$

Choosing $\alpha \in\left\{0, \frac{\pi}{2}\right\}$ we conclude that $\langle h \mid f\rangle-g^{*}(h)=0$ for $h \in \mathcal{F}$, which completes the proof.

By the basic properties of a pseudo-norm we can see that the set

$$
\Theta:=\left\{h \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right):\|h\|=0\right\}
$$

is linear. We call it the null set of $\mathbf{H}(\mathfrak{P})$. As a matter of fact Θ is the closed ball with radius 0 and center at the zero function θ, defined by $\theta(t):=0$ for $t \in A$.

We may extend the standard operations of adding and multiplying functions by a constant to any sets $F_{1}, F_{2} \subset(A \rightarrow B)$ as follows:

$$
\begin{aligned}
F_{1}+F_{2} & :=\left\{f_{1}+f_{2}: f_{1} \in F_{1}, f_{2} \in F_{2}\right\} \\
\lambda \cdot F_{1} & :=\left\{\lambda f_{1}: f_{1} \in F_{1}\right\}, \quad \lambda \in B ; \\
f+F_{1} & :=\{f\}+F_{1} \quad \text { and } \quad F_{1}+f:=F_{1}+\{f\}, \quad f \in(A \rightarrow B) .
\end{aligned}
$$

Corollary 2.2. If $\mathcal{F} \neq \emptyset$ is a linear set in $\mathbf{H}(\mathfrak{P})$ and $g \in \mathrm{~L}^{2}\left(B, \mathcal{A}_{y}, P_{y}\right)$, then

$$
\begin{equation*}
\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\mathcal{F} \cap \operatorname{Reg}\left(\Theta+\mathcal{F}, \mathfrak{P}_{g}\right) \tag{2.6}
\end{equation*}
$$

If additionally $\mathcal{F} \subset \Theta$, then $\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\mathcal{F}$.
Proof. Fix $f, h \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$. If $\|h\|=0$, then by the Schwarz inequality (1.9) and (1.14) it follows that

$$
|\langle h \mid f\rangle| \leq\|h\|\|f\|=0 \quad \text { and } \quad\left|g^{*}(h)\right| \leq\left(\int_{\Omega}|g \circ y(\omega)|^{2} \mathrm{~d} P(\omega)\right)^{1 / 2}\|h\|=0
$$

Hence

$$
\begin{equation*}
\langle h \mid f\rangle=0=g^{*}(h), \quad f \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right), h \in \Theta \tag{2.7}
\end{equation*}
$$

Assume that $f \in \operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)$ and $h \in \Theta+\mathcal{F}$ are given. Then $h=h_{0}+h_{1}$ for some $h_{0} \in \Theta$ and $h_{1} \in \mathcal{F}$. Applying now (2.7) and Theorem 2.1 we see that

$$
\langle h \mid f\rangle=\left\langle h_{0} \mid f\right\rangle+\left\langle h_{1} \mid f\right\rangle=0+g^{*}\left(h_{1}\right)=g^{*}\left(h_{0}\right)+g^{*}\left(h_{1}\right)=g^{*}(h), \quad h \in \Theta+\mathcal{F} .
$$

By definition, $f \in \mathcal{F} \subset \Theta+\mathcal{F}$. From Theorem 2.1 it follows that $f \in \mathcal{F} \cap \operatorname{Reg}(\Theta+$ $\mathcal{F}, \mathfrak{P}_{g}$), and so

$$
\begin{equation*}
\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right) \subset \mathcal{F} \cap \operatorname{Reg}\left(\Theta+\mathcal{F}, \mathfrak{P}_{g}\right) \tag{2.8}
\end{equation*}
$$

Conversely, assume now that $f \in \mathcal{F} \cap \operatorname{Reg}\left(\Theta+\mathcal{F}, \mathfrak{P}_{g}\right)$ and $h \in \mathcal{F}$ are given. Since $h \in \Theta+\mathcal{F}$, we conclude from Theorem 2.1, that

$$
\langle h \mid f\rangle=g^{*}(h), \quad h \in \mathcal{F} .
$$

Thus applying Theorem 2.1 once more, we get $f \in \operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)$, and so

$$
\mathcal{F} \cap \operatorname{Reg}\left(\Theta \cap \mathcal{F}, \mathfrak{P}_{g}\right) \subset \operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)
$$

Combining this inclusion with the inclusion (2.8) we derive the equality (2.6). Since $\Theta \subset \mathrm{L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$, the equalities in (2.7) hold for all $f, h \in \Theta$. Then Theorem 2.1 yields $\operatorname{Reg}\left(\Theta, \mathfrak{P}_{g}\right) \supset \Theta$, whereas the opposite inclusion is obvious.

Thus $\operatorname{Reg}\left(\Theta, \mathfrak{P}_{g}\right)=\Theta$. If now $\mathcal{F} \subset \Theta$, then the equality (2.6) takes the form $\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\mathcal{F}$, which proves the theorem.

By S^{\perp} we denote the orthogonal complement of $S \subset \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$ in the space $\mathbf{H}(\mathfrak{P})$, i.e.,

$$
S^{\perp}:=\left\{f \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right):\langle h \mid f\rangle=0 \text { for } h \in S\right\}
$$

Theorem 2.3. If $\mathcal{F} \neq \emptyset$ is a closed and linear set in $\mathbf{H}(\mathfrak{P})$ and $g \in \mathrm{~L}^{2}\left(B, \mathcal{A}_{y}, P_{y}\right)$, then $\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right) \neq \emptyset$ and $\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\Theta+f$ for each $f \in \operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)$. Moreover, if $\mathcal{F} \subset S:=\left(g^{*}\right)^{-1}(0)$, then $\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\Theta$. Otherwise $(\mathcal{F} \cap S)^{\perp} \cap \mathcal{F} \backslash \Theta \neq \emptyset$ and

$$
\begin{equation*}
\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\Theta+\frac{\overline{g^{*}(h)}}{\|h\|^{2}} h, \quad h \in(\mathcal{F} \cap S)^{\perp} \cap \mathcal{F} \backslash \Theta \tag{2.9}
\end{equation*}
$$

Proof. Assume that $\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right) \neq \emptyset$ and choose arbitrarily $f \in \operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)$ and $f^{\prime} \in \mathrm{L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$. If $f^{\prime} \in \operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)$ then, by Theorem 2.1,

$$
\begin{equation*}
\langle h \mid f\rangle=g^{*}(h), \quad h \in \mathcal{F}, \tag{2.10}
\end{equation*}
$$

and $\left\langle h \mid f^{\prime}\right\rangle=g^{*}(h)$ for $h \in \mathcal{F}$. Hence, setting $h:=f-f^{\prime}$ we conclude from (2.10) that

$$
\|h\|^{2}=\left\langle h \mid f-f^{\prime}\right\rangle=\langle h \mid f\rangle-\left\langle h \mid f^{\prime}\right\rangle=g^{*}(h)-g^{*}(h)=0 .
$$

Thus $f^{\prime} \in \Theta+f$ for $f^{\prime} \in \operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)$, and $\operatorname{so} \operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right) \subset \Theta+f$. Conversely, suppose that $f^{\prime} \in \Theta+f$. Then, by Schwarz inequality (1.9), we see that for every $h \in \mathcal{F}$,

$$
\left|\left\langle h \mid f^{\prime}\right\rangle-\langle h \mid f\rangle\right|=\left|\left\langle h \mid f^{\prime}-f\right\rangle\right| \leq\|h\| \cdot\left\|f^{\prime}-f\right\|=0 .
$$

Hence, and by (2.10), we get $\left\langle h \mid f^{\prime}\right\rangle=\langle h \mid f\rangle=g^{*}(h)$ for $h \in \mathcal{F}$. Since \mathcal{F} is closed and linear in $\mathbf{H}(\mathfrak{P})$, we see that $\Theta \subset \mathcal{F}$ and so $\Theta+f \subset \mathcal{F}$. Applying Theorem 2.1 we see that $f^{\prime} \in \operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)$ for $f^{\prime} \in \Theta+f$, and so $\Theta+f \subset \operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)$. This inclusion together with the inverse one yields the equality $\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\Theta+f$, provided $\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right) \neq \emptyset$, and so we obtain the following implication

$$
\begin{equation*}
\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right) \neq \emptyset \Rightarrow \operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\Theta+f \tag{2.11}
\end{equation*}
$$

Assume now that $\mathcal{F} \subset S$. Then

$$
\langle h \mid \theta\rangle=0=g^{*}(h), \quad h \in \mathcal{F},
$$

which shows, by Theorem 2.1, that $\theta \in \operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)$. Hence and by (2.11) we see that $\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\Theta+\theta=\Theta$. It remains to consider the case where the inclusion $\mathcal{F} \subset S$ does not hold. If so, then $\mathcal{F} \cap S \neq \mathcal{F}$. By the assumption \mathcal{F} is a closed set in $\mathbf{H}(\mathfrak{P})$. Since $g \in \mathrm{~L}^{2}\left(B, \mathcal{A}_{y}, P_{y}\right), g^{*}$ is a continuous functional on $\mathbf{H}(\mathfrak{P})$, and so S is also a closed set in $\mathbf{H}(\mathfrak{P})$. Therefore $\mathcal{F} \cap S$ is a closed set in $\mathbf{H}(\mathfrak{P})$, and consequently

$$
\begin{equation*}
\Theta \subset \mathcal{F} \cap S \neq \mathcal{F} \tag{2.12}
\end{equation*}
$$

Hence $\mathcal{F} \backslash(\mathcal{F} \cap S) \neq \emptyset$. Since $\mathcal{F} \cap S$ is closed in $\mathbf{H}(\mathfrak{P})$, it follows that each $h \in \mathcal{F} \backslash(\mathcal{F} \cap S)$ has an orthogonal projection h_{S} onto $\mathcal{F} \cap S$, i.e.,

$$
\begin{equation*}
h_{S} \in \mathcal{F} \cap S \quad \text { and } \quad\left\langle h-h_{S} \mid h^{\prime}\right\rangle=0, \quad h^{\prime} \in \mathcal{F} \cap S \tag{2.13}
\end{equation*}
$$

Hence $h-h_{S} \in(\mathcal{F} \cap S)^{\perp} \cap \mathcal{F}$. If $h-h_{S} \in \Theta$, then from (2.12) and (2.13) it follows that $h=h_{S}+\left(h-h_{S}\right) \in \mathcal{F} \cap S+\Theta=\mathcal{F} \cap S$, which is impossible. Therefore $h-h_{S} \notin \Theta$, and so $h-h_{S} \in(\mathcal{F} \cap S)^{\perp} \cap \mathcal{F} \backslash \Theta$. Thus $(\mathcal{F} \cap S)^{\perp} \cap \mathcal{F} \backslash \Theta \neq \emptyset$. Given $h \in(\mathcal{F} \cap S)^{\perp} \cap \mathcal{F} \backslash \Theta$ we see that $\|h\| \neq 0$, and so $g^{*}(h) \neq 0$. Hence, for each $h^{\prime} \in \mathcal{F}$,

$$
\begin{equation*}
h_{S}^{\prime}:=h^{\prime}-\frac{g^{*}\left(h^{\prime}\right)}{g^{*}(h)} h \in \mathcal{F} \cap S \quad \text { and } \quad h^{\prime}-h_{S}^{\prime}=\frac{g^{*}\left(h^{\prime}\right)}{g^{*}(h)} h \in(\mathcal{F} \cap S)^{\perp} \cap \mathcal{F} . \tag{2.14}
\end{equation*}
$$

Since

$$
\overline{\frac{g^{*}(h)}{\|h\|^{2}}} h \in(\mathcal{F} \cap S)^{\perp} \cap \mathcal{F}
$$

we conclude from (2.14) that

$$
\begin{aligned}
\left\langle h^{\prime} \left\lvert\, \overline{\frac{g^{*}(h)}{\|h\|^{2}}} h\right.\right\rangle & =\left\langle h^{\prime}-h_{S}^{\prime} \left\lvert\, \overline{\frac{g^{*}(h)}{\|h\|^{2}}} h\right.\right\rangle=\left\langle\frac{g^{*}\left(h^{\prime}\right)}{g^{*}(h)} h \left\lvert\, \overline{\frac{g^{*}(h)}{\|h\|^{2}}} h\right.\right\rangle \\
& \left.=\frac{g^{*}\left(h^{\prime}\right)}{g^{*}(h)} \overline{\left(\frac{\overline{g^{*}(h)}}{\|h\|^{2}}\right.}\right)\langle h \mid h\rangle=g^{*}\left(h^{\prime}\right), \quad h^{\prime} \in \mathcal{F}
\end{aligned}
$$

Applying now Theorem 2.1, we see that

$$
\begin{equation*}
f:=\frac{\overline{g^{*}(h)}}{\|h\|^{2}} h \in \operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right), \quad h \in(\mathcal{F} \cap S)^{\perp} \cap \mathcal{F} \backslash \Theta \tag{2.15}
\end{equation*}
$$

Therefore $\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right) \neq \emptyset$ and, combining (2.15) with (2.11), we derive the equality (2.9) provided the inclusion $\mathcal{F} \subset S$ does not hold.

In both the cases $\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right) \neq \emptyset$, which completes the proof.

3. Calculating procedure of the regression functions

Write $\mathbb{Z}_{p, q}:=\{n \in \mathbb{Z}: p \leq n \leq q\}$ and $\mathbb{Z}_{p}:=\{n \in \mathbb{Z}: p \leq n\}$ for $p, q \in \mathbb{Z}$. In particular $\mathbb{N}=\mathbb{Z}_{1}$. Given a nonempty set $S \subset \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$, we denote by $\operatorname{lin}(S)$ the set of all linear combinations $\sum_{k=1}^{n} \lambda_{k} v_{k}$ where $n \in \mathbb{N}, \mathbb{Z}_{1, n} \ni k \mapsto \lambda_{k} \in B$ and $\mathbb{Z}_{1, n} \ni k \mapsto v_{k} \in S$. It is easy to check that $\operatorname{lin}(S)$ is the smallest linear subset of $\mathrm{L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$ containing S.

Assume that \mathcal{F} is arbitrarily chosen linear and closed set in the space $\mathbf{H}(\mathfrak{P})$ and $g \in \mathrm{~L}^{2}\left(B, \mathcal{A}_{y}, P_{y}\right)$ is given. Then by Theorem 2.3 we conclude that $\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right) \neq \emptyset$. Moreover, Theorem 2.3 enables us to find regression functions in \mathcal{F} with respect to \mathfrak{P}_{g} provided we can determine the linear set $(\mathcal{F} \cap S)^{\perp} \cap \mathcal{F}$. This is rather difficult task, in general. However in the case where the set \mathcal{F} is finitely dimensional we can effectively calculate all the regression functions in \mathcal{F} with respect to \mathfrak{P}_{g} in terms of a given base of this space. Obviously, this case is most essential from the practical point of view and will be considered later on.

For every $f, h \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$, we will write $f \perp h$ if $\langle f \mid h\rangle=0$. Given $p, q \in$ $\mathbb{Z}, p \leq q$, and a sequence $\mathbb{Z}_{p, q} \ni k \mapsto \mathcal{F}_{k}$ of nonempty sets in the space $\mathbf{H}(\mathfrak{P})$, we write $\sum_{k=p}^{q} \mathcal{F}_{k}$ for the set of all $\sum_{k=p}^{q} f_{k}$ where $\mathbb{Z}_{p, q} \ni k \mapsto f_{k} \in \mathcal{F}_{k}$. Obviously, $\sum_{k=1}^{2} \mathcal{F}_{k}=\mathcal{F}_{1}+\mathcal{F}_{2}$.
Theorem 3.1. Given $p \in \mathbb{N}$ let $\mathbb{Z}_{1, p} \ni k \mapsto h_{k} \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right) \backslash \Theta$ be an orthogonal sequence in $\mathbf{H}(\mathfrak{P})$, i.e.,

$$
\begin{equation*}
h_{k} \perp h_{j}, \quad k, j \in \mathbb{Z}_{1, p}, \quad k \neq j . \tag{3.1}
\end{equation*}
$$

If $g \in \mathrm{~L}^{2}\left(B, \mathcal{A}_{y}, P_{y}\right)$, then

$$
\begin{equation*}
\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\left\{\sum_{k=1}^{p} \frac{\overline{g^{*}\left(h_{k}\right)}}{\left\|h_{k}\right\|^{2}} h_{k}\right\} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{F}:=\operatorname{lin}\left(\left\{h_{k}: k \in \mathbb{Z}_{1, p}\right\}\right) . \tag{3.3}
\end{equation*}
$$

Proof. Fix $p \in \mathbb{N}$ and a sequence $\mathbb{Z}_{1, p} \ni k \mapsto h_{k} \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right) \backslash \Theta$ satisfying the assumptions. From (3.3) and (3.1) it follows that $\mathcal{F}_{0}:=\Theta+\mathcal{F}$ is a closed set in $\mathbf{H}(\mathfrak{P})$. Therefore $\operatorname{Reg}\left(\mathcal{F}_{0}, \mathfrak{P}_{g}\right) \neq \emptyset$ by the assumption $g \in \mathrm{~L}^{2}\left(B, \mathcal{A}_{y}, P_{y}\right)$ and Theorem 2.3. If $g^{*}\left(h_{k}\right)=0$ for $k \in \mathbb{Z}_{1, p}$, then by (3.3), $\mathcal{F}_{0} \subset S:=\left(g^{*}\right)^{-1}(0)$. From Theorem 2.3 it follows that $\operatorname{Reg}\left(\mathcal{F}_{0}, \mathfrak{P}_{g}\right)=\Theta$. Hence, and by Corollary 2.2, we conclude that $\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\Theta \cap \mathcal{F}$. Fix $h \in \mathcal{F} \cap \Theta$. By (3.3) there exists a sequence $\mathbb{Z}_{1, p} \ni k \mapsto$ $\lambda_{k} \in B$ such that $h=\sum_{k=1}^{p} \lambda_{k} h_{k}$. From (3.1) it follows that

$$
\sum_{k=1}^{p}\left|\lambda_{k}\right|^{2}\left\|h_{k}\right\|^{2}=\|h\|^{2}=0
$$

By the assumption, $\left\|h_{k}\right\|>0$ for $k \in \mathbb{Z}_{1, p}$. Therefore $\lambda_{k}=0$ for $k \in \mathbb{Z}_{1, p}$ and so $h=\theta$. Consequently

$$
\begin{equation*}
\mathcal{F} \cap \Theta=\{\theta\} \tag{3.4}
\end{equation*}
$$

Thus $\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\{\theta\}$, and so the equality (3.2) holds.
Assume, in contrary, that $g^{*}\left(h_{k}\right) \neq 0$ for some $k \in \mathbb{Z}_{1, p}$. Then $\mathcal{F}_{0} \backslash S \neq \emptyset$ and applying again Theorem 2.3 we can see that $\left(\mathcal{F}_{0} \cap S\right)^{\perp} \cap \mathcal{F}_{0} \backslash \Theta \neq \emptyset$ as well as that the equality (2.9) holds. Thus we have to find an element $h \in \mathcal{F}$ such that $h \in\left(\mathcal{F}_{0} \cap S\right)^{\perp} \cap \mathcal{F}_{0} \backslash \Theta$.

Then by (3.3) there exists a sequence $\mathbb{Z}_{1, p} \ni k \mapsto \lambda_{k} \in B$ such that

$$
\begin{equation*}
h=\sum_{k=1}^{p} \lambda_{k} \cdot h_{k} . \tag{3.5}
\end{equation*}
$$

If $p=1$, then $h=\lambda_{1} h_{1}$ and $g^{*}\left(h_{1}\right) \neq 0$. Hence $\lambda_{1} \neq 0$, and $h_{1} \in \mathcal{F}_{0} \backslash \Theta$. Moreover, for any $f \in \mathcal{F}_{0} \cap S$ there exist $\lambda \in B$ and $f_{0} \in \Theta$ such that $f=f_{0}+\lambda h_{1}$. Since $f \in S$, we obtain

$$
0=g^{*}(f)=g^{*}\left(f_{0}\right)+\lambda g^{*}\left(h_{1}\right)=\lambda g^{*}\left(h_{1}\right),
$$

and so $\lambda=0$. Therefore, $f=f_{0} \in \Theta$, which gives $\left\langle h_{1} \mid f\right\rangle=0$. Hence $h_{1} \in\left(\mathcal{F}_{0} \cap S\right)^{\perp}$, and we see that $h=\lambda_{1} h_{1} \in\left(\mathcal{F}_{0} \cap S\right)^{\perp} \cap \mathcal{F}_{0} \backslash \Theta$. Then Theorem 2.3 leads to

$$
\begin{equation*}
\operatorname{Reg}\left(\mathcal{F}_{0}, \mathfrak{P}_{g}\right)=\Theta+\frac{\overline{g^{*}(h)}}{\|h\|^{2}} h=\Theta+\frac{\overline{g^{*}\left(h_{1}\right)}}{\left\|h_{1}\right\|^{2}} h_{1} \tag{3.6}
\end{equation*}
$$

It remains to consider the case where $p>1$. Without lost of generality we may assume now that $g^{*}\left(h_{1}\right) \neq 0$. Since $h_{k}-\frac{g^{*}\left(h_{k}\right)}{g^{*}\left(h_{1}\right)} h_{1} \in S$ for $k \in Z_{1, p}$ and $h \in\left(\mathcal{F}_{0} \cap S\right)^{\perp} \cap \mathcal{F}_{0}$ we have

$$
h \perp h_{k}-\frac{g^{*}\left(h_{k}\right)}{g^{*}\left(h_{1}\right)} h_{1}, \quad k \in Z_{1, p}
$$

Combining this with (3.1) and (3.5) we see that for each $j \in \mathbb{Z}_{1, p}$,

$$
\begin{aligned}
0 & =\left\langle h \left\lvert\, h_{j}-\frac{g^{*}\left(h_{j}\right)}{g^{*}\left(h_{1}\right)} h_{1}\right.\right\rangle=\left\langle h \mid h_{j}\right\rangle-\left\langle h \left\lvert\, \frac{g^{*}\left(h_{j}\right)}{g^{*}\left(h_{1}\right)} h_{1}\right.\right\rangle \\
& =\left\langle\sum_{k=1}^{p} \lambda_{k} \cdot h_{k} \mid h_{j}\right\rangle-\overline{\left(\frac{g^{*}\left(h_{j}\right)}{g^{*}\left(h_{1}\right)}\right)}\left\langle\sum_{k=1}^{p} \lambda_{k} \cdot h_{k} \mid h_{1}\right\rangle \\
& =\sum_{k=1}^{p} \lambda_{k}\left\langle h_{k} \mid h_{j}\right\rangle-\overline{\left(\frac{g^{*}\left(h_{j}\right)}{g^{*}\left(h_{1}\right)}\right)} \sum_{k=1}^{p} \lambda_{k}\left\langle h_{k} \mid h_{1}\right\rangle \\
& =\lambda_{j}\left\langle h_{j} \mid h_{j}\right\rangle-\lambda_{1} \overline{\left(\frac{g^{*}\left(h_{j}\right)}{g^{*}\left(h_{1}\right)}\right)}\left\langle h_{1} \mid h_{1}\right\rangle=\lambda_{j}\left\|h_{j}\right\|^{2}-\lambda_{1} \overline{\left(\frac{g^{*}\left(h_{j}\right)}{g^{*}\left(h_{1}\right)}\right)}\left\|h_{1}\right\|^{2} .
\end{aligned}
$$

Hence

$$
\lambda_{j}=\frac{\lambda_{1}}{\left\|h_{j}\right\|^{2}} \overline{\left(\frac{g^{*}\left(h_{j}\right)}{g^{*}\left(h_{1}\right)}\right)}\left\|h_{1}\right\|^{2}, \quad j \in \mathbb{Z}_{1, p}
$$

This together with (3.5) leads to

$$
h=\sum_{k=1}^{p} \lambda_{k} \cdot h_{k}=\sum_{k=1}^{p} \frac{\lambda_{1}}{\left\|h_{k}\right\|^{2}} \overline{\left(\frac{g^{*}\left(h_{k}\right)}{g^{*}\left(h_{1}\right)}\right)}\left\|h_{1}\right\|^{2} \cdot h_{k}=\frac{\lambda_{1}}{\overline{g^{*}\left(h_{1}\right)}}\left\|h_{1}\right\|^{2} \sum_{k=1}^{p} \frac{\overline{g^{*}\left(h_{k}\right)}}{\left\|h_{k}\right\|^{2}} h_{k}
$$

whence $\lambda_{1} \neq 0$. By (3.1) we see that

$$
\|h\|^{2}=\left|\frac{\lambda_{1}}{\overline{g^{*}\left(h_{1}\right)}}\left\|h_{1}\right\|^{2}\right|^{2} \cdot\left\|\sum_{k=1}^{p} \frac{\overline{g^{*}\left(h_{k}\right)}}{\left\|h_{k}\right\|^{2}} h_{k}\right\|^{2}=\frac{\left|\lambda_{1}\right|^{2} \cdot\left\|h_{1}\right\|^{4}}{\left|g^{*}\left(h_{1}\right)\right|^{2}} \cdot \sum_{k=1}^{p} \frac{\left|g^{*}\left(h_{k}\right)\right|^{2}}{\left\|h_{k}\right\|^{2}} .
$$

Moreover,

$$
\begin{aligned}
\overline{g^{*}(h)} & =\overline{g^{*}\left(\frac{\lambda_{1}}{\overline{g^{*}\left(h_{1}\right)}}\left\|h_{1}\right\|^{2} \cdot \sum_{k=1}^{p} \frac{\overline{g^{*}\left(h_{k}\right)}}{\left\|h_{k}\right\|^{2}} h_{k}\right)} \\
& =\frac{\overline{\lambda_{1}}\left\|h_{1}\right\|^{2}}{g^{*}\left(h_{1}\right)} \cdot \sum_{k=1}^{p} \frac{g^{*}\left(h_{k}\right)}{\left\|h_{k}\right\|^{2}} \cdot \overline{g^{*}\left(h_{k}\right)}=\frac{\overline{\lambda_{1}}\left\|h_{1}\right\|^{2}}{g^{*}\left(h_{1}\right)} \cdot \sum_{k=1}^{p} \frac{\left|g^{*}\left(h_{k}\right)\right|^{2}}{\left\|h_{k}\right\|^{2}} .
\end{aligned}
$$

Applying now (2.9) we obtain

$$
\begin{aligned}
\operatorname{Reg}\left(\mathcal{F}_{0}, \mathfrak{P}_{g}\right) & =\Theta+\frac{\overline{g^{*}(h)}}{\|h\|^{2}} \cdot h=\Theta+\frac{\frac{\overline{\lambda_{1}}\left\|h_{1}\right\|^{2}}{g^{*}\left(h_{1}\right)} \cdot \sum_{k=1}^{p} \frac{\left|g^{*}\left(h_{k}\right)\right|^{2}}{\left\|h_{k}\right\|^{2}}}{\frac{\left|\lambda_{1}\right|^{2} \cdot\left\|h_{1}\right\|^{4}}{\left|g^{*}\left(h_{1}\right)\right|^{2}} \cdot \sum_{k=1}^{p} \frac{\left|g^{*}\left(h_{k}\right)\right|^{2}}{\left\|h_{k}\right\|^{2}}} \cdot h \\
& =\Theta+\frac{\overline{g^{*}\left(h_{1}\right)}}{\lambda_{1}\left\|h_{1}\right\|^{2}} \cdot \frac{\lambda_{1}}{\overline{g^{*}\left(h_{1}\right)}} \cdot\left\|h_{1}\right\|^{2} \cdot \sum_{k=1}^{p} \frac{\overline{g^{*}\left(h_{k}\right)}}{\left\|h_{k}\right\|^{2}} \cdot h_{k} \\
& =\Theta+\sum_{k=1}^{p} \frac{\frac{g^{*}\left(h_{k}\right)}{\left\|h_{k}\right\|^{2}}}{h_{k}} .
\end{aligned}
$$

Hence, and by (3.6), we see that for each $p \in \mathbb{N}$,

$$
\begin{equation*}
\operatorname{Reg}\left(\mathcal{F}_{0}, \mathfrak{P}_{g}\right)=\Theta+f \tag{3.7}
\end{equation*}
$$

where, in view of (3.3),

$$
\begin{equation*}
f:=\sum_{k=1}^{p} \frac{\overline{g^{*}\left(h_{k}\right)}}{\left\|h_{k}\right\|^{2}} h_{k} \in \operatorname{lin}\left(\left\{h_{k}: k \in \mathbb{Z}_{1, p}\right\}\right)=\mathcal{F} \tag{3.8}
\end{equation*}
$$

From Corollary $2.2,(3.7),(3.8)$ and (3.4) it follows that

$$
\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\mathcal{F} \cap \operatorname{Reg}\left(\mathcal{F}_{0}, \mathfrak{P}_{g}\right)=\mathcal{F} \cap(\Theta+f)=(\mathcal{F} \cap \Theta)+f=\{f\}
$$

This yields the equality (3.2), which completes the proof.
As far as applications are concerned we will study theoretic models \mathcal{F} spanned by sequences $\mathbb{Z}_{1, p} \ni k \mapsto h_{k}$ which are not, in general, orthogonal in the space $\mathbf{H}(\mathfrak{P})$, because the pseudo-inner product $\langle\cdot \mid \cdot\rangle$ depends on the empirical data function $x: \Omega \rightarrow A$ and probability measure P. Therefore we can not apply Theorem 3.1 directly. However, in such a case we may orthogonalize those sequences. To this end we may use the generalized Gram - Schmidt orthogonalization method, saying that,

$$
\begin{equation*}
h_{1}^{\prime}:=h_{1} \quad \text { and } \quad h_{n}^{\prime}:=h_{n}-\sum_{k=1}^{n-1} \lambda\left(h_{n}, h_{k}^{\prime}\right) \cdot h_{k}^{\prime}, \quad n \in \mathbb{Z}_{2, p} \tag{3.9}
\end{equation*}
$$

where λ is defined by

$$
\mathrm{L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right) \times \mathrm{L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right) \ni(u, v) \mapsto \lambda(u, v):=\left\{\begin{array}{lll}
\frac{\langle u \mid v\rangle}{\|v\|^{2}} & \text { if } & \|v\|>0 \tag{3.10}\\
0 & \text { if } & \|v\|=0
\end{array}\right.
$$

Corollary 3.2. Given $p \in \mathbb{N}$ and $\mathbb{Z}_{1, p} \ni k \mapsto h_{k} \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$ let $\mathbb{Z}_{1, p} \ni k \mapsto h_{k}^{\prime}$ be a sequence defined by (3.9). If $g \in \mathrm{~L}^{2}\left(B, \mathcal{A}_{y}, P_{y}\right)$ and

$$
\begin{equation*}
\left\|h_{k}^{\prime}\right\|>0, \quad k \in \mathbb{Z}_{1, p} \tag{3.11}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\left\{\sum_{k=1}^{p} \frac{\overline{g^{*}\left(h_{k}^{\prime}\right)}}{\left\|h_{k}^{\prime}\right\|^{2}} h_{k}^{\prime}\right\} \tag{3.12}
\end{equation*}
$$

where \mathcal{F} is given by (3.3).
Proof. Under the assumption we see that $h_{k}^{\prime} \perp h_{l}^{\prime}$ for $k, l \in \mathbb{Z}_{1, p}$ such that $k \neq l$. From (3.3) and (3.9) it follows that $\operatorname{lin}\left(\left\{h_{k}^{\prime}: k \in \mathbb{Z}_{1, p}\right\}\right)=\mathcal{F}$. Moreover, by (3.11), $h_{k}^{\prime} \in \mathrm{L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right) \backslash \Theta$ for $k \in \mathbb{Z}_{1, p}$. Thus, applying Theorem 3.1 for the sequence $\mathbb{Z}_{1, p} \ni k \mapsto h_{k}$, replaced by its orthogonal associate $\mathbb{Z}_{1, p} \ni k \mapsto h_{k}^{\prime}$ we derive the equality (3.12), which is our claim.

Remark 3.3. From [6, Lemma 5.2] it follows the condition (3.11) holds if and only if a sequence $\mathbb{Z}_{1, p} \ni k \mapsto h_{k}$ is linearly independent and $\mathcal{F} \cap \Theta=\{\theta\}$. In particular, the condition (3.11) holds provided a sequence $\mathbb{Z}_{1, p} \ni k \mapsto h_{k}$ is linearly independent and the functional is a norm in $\left(\mathrm{L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right),+, \cdot\right)$.

4. Examples and complementary remarks

In this section we present examples and comments which illustrate our considerations from the previous section. From now on we always assume that $\mathfrak{P}=(A, B, \delta ; x, y)$ is a given probabilistic regression structure determined by a probability space $\mathcal{P}=(\Omega, \mathcal{A}, P)$ and $g \in \mathrm{~L}^{2}\left(B, \mathcal{A}_{y}, P_{y}\right)$ is arbitrarily fixed.

Example 4.1. Let us consider the case where the functional model \mathcal{F} is spanned by one arbitrarily fixed function $h_{1} \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right) \backslash \Theta$, i.e., $\mathcal{F}=\operatorname{lin}\left(\left\{h_{1}\right\}\right)$. Applying Theorem 3.1 we can see that

$$
\begin{equation*}
\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\left\{\frac{\overline{g^{*}\left(h_{1}\right)}}{\left\|h_{1}\right\|^{2}} h_{1}\right\} \tag{4.1}
\end{equation*}
$$

Using the expected value operator for the probability space \mathcal{P} we conclude from the formula (1.13) that

$$
\begin{equation*}
g^{*}\left(h_{1}\right)=\int_{\Omega}\left(h_{1} \circ x(\omega)\right) \cdot \overline{g \circ y(\omega)} \mathrm{d} P(\omega)=\mathrm{E}\left[\left(h_{1} \circ x\right) \cdot \overline{g \circ y}\right], \tag{4.2}
\end{equation*}
$$

and from the formula (1.8) and Theorem 1.2 that

$$
\begin{equation*}
\left\|h_{1}\right\|^{2}=\int_{A}\left|h_{1}(t)\right|^{2} \mathrm{~d} P_{x}(t)=\int_{\Omega}\left|h_{1} \circ x(\omega)\right|^{2} \mathrm{~d} P(\omega)=\mathrm{E}\left[\left|h_{1} \circ x\right|^{2}\right] \tag{4.3}
\end{equation*}
$$

Hence we can rewrite (4.1) in terms of the expected value as follows

$$
\begin{equation*}
\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\left\{\frac{\mathrm{E}\left[\left(\overline{h_{1}} \circ x\right) g \circ y\right]}{\mathrm{E}\left[\left|h_{1} \circ x\right|^{2}\right]} \cdot h_{1}\right\} \tag{4.4}
\end{equation*}
$$

Given $\alpha \in \mathbb{Z}_{0}$ suppose that $A=B, g \in \mathrm{~L}^{2}\left(B, \mathcal{A}_{y}, P_{y}\right)$ and $h_{1} \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$ where $h_{1}(t):=t^{\alpha}$ and $g(t):=t$ for $t \in B$. Then

$$
\mathrm{E}\left[\left(\overline{h_{1}} \circ x\right)(g \circ y)\right]=\mathrm{E}\left[\bar{x}^{\alpha} \cdot y\right] \quad \text { and } \quad \mathrm{E}\left[\left|h_{1} \circ x\right|^{2}\right]=\mathrm{E}\left[|x|^{2 \alpha}\right]
$$

and so (4.4) implies

$$
\begin{equation*}
\operatorname{Reg}(\mathcal{F}, \mathfrak{P})=\left\{A \ni t \mapsto \frac{\mathrm{E}\left[\bar{x}^{\alpha} \cdot y\right]}{\mathrm{E}\left[|x|^{2 \alpha}\right]} \cdot t^{\alpha}\right\} \tag{4.5}
\end{equation*}
$$

provided x is not equal 0 a.s. on Ω.
If x is a real random variable, then putting $\alpha:=1$ in (4.5) we see that $\mathrm{E}[x y]$ can be expressed by means of regression functions $\operatorname{Reg}(\mathcal{F}, \mathfrak{P})$ and $\mathrm{E}\left[x^{2}\right]$. Putting $\alpha:=0$ in (4.5) we obtain

$$
\begin{equation*}
\operatorname{Reg}(\mathcal{F}, \mathfrak{P})=\{A \in t \mapsto \mathrm{E}[y]\} \tag{4.6}
\end{equation*}
$$

Notice that the equality (4.6) is still valid even if $A \neq B$.
Example 4.2. Let us consider the case where the functional model \mathcal{F} is spanned by two arbitrarily fixed functions $h_{1}, h_{2} \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$, i.e., $\mathcal{F}=\operatorname{lin}\left(\left\{h_{1}, h_{2}\right\}\right)$. Suppose that $\left\|h_{1}^{\prime}\right\|>0$ and $\left\|h_{2}^{\prime}\right\|>0$, where $\mathbb{Z}_{1,2} \ni k \mapsto h_{k}^{\prime}$ is a sequence defined by (3.9). Applying Corollary 3.2 we can see that

$$
\begin{equation*}
\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\left\{\frac{\overline{g^{*}\left(h_{1}^{\prime}\right)}}{\left\|h_{1}^{\prime}\right\|^{2}} h_{1}^{\prime}+\frac{\overline{g^{*}\left(h_{2}^{\prime}\right)}}{\left\|h_{2}^{\prime}\right\|^{2}} h_{2}^{\prime}\right\} \tag{4.7}
\end{equation*}
$$

where, according to (3.9),

$$
\begin{equation*}
h_{1}^{\prime}:=h_{1} \quad \text { and } \quad h_{2}^{\prime}:=h_{2}-\frac{\left\langle h_{2} \mid h_{1}\right\rangle}{\left\|h_{1}\right\|^{2}} h_{1} \tag{4.8}
\end{equation*}
$$

Hence $h_{2}^{\prime} \perp h_{1}$, and consequently

$$
\begin{align*}
\left\|h_{2}^{\prime}\right\|^{2} & =\left\langle h_{2}^{\prime} \mid h_{2}^{\prime}\right\rangle=\left\langle h_{2}^{\prime} \left\lvert\, h_{2}-\frac{\left\langle h_{2} \mid h_{1}\right\rangle}{\left\|h_{1}\right\|^{2}} h_{1}\right.\right\rangle=\left\langle h_{2}^{\prime} \mid h_{2}\right\rangle \tag{4.9}\\
& =\left\langle\left. h_{2}-\frac{\left\langle h_{2} \mid h_{1}\right\rangle}{\left\|h_{1}\right\|^{2}} h_{1} \right\rvert\, h_{2}\right\rangle=\left\|h_{2}\right\|^{2}-\frac{\left|\left\langle h_{2} \mid h_{1}\right\rangle\right|^{2}}{\left\|h_{1}\right\|^{2}} .
\end{align*}
$$

Setting

$$
\begin{equation*}
\alpha_{2}:=\frac{\overline{g^{*}\left(h_{2}\right)}\left\|h_{1}\right\|^{2}-\overline{g^{*}\left(h_{1}\right)\left\langle h_{2} \mid h_{1}\right\rangle}}{\left\|h_{2}\right\|^{2}\left\|h_{1}\right\|^{2}-\left|\left\langle h_{2} \mid h_{1}\right\rangle\right|^{2}} \quad \text { and } \quad \alpha_{1}:=\frac{\overline{g^{*}\left(h_{1}\right)}-\left\langle h_{2} \mid h_{1}\right\rangle \alpha_{2}}{\left\|h_{1}\right\|^{2}} \tag{4.10}
\end{equation*}
$$

we conclude from (4.7), (4.8) and (4.9) that

$$
\begin{equation*}
\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\left\{\alpha_{2} h_{2}+\alpha_{1} h_{1}\right\} \tag{4.11}
\end{equation*}
$$

We can calculate the coefficients α_{2} and α_{1} by means of the expected value operator E for the probability space \mathcal{P} using the following equalities

$$
\begin{equation*}
g^{*}\left(h_{k}\right)=\mathrm{E}\left[\left(h_{k} \circ x\right) \cdot \overline{g \circ y}\right] \quad \text { and } \quad\left\|h_{k}\right\|^{2}=\mathrm{E}\left[\left|h_{k} \circ x\right|^{2}\right], \quad k \in \mathbb{Z}_{1,2} \tag{4.12}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\left\langle h_{2} \mid h_{1}\right\rangle=\int_{A} h_{2}(t) \cdot \overline{h_{1}(t)} \mathrm{d} P_{x}(t)=\mathrm{E}\left[\left(h_{2} \circ x\right) \overline{\left(h_{1} \circ x\right)}\right] . \tag{4.13}
\end{equation*}
$$

To prove them we appeal to the equalities (4.2), (4.3), (1.6) and Theorem 1.2. In particular, suppose that $A=B, g \in \mathrm{~L}^{2}\left(B, \mathcal{A}_{y}, P_{y}\right)$ and $h_{1}, h_{2} \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$ where $g(t):=t, h_{1}(t):=1$ and $h_{2}(t):=t$ for $t \in B$. Applying now the equalities (4.12), (4.13) we can rewrite the formulas (4.10) as

$$
\begin{equation*}
\alpha_{2}=\frac{\mathrm{E}[\bar{x} \cdot y]-\mathrm{E}[\bar{x}] \cdot \mathrm{E}[y]}{\mathrm{E}\left[|x|^{2}\right]-(\mathrm{E}[x])^{2}} \quad \text { and } \quad \alpha_{1}=\mathrm{E}[y]-\mathrm{E}[x] \cdot \alpha_{2} \tag{4.14}
\end{equation*}
$$

provided x is a not a constant a.s. on Ω. Therefore the coefficients α_{2} and α_{1} given by (4.14) coincide with the classical linear regression coefficients in the case of real random variables, cf. [3], [4].
Example 4.3. Let us consider the case where the functional model \mathcal{F} is spanned by three arbitrarily fixed functions $h_{1}, h_{2}, h_{3} \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$, i.e., $\mathcal{F}=\operatorname{lin}\left(\left\{h_{1}, h_{2}, h_{3}\right\}\right)$. Suppose that $\left\|h_{k}^{\prime}\right\|>0$ for $k \in \mathbb{Z}_{1,3}$, where $\mathbb{Z}_{1,3} \ni k \mapsto h_{k}^{\prime}$ is a sequence defined by (3.9). Applying Corollary 3.2 we obtain

$$
\begin{equation*}
\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\left\{\sum_{k=1}^{3} \frac{\overline{g^{*}\left(h_{k}^{\prime}\right)}}{\left\|h_{k}^{\prime}\right\|^{2}} h_{k}^{\prime}\right\} \tag{4.15}
\end{equation*}
$$

where, by (3.9), we have

$$
\begin{aligned}
& h_{1}^{\prime}=h_{1}, \\
& h_{2}^{\prime}=h_{2}-\frac{\left\langle h_{2} \mid h_{1}\right\rangle}{\left\|h_{1}\right\|^{2}} \cdot h_{1}, \\
& h_{3}^{\prime}=h_{3}+\eta \cdot h_{2}-\frac{\left\langle h_{3} \mid h_{1}\right\rangle+\eta \cdot\left\langle h_{2} \mid h_{1}\right\rangle}{\left\|h_{1}\right\|^{2}} \cdot h_{1} \\
& \quad \text { and } \quad \eta:=\frac{\left\langle h_{3} \mid h_{1}\right\rangle\left\langle h_{2} \mid h_{1}\right\rangle-\left\langle h_{3} \mid h_{2}\right\rangle\left\langle h_{1} \mid h_{1}\right\rangle}{\left\|h_{2}\right\|^{2}\left\|h_{1}\right\|^{2}-\left|\left\langle h_{2} \mid h_{1}\right\rangle\right|^{2}} .
\end{aligned}
$$

In particular, suppose that x and y are independent real random variables with normal distributions $N\left(\mu_{1}, \sigma_{1}\right)$ and $N\left(\mu_{2}, \sigma_{2}\right)$ respectively. Then, cf. [4],

$$
\begin{equation*}
\mathrm{E}\left[\left(x-\mu_{1}\right)^{2 s+1}\right]=0 \quad \text { and } \quad \mathrm{E}\left[\left(x-\mu_{1}\right)^{2 s}\right]=(2 s-1)!!\cdot \sigma_{1}^{2 s}, \quad s \in \mathbb{N} \tag{4.16}
\end{equation*}
$$

Setting $A:=\mathbb{R}$ and $B:=\mathbb{R}$ we see that $h_{1}, h_{2}, h_{3} \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$ and $g \in$ $\mathrm{L}^{2}\left(B, \mathcal{A}_{y}, P_{y}\right)$, where $g(t):=t, h_{1}(t):=1, h_{2}(t):=t$ and $h_{3}(t):=t^{2}$ for $t \in B$.

Using Theorem 1.2 we conclude from the formula (1.6) that

$$
\begin{align*}
\left\langle h_{n} \mid h_{k}\right\rangle & =\int_{\mathbb{R}} h_{n}(t) \overline{h_{k}(t)} \mathrm{d} P_{x}(t)=\int_{\mathbb{R}} t^{n+k-2} \mathrm{~d} P_{x}(t) \tag{4.17}\\
& =\int_{\Omega} x^{n+k-2}(\omega) \mathrm{d} P(\omega)=\mathrm{E}\left[x^{n+k-2}\right], \quad n, k \in \mathbb{Z}_{1,3}
\end{align*}
$$

Combining (4.17) with (4.16) we calculate

$$
\begin{array}{lll}
\left\langle h_{1} \mid h_{1}\right\rangle=1, & \left\langle h_{2} \mid h_{1}\right\rangle=\mu_{1}, & \left\langle h_{3} \mid h_{1}\right\rangle=\mu_{1}^{2}+\sigma_{1}^{2}, \\
\left\langle h_{2} \mid h_{2}\right\rangle=\mu_{1}^{2}+\sigma_{1}^{2}, & \left\langle h_{3} \mid h_{2}\right\rangle=\left(\mu_{1}^{2}+3 \sigma_{1}^{2}\right) \mu_{1} . &
\end{array}
$$

Hence $\eta=-2 \mu_{1}$ and so

$$
\begin{equation*}
h_{1}^{\prime}=h_{1}, \quad h_{2}^{\prime}=h_{2}-\mu_{1} h_{1}, \quad h_{3}^{\prime}=h_{3}-2 \mu_{1} h_{2}+\left(\mu_{1}^{2}-\sigma_{1}^{2}\right) h_{1} \tag{4.18}
\end{equation*}
$$

Since x and y are independent, we conclude from the formula (1.13) that

$$
\begin{aligned}
g^{*}\left(h_{k}\right) & =\int_{\Omega} h_{k} \circ x(\omega) \cdot \overline{g \circ y(\omega)} \mathrm{d} P(\omega)=\int_{\Omega} x^{k-1}(\omega) \cdot y(\omega) \mathrm{d} P(\omega) \\
& =\mathrm{E}\left[x^{k-1} \cdot y\right]=\mathrm{E}\left[x^{k-1}\right] \cdot \mathrm{E}[y], \quad k \in \mathbb{Z}_{1,3}
\end{aligned}
$$

This together with (4.18) yields

$$
g^{*}\left(h_{1}^{\prime}\right)=\mathrm{E}[y]=\mu_{2}, \quad g^{*}\left(h_{2}^{\prime}\right)=0, \quad \text { and } \quad g^{*}\left(h_{3}^{\prime}\right)=0
$$

Using now (4.15) we obtain

$$
\operatorname{Reg}(\mathcal{F}, \mathfrak{P})=\left\{\mathbb{R} \ni t \mapsto \mu_{2}\right\}
$$

In particular for $\mu_{2}:=0$ we get

$$
\operatorname{Reg}(\mathcal{F}, \mathfrak{P})=\{\theta\}
$$

Example 4.4. Assume that $A=B$. Let \mathcal{F} be a functional model consisting of all polynomials f with coefficients in B and degree $\operatorname{deg} f \leq p-1$, where $p \in \mathbb{N}$. Setting $B \ni t \mapsto h_{k}(t):=t^{k-1}$ for $k \in \mathbb{Z}_{1, p}$ we see that $\mathcal{F}=\operatorname{lin}\left(\left\{h_{k}: k \in \mathbb{Z}_{1, p}\right\}\right)$. Suppose that $h_{k} \in \mathrm{~L}^{2}\left(A, \mathcal{A}_{x}, P_{x}\right)$ for $k \in \mathbb{Z}_{1, p}$ and $\left\|h_{k}^{\prime}\right\|>0$ for $k \in \mathbb{Z}_{1, p}$, where $\mathbb{Z}_{1, p} \ni k \mapsto h_{k}^{\prime}$ is a sequence defined by (3.9). Applying Corollary 3.2 we get

$$
\begin{equation*}
\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)=\left\{\sum_{k=1}^{p} \frac{\overline{g^{*}\left(h_{k}^{\prime}\right)}}{\left\|h_{k}^{\prime}\right\|^{2}} h_{k}^{\prime}\right\} . \tag{4.19}
\end{equation*}
$$

According to the classical definition, cf., e.g. [3], [10], by a polynomial regression of the random variable y with respect to the random variable x, we mean each polynomial $f_{0} \in \mathcal{F}$ such that

$$
\mathrm{E}\left[|f \circ x-y|^{2}\right] \geq \mathrm{E}\left[\left|f_{0} \circ x-y\right|^{2}\right], \quad f \in \mathcal{F} .
$$

From (1.2) it follows that

$$
F(f)=\mathrm{E}\left[|f \circ x-y|^{2}\right], \quad f \in \mathcal{F} .
$$

Therefore the class of all such f_{0} coincides with the class $\operatorname{Reg}(\mathcal{F}, \mathfrak{P})$. Suppose that $g \in \mathrm{~L}^{2}\left(B, \mathcal{A}_{y}, P_{y}\right)$, where $g(t):=t$ for $t \in B$. Then $\operatorname{Reg}(\mathcal{F}, \mathfrak{P})=\operatorname{Reg}\left(\mathcal{F}, \mathfrak{P}_{g}\right)$ and by (4.19) we see that there exists the unique polynomial regression $f_{0} \in \mathcal{F}$ of y with respect to x and f_{0} can be determined by the following equality

$$
f_{0}=\sum_{k=1}^{p} \frac{\overline{g^{*}\left(h_{k}^{\prime}\right)}}{\left\|h_{k}^{\prime}\right\|^{2}} h_{k}^{\prime}
$$

Acknowledgement

Most of the presented results were obtained by the author during Monday's Seminar on Applications of Mathematical Methods at the State School of Higher Education in Chełm.

References

[1] R. B. Ash, Real Analysis and Probability, Probability and Mathematical Statistics, Academic Press, Inc., New York and London, 1972.
[2] P. Billingsley, Probability and Measure, John Wiley \& Sons, Inc., New York 1995.
[3] N. R. Draper andH. Smith, Applied Regression Analysis, John Wiley \& Sons, Inc., New York 1998.
[4] M. Fisz, Probability Theory and Mathematical Statistics, John Wiley \& Sons, Inc., New York 1967.
[5] D. Partyka and J. Zajạc, Generalized problem of regression, Bulletin De La Société des Sciences et des Lettres De Lódź, vol. LX (2010), pp. 77-94.
[6] D. Partyka and J. Zajạc, Generalized approach to the problem of regression, Anal. Math. Phys. (2015) 5:249-320 DOI 10.1007/s13324-014-0096-7.
[7] M. M. Rao andR. J. Swift, Probability Theory with Applications, Springer, New York 2006.
[8] A. Rényi, Probability Theory, Akadémiai Kiadó, Budapest 1970.
[9] W. Rudin, Real and complex analysis, McGRAF-HILL, Inc., New York 1970.
[10] G. A. F. Seber and C. J. Wild, Nonlinear Regression, John Wiley \& Sons, Inc., Hoboken, New Jersey, 2003.
[11] G. Strang, Linear Algebra and its Applications, Stamford, CT: Cengage Learning, 2005.

Institute of Mathematics and Information Technology
The State School of Higher Education in Chełm
Pocztowa 54, PL-22-100 Chełm
Poland
E-mail: aszumera@pwsz.chelm.pl

Presented by Adam Paszkiewicz at the Session of the Mathematical-Physical Commission of the Łódź Society of Sciences and Arts on June 25, 2018.

PROBABILISTYCZNE STRUKTURY REGRESJI

Streszczenie

Nowe podejście uogólniajạce klasycznạ koncepcjȩ regresji jest szeroko prezentowane w [5] i [6] na gruncie przestrzeni Hilberta. W niniejszym artykule wyniki tej pracy zostały przeniesione na przestrzeń probabilistyczną, gdzie uogólnione zagadnienie regresji ma postać rozwiązania problemu ekstremalnego, zdefiniowanego na przestrzeni probabilistycznej.

Stowa kluczowe: regresja nieliniowa, regresja wielomianowa, przestrzeń probabilistyczna, funkcje regresji, struktura regresji

