https://doi.org/10.26485/0459-6854/2018/68.3/2

PL ISSN 0459-6854

BULLETIN

DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE LÓDŹ 2018 Vol. LXVIII

Recherches sur les	déformations	no. 3

pp. 21–38

Dedicated to the memory of Professor Yurii B. Zelinskii

Agnieszka Szumera

PROBABILISTIC REGRESSION STRUCTURES

Summary

A new approach generalizing the classical regression idea has been widely presented in [5] and [6] in the environment of an arbitrary Hilbert space. The problem of transforming this idea to a probability space is considered in the present paper.

Keywords and phrases: nonlinear regression, polynomial regression, probability space, regression functions, regression structure

Introduction

In [5] and [6] the general problem of regression was discussed and solved. The authors introduced the concept of the regression structures $\mathfrak{R} := (A, B, \delta; x, y)$, where:

I.1. A and B are nonempty sets;

- **I.2.** $x: \Omega_1 \to A$ and $y: \Omega_2 \to B$ are functions defined on given nonempty sets Ω_1 and Ω_2 ; they can be interpreted as experimental data of the regression model. Therefore we call them *empirical data functions*;
- **I.3.** $\delta: (\Omega_1 \to B) \times (\Omega_2 \to B) \to \mathbb{R}$ is a function which can be interpreted as a deviation criterion of the theoretic functions from the empirical data.

For a given regression structure \mathfrak{R} we consider the family of functions \mathcal{F} included in the family $A \to B$ of all functions acting from A to B, i.e. $\mathcal{F} \subset (A \to B)$. The family \mathcal{F} is said to be a *theoretic functional model* of the observed phenomena, i.e., \mathcal{F} consists of all functions describing theoretically the considered phenomena. In the

sequel we will restrict our considerations to the case where $B = \mathbb{R}$ or $B = \mathbb{C}$ and \mathcal{F} is a linear set with respect to the standard operations of adding and multiplying functions, i.e.,

$$f + g, \ \lambda \cdot f \in \mathcal{F} \quad \text{for} \quad f, g \in \mathcal{F} \quad \text{and} \quad \lambda \in B .$$

A natural question for a given regression structure \Re is the study and evaluation the optimal functions of theoretic functional model \mathcal{F} , which are, with respect to the criterion δ , the best fitted to the empirical data, represented by the empirical data functions x and y. To be more precise, we consider the extremal problem of determining all functions $f_0 \in \mathcal{F}$, minimizing the functional

$$\mathcal{F} \ni f \to F(f) := \delta(f \circ x, y) \in \overline{\mathbb{R}} ,$$
 (0.1)

i.e., all functions $f_0 \in \mathcal{F}$ satisfying the following inequality

$$F(f) \ge F(f_0) \quad \text{for} \quad f \in \mathcal{F} .$$
 (0.2)

The set of all $f_0 \in \mathcal{F}$ satisfying the inequality (0.2) will be denoted by $\operatorname{Reg}(\mathcal{F}, \mathfrak{R})$; c.f. [6]. Each function $f_0 \in \operatorname{Reg}(\mathcal{F}, \mathfrak{R})$ is said to be the *regression function in* \mathcal{F} with respect to \mathfrak{R} . The problem of describing all regression functions in \mathcal{F} with respect to \mathfrak{R} , we call the *regression problem for* \mathcal{F} with respect to \mathfrak{R} .

Given a nonempty set Ω and σ -field \mathcal{B} of its subsets, we denote by $L(\Omega, \mathcal{B})$ the family of all complex valued functions on Ω , measurable with respect to \mathcal{B} . Further on we denote by $\mathbf{L}(\Omega, \mathcal{B})$ the linear space supported by the set $L(\Omega, \mathcal{B})$ and equipped with the standard operations of adding and multiplying of functions, i.e., $\mathbf{L}(\Omega, \mathcal{B}) := (L(\Omega, \mathcal{B}), +, \cdot)$.

For a given measure $\mu: \mathcal{B} \to [0, +\infty)$ and $p \geq 1$, let $L^p(\Omega, \mathcal{B}, \mu)$ stand for the class of all functions $f \in L(\Omega, \mathcal{B})$ such that

(0.3)

We recall that for each $p \geq 1$, the class $L^p(\Omega, \mathcal{B}, \mu)$ is a linear set in $L(\Omega, \mathcal{B})$ and $\|\cdot\|_p$ is a pseudo-norm in the linear space $(L^p(\Omega, \mathcal{B}, \mu), +, \cdot)$ satisfying the following condition

$$||f||_p = 0 \iff \mu(\{\omega \in \Omega \colon f(\omega) \neq 0\}) = 0 . \tag{0.4}$$

Hence the structure

$$\mathbf{L}^{p}(\Omega, \mathcal{B}, \mu) := (\mathbf{L}^{p}(\Omega, \mathcal{B}, \mu), +, \cdot, \|\cdot\|_{p})$$

is a pseudo-Banach space, i.e., a complete pseudo-normed space.

1. Probabilistic regression structure

Following the general concept of regression structures, cf. [6, Definition 2.1 and Definition 7.1], we introduce a special type of regression structures on the basis of probability theory.

Definition 1.1. By a *probabilistic regression structure* we mean any regression structure $\mathfrak{P} := (A, B, \delta; x, y)$ determined by a probability space $\mathcal{P} = (\Omega, \mathcal{A}, P)$, which satisfies the following conditions:

- **II.1.** A is nonempty set and $B = \mathbb{R}$ or $B = \mathbb{C}$;
- **II.2.** $x: \Omega \to A$ and $y: \Omega \to B$;
- **II.3.** the function $\delta \colon (\Omega \to B) \times (\Omega \to B) \to \overline{\mathbb{R}}$ satisfies the equality

$$\delta(u,v) = \int_{\Omega} |u(\omega) - v(\omega)|^2 \,\mathrm{d}P(\omega) \,\,, \tag{1.1}$$

provided both the functions u and v are \mathcal{A} -measurable, and $\delta(u, v) = +\infty$ otherwise.

Under the above conditions the regression problem for a probabilistic regression structure \mathfrak{P} is the extremal problem of determining all functions $f_0 \in \mathcal{F}$ minimizing the functional F given – in the wake of (0.1) i (1.1) – by the following formula

$$F(f) = \delta(f \circ x, y) = \int_{\Omega} |f \circ x(\omega) - y(\omega)|^2 \, \mathrm{d}P(\omega), \qquad f \in \mathcal{F} \ . \tag{1.2}$$

For a given probabilistic regression structure \mathfrak{P} we define

$$\mathcal{A}_x := \{ V \in 2^A \colon x^{-1}(V) \in \mathcal{A} \}$$
(1.3)

and

$$\mathcal{A}_x \ni V \mapsto P_x(V) := P(x^{-1}(V)) . \tag{1.4}$$

It is clear that \mathcal{A}_x is a σ -field on A and P_x is a probability measure on \mathcal{A}_x .

For the further discussion we quote the following fact, cf. [1], [2].

Theorem 1.2. For every measurable space (Ω, \mathcal{A}, P) and every function $x: \Omega \to A$, the structure (A, \mathcal{A}_x, P_x) is also a measurable space. Moreover, for every \mathcal{A}_x -measurable function $u: A \to B$,

$$u \in L^1(A, \mathcal{A}_x, P_x) \iff u \circ x \in L^1(\Omega, \mathcal{A}, P)$$

as well as

$$\int_{\Omega} u \circ x(\omega) dP(\omega) = \int_{A} u(t) dP_x(t), \qquad u \in L^1(A, \mathcal{A}_x, P_x) .$$
(1.5)

Remark 1.3. It is well known that the function

$$L^{2}(A, \mathcal{A}_{x}, P_{x}) \times L^{2}(A, \mathcal{A}_{x}, P_{x}) \ni (u, v) \mapsto \langle u | v \rangle := \int_{A} u(t) \cdot \overline{v(t)} \, \mathrm{d}P_{x}(t) \qquad (1.6)$$

is well defined and the following properties

$$\begin{array}{rcl} \langle \lambda_1 u + \lambda_2 v | w \rangle &=& \frac{\lambda_1 \langle u | w \rangle + \lambda_2 \langle v | w \rangle ;}{\langle u | v \rangle &=& \overline{\langle v | u \rangle} ;\\ \langle u | u \rangle &\geq& 0 , \end{array}$$

hold for all $\lambda_1, \lambda_2 \in B$ and $u, v, w \in L^2(A, \mathcal{A}_x, P_x)$. Moreover the functional

$$L^{2}(A, \mathcal{A}_{x}, P_{x}) \ni u \mapsto ||u|| := \sqrt{\langle u|u\rangle} = \left(\int_{A} |u(t)|^{2} dP_{x}(t)\right)^{1/2}$$
(1.8)

has the following properties

$$\|\lambda u\| = |\lambda| \cdot \|u\|$$
 and $\|u + v\| \le \|u\| + \|v\|$

as well as

$$||u|| = 0 \iff P_x(\{t \in A : u(t) \neq 0\}) = 0$$

for all $\lambda \in B$ and $u, v \in L^2(A, \mathcal{A}_x, P_x)$, cf. [9]. Therefore, $\|\cdot\|$ is a pseudo-norm on the linear space $(L^2(A, \mathcal{A}_x, P_x), +, \cdot)$.

From the properties (1.7) the following Schwarz inequality

$$|\langle u|v\rangle| \le ||u|| \cdot ||v|| , \qquad u, v \in \mathcal{L}^2(A, \mathcal{A}_x, P_x)$$
(1.9)

can be derived in the standard way, cf. [11].

Since the space $\mathbf{L}^2(A, \mathcal{A}_x, P_x)$ is complete, cf. [1], we see that the structure $\mathbf{H}(\mathfrak{P}) := (\mathbf{L}^2(A, \mathcal{A}_x, P_x), +, \cdot, \langle \cdot | \cdot \rangle)$ is a pseudo-Hilbert space (complex if $B = \mathbb{C}$ or real if $B = \mathbb{R}$), i.e., the structure $(\mathbf{L}^2(A, \mathcal{A}_x, P_x), +, \cdot, \|\cdot\|)$ is a pseudo-Banach space.

Similarly to (1.3) and (1.4) we see that

$$\mathcal{A}_y := \{ V \in 2^B \colon y^{-1}(V) \in \mathcal{A} \}$$
(1.10)

is a σ -field on B and

$$\mathcal{A}_y \ni V \mapsto P_y(V) := P(y^{-1}(V)) \tag{1.11}$$

is a probabilistic measure on \mathcal{A}_y .

Remark 1.4. Given $u \in L^2(A, \mathcal{A}_x, P_x)$ and $g \in L^2(B, \mathcal{A}_y, P_y)$ we see that $|u|^2 \in L^1(A, \mathcal{A}_x, P_x)$ and $|g|^2 \in L^1(B, \mathcal{A}_y, P_y)$. Since $|u|^2 \circ x = |u \circ x|^2$ and $|g|^2 \circ y = |g \circ y|^2$, we conclude from (1.3), (1.4), (1.10), (1.11) and Theorem 1.2 that $u \circ x, g \circ y \in L^2(\Omega, \mathcal{A}, P)$ and

$$\int_{\Omega} |u \circ x(\omega)|^2 \mathrm{d}P(\omega) = \int_{A} |u(t)|^2 \mathrm{d}P_x(t), \qquad u \in \mathrm{L}^2(A, \mathcal{A}_x, P_x)$$

Hence

$$M_g := \left(\int_{\Omega} |g \circ y(\omega)|^2 \mathrm{d}P(\omega) \right)^{1/2} < +\infty$$

and applying the Schwarz inequality for Lebesgue integral we have

$$\int_{\Omega} |u \circ x(\omega) \cdot \overline{g \circ y(\omega)}| dP(\omega)$$

$$\leq \left(\int_{\Omega} |u \circ x(\omega)|^2 dP(\omega) \right)^{1/2} \cdot \left(\int_{\Omega} |g \circ y(\omega)|^2 dP(\omega) \right)^{1/2}$$

$$= M_g \left(\int_{A} |u(t)|^2 dP_x(t) \right)^{1/2} = M_g \cdot ||u|| .$$
(1.12)

Therefore for every $g \in L^2(B, \mathcal{A}_y, P_y)$ the functional $g^* \colon L^2(A, \mathcal{A}_x, P_x) \to B$ is well-defined by the formula

$$L^{2}(A, \mathcal{A}_{x}, P_{x}) \ni u \to g^{*}(u) := \int_{\Omega} u \circ x(\omega) \overline{g \circ y(\omega)} dP(\omega) .$$
 (1.13)

and by (1.12) we obtain

$$g^*(u) \le M_g \cdot ||u|| , \qquad u \in L^2(A, \mathcal{A}_x, P_x) .$$
 (1.14)

Thus g^* is a linear and bounded functional on $(L^2(A, \mathcal{A}_x, P_x), +, \cdot, \|\cdot\|)$ for every $g \in L^2(B, \mathcal{A}_y, P_y)$.

2. The regression problem for the probabilistic regression structures

Let $\mathfrak{P} := (A, B, \delta; x, y)$ be a probabilistic regression structure determined by a probability space $\mathcal{P} = (\Omega, \mathcal{A}, P)$. Then for a given $g \colon B \to B$,

$$\mathfrak{P}_g := (A, B, \delta; x, g \circ y)$$

is a probabilistic regression structure determined by \mathcal{P} . We interpret the function g as a *scaling function* of the data function y.

From now on we shall study the regression problem for \mathcal{F} with respect to \mathfrak{P}_g , where \mathcal{F} is a linear functional model with standard operations of adding and multiplying functions.

The following result is a counterpart of [6, Lemma 3.1].

Theorem 2.1. If $\mathcal{F} \neq \emptyset$ is a linear set in $\mathbf{H}(\mathfrak{P})$ and $g \in L^2(B, \mathcal{A}_y, P_y)$, then for every $f \in \mathcal{F}$ the following condition holds:

$$f \in \operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) \iff \langle h | f \rangle = g^*(h), \qquad h \in \mathcal{F}.$$
 (2.1)

Proof. Given $g \in L^2(B, \mathcal{A}_y, P_y)$ we define the functional

$$(A \to B) \ni f \mapsto F_g(f) := \delta(f \circ x, g \circ y).$$

From the property II.3 it follows that

$$F_g(f) = \int_{\Omega} |f \circ x(\omega) - g \circ y(\omega)|^2 \, \mathrm{d}P(\omega), \qquad f \in \mathcal{F} .$$
(2.2)

Fix $f, h \in \mathcal{F}$ and $\lambda \in B$. Then by (2.2), we have

$$\begin{split} F_g(f+\lambda h) &= \int_{\Omega} |(f+\lambda h) \circ x(\omega) - g \circ y(\omega)|^2 \,\mathrm{d}P(\omega) \\ &= \int_{\Omega} |f \circ x(\omega) + \lambda h \circ x(\omega) - g \circ y(\omega)|^2 \,\mathrm{d}P(\omega) \\ &= \int_{\Omega} \left(|f \circ x(\omega) - g \circ y(\omega)|^2 + 2\mathrm{Re} \left[(f \circ x(\omega) - g \circ y(\omega)) \overline{\lambda h \circ x(\omega)} \right] \\ &+ |\lambda|^2 |h \circ x(\omega)|^2 \right) \mathrm{d}P(\omega) \\ &= \int_{\Omega} |f \circ x(\omega) - g \circ y(\omega)|^2 \,\mathrm{d}P(\omega) \\ &+ 2 \int_{\Omega} \mathrm{Re} \left[(f \circ x(\omega) - g \circ y(\omega)) \overline{\lambda h \circ x(\omega)} \right] \,\mathrm{d}P(\omega) \\ &+ |\lambda|^2 \int_{\Omega} |h \circ x(\omega)|^2 \,\mathrm{d}P(\omega) \;. \end{split}$$

Hence, by (2.2), (1.8) and (1.5), we get

$$F_g(f + \lambda h) = F_g(f) + |\lambda|^2 ||h||^2 + 2\operatorname{Re} \int_{\Omega} f \circ x(\omega) \overline{\lambda h \circ x(\omega)} \, \mathrm{d}P(\omega) -2\operatorname{Re} \int_{\Omega} g \circ y(\omega) \overline{\lambda h \circ x(\omega)} \, \mathrm{d}P(\omega) .$$

From (1.6), (1.13) and (1.5) we conclude that

$$F_g(f + \lambda h) = F_g(f) + |\lambda|^2 ||h||^2 + 2\operatorname{Re}\left[\lambda\left(\langle h|f\rangle - g^*(h)\right)\right]$$

Therefore, for $\lambda \in B$ and $f, h \in \mathcal{F}$, we have

$$F_g(f+\lambda h) - F_g(f) = 2\operatorname{Re}\left[\lambda\left(\langle h|f\rangle - g^*(h)\right)\right] + |\lambda|^2 ||h||^2 .$$
(2.3)

Fix $f \in \mathcal{F}$ satisfying $\langle h | f \rangle = g^*(h), h \in \mathcal{F}$. Applying (2.3) with $\lambda := 1$ we obtain

$$F_g(f+h) - F_g(f) = ||h||^2 \ge 0$$

and so

$$F_g(f+h) \ge F_g(f), \qquad h \in \mathcal{F}$$

which means that $f \in \operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g)$.

Conversely, assume now that $f \in \operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g)$. Then from (2.3) we conclude that

$$2\operatorname{Re}\left[\lambda(\langle h|f\rangle - g^*(h))\right] + |\lambda|^2 ||h||^2 \ge 0 , \qquad h \in \mathcal{F}, \ \lambda \in B .$$

$$(2.4)$$

Replacing h by -h in (2.4) we get

$$-2\text{Re}\left[\lambda(\langle h|f\rangle - g^*(h))\right] + |\lambda|^2 ||h||^2 \ge 0.$$
(2.5)

Combining (2.4) and (2.5) we can see that

$$-\frac{1}{2}|\lambda|^2 \|h\|^2 \le \operatorname{Re}\left[\lambda(\langle h|f\rangle - g^*(h))\right] \le \frac{1}{2}|\lambda|^2 \|h\|^2 , \qquad h \in \mathcal{F}, \ \lambda \in B .$$

Fixing $h \in \mathcal{F}$, $\alpha \in \mathbb{R}$ and assuming that $\lambda = |\lambda|e^{i\alpha}$ we get

$$-\frac{1}{2}|\lambda|||h||^2 \le \operatorname{Re}\left[e^{i\alpha}(\langle h|f\rangle - g^*(h))\right] \le \frac{1}{2}|\lambda|||h||^2.$$

In the limiting case as $|\lambda| \to 0$, the following equality holds

Re
$$\left[e^{i\alpha}(\langle h|f\rangle - g^*(h))\right] = 0$$
, $h \in \mathcal{F}, \ \alpha \in \mathbb{R}$.

Choosing $\alpha \in \{0, \frac{\pi}{2}\}$ we conclude that $\langle h|f \rangle - g^*(h) = 0$ for $h \in \mathcal{F}$, which completes the proof.

By the basic properties of a pseudo-norm we can see that the set

$$\Theta := \{h \in \mathcal{L}^2(A, \mathcal{A}_x, P_x) \colon \|h\| = 0\}$$

is linear. We call it the *null set* of $\mathbf{H}(\mathfrak{P})$. As a matter of fact Θ is the closed ball with radius 0 and center at the zero function θ , defined by $\theta(t) := 0$ for $t \in A$.

We may extend the standard operations of adding and multiplying functions by a constant to any sets $F_1, F_2 \subset (A \to B)$ as follows:

$$F_1 + F_2 := \{ f_1 + f_2 \colon f_1 \in F_1, f_2 \in F_2 \} ;$$

$$\lambda \cdot F_1 := \{ \lambda f_1 \colon f_1 \in F_1 \} , \quad \lambda \in B ;$$

$$f + F_1 := \{ f \} + F_1 \quad \text{and} \quad F_1 + f := F_1 + \{ f \} , \quad f \in (A \to B) .$$

Corollary 2.2. If $\mathcal{F} \neq \emptyset$ is a linear set in $\mathbf{H}(\mathfrak{P})$ and $g \in L^2(B, \mathcal{A}_y, P_y)$, then

$$\operatorname{Reg}(\mathcal{F},\mathfrak{P}_g) = \mathcal{F} \cap \operatorname{Reg}(\Theta + \mathcal{F},\mathfrak{P}_g) .$$
(2.6)

If additionally $\mathcal{F} \subset \Theta$, then $\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) = \mathcal{F}$.

Proof. Fix $f, h \in L^2(A, \mathcal{A}_x, P_x)$. If ||h|| = 0, then by the Schwarz inequality (1.9) and (1.14) it follows that

$$|\langle h|f\rangle| \le ||h|| ||f|| = 0$$
 and $|g^*(h)| \le \left(\int_{\Omega} |g \circ y(\omega)|^2 \mathrm{d}P(\omega)\right)^{1/2} ||h|| = 0$

Hence

$$\langle h|f\rangle = 0 = g^*(h) , \quad f \in L^2(A, \mathcal{A}_x, P_x), \ h \in \Theta .$$
 (2.7)

Assume that $f \in \text{Reg}(\mathcal{F}, \mathfrak{P}_g)$ and $h \in \Theta + \mathcal{F}$ are given. Then $h = h_0 + h_1$ for some $h_0 \in \Theta$ and $h_1 \in \mathcal{F}$. Applying now (2.7) and Theorem 2.1 we see that

$$\langle h|f\rangle = \langle h_0|f\rangle + \langle h_1|f\rangle = 0 + g^*(h_1) = g^*(h_0) + g^*(h_1) = g^*(h), \quad h \in \Theta + \mathcal{F}$$

By definition, $f \in \mathcal{F} \subset \Theta + \mathcal{F}$. From Theorem 2.1 it follows that $f \in \mathcal{F} \cap \operatorname{Reg}(\Theta + \mathcal{F}, \mathfrak{P}_g)$, and so

$$\operatorname{Reg}(\mathcal{F},\mathfrak{P}_g) \subset \mathcal{F} \cap \operatorname{Reg}(\Theta + \mathcal{F},\mathfrak{P}_g) .$$
(2.8)

Conversely, assume now that $f \in \mathcal{F} \cap \operatorname{Reg}(\Theta + \mathcal{F}, \mathfrak{P}_g)$ and $h \in \mathcal{F}$ are given. Since $h \in \Theta + \mathcal{F}$, we conclude from Theorem 2.1, that

$$\langle h|f\rangle = g^*(h), \qquad h \in \mathcal{F}$$

Thus applying Theorem 2.1 once more, we get $f \in \text{Reg}(\mathcal{F}, \mathfrak{P}_g)$, and so

$$\mathcal{F} \cap \operatorname{Reg}(\Theta \cap \mathcal{F}, \mathfrak{P}_g) \subset \operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g)$$

Combining this inclusion with the inclusion (2.8) we derive the equality (2.6). Since $\Theta \subset L^2(A, \mathcal{A}_x, P_x)$, the equalities in (2.7) hold for all $f, h \in \Theta$. Then Theorem 2.1 yields $\operatorname{Reg}(\Theta, \mathfrak{P}_g) \supset \Theta$, whereas the opposite inclusion is obvious.

Thus $\operatorname{Reg}(\Theta, \mathfrak{P}_g) = \Theta$. If now $\mathcal{F} \subset \Theta$, then the equality (2.6) takes the form $\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) = \mathcal{F}$, which proves the theorem.

By S^{\perp} we denote the orthogonal complement of $S \subset L^2(A, \mathcal{A}_x, P_x)$ in the space $\mathbf{H}(\mathfrak{P})$, i.e.,

$$S^{\perp} := \{ f \in \mathcal{L}^2(A, \mathcal{A}_x, P_x) \colon \langle h | f \rangle = 0 \text{ for } h \in S \} .$$

Theorem 2.3. If $\mathcal{F} \neq \emptyset$ is a closed and linear set in $\mathbf{H}(\mathfrak{P})$ and $g \in L^2(B, \mathcal{A}_y, P_y)$, then $\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) \neq \emptyset$ and $\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) = \Theta + f$ for each $f \in \operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g)$. Moreover, if $\mathcal{F} \subset S := (g^*)^{-1}(0)$, then $\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) = \Theta$. Otherwise $(\mathcal{F} \cap S)^{\perp} \cap \mathcal{F} \setminus \Theta \neq \emptyset$ and

$$\operatorname{Reg}(\mathcal{F},\mathfrak{P}_g) = \Theta + \frac{g^*(h)}{\|h\|^2}h , \qquad h \in (\mathcal{F} \cap S)^{\perp} \cap \mathcal{F} \setminus \Theta .$$
(2.9)

Proof. Assume that $\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) \neq \emptyset$ and choose arbitrarily $f \in \operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g)$ and $f' \in \operatorname{L}^2(A, \mathcal{A}_x, P_x)$. If $f' \in \operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g)$ then, by Theorem 2.1,

$$\langle h|f\rangle = g^*(h), \quad h \in \mathcal{F} ,$$
 (2.10)

and $\langle h|f'\rangle = g^*(h)$ for $h \in \mathcal{F}$. Hence, setting h := f - f' we conclude from (2.10) that

$$||h||^2 = \langle h|f - f'\rangle = \langle h|f\rangle - \langle h|f'\rangle = g^*(h) - g^*(h) = 0.$$

Thus $f' \in \Theta + f$ for $f' \in \operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g)$, and so $\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) \subset \Theta + f$. Conversely, suppose that $f' \in \Theta + f$. Then, by Schwarz inequality (1.9), we see that for every $h \in \mathcal{F}$,

$$|\langle h|f'\rangle - \langle h|f\rangle| = |\langle h|f' - f\rangle| \le ||h|| \cdot ||f' - f|| = 0.$$

Hence, and by (2.10), we get $\langle h|f' \rangle = \langle h|f \rangle = g^*(h)$ for $h \in \mathcal{F}$. Since \mathcal{F} is closed and linear in $\mathbf{H}(\mathfrak{P})$, we see that $\Theta \subset \mathcal{F}$ and so $\Theta + f \subset \mathcal{F}$. Applying Theorem 2.1 we see that $f' \in \operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g)$ for $f' \in \Theta + f$, and so $\Theta + f \subset \operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g)$. This inclusion together with the inverse one yields the equality $\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) = \Theta + f$, provided $\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) \neq \emptyset$, and so we obtain the following implication

$$\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) \neq \emptyset \quad \Rightarrow \quad \operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) = \Theta + f \;.$$
 (2.11)

Assume now that $\mathcal{F} \subset S$. Then

$$\langle h| heta
angle=0=g^*(h),\quad h\in {\cal F}\;,$$

which shows, by Theorem 2.1, that $\theta \in \operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g)$. Hence and by (2.11) we see that $\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) = \Theta + \theta = \Theta$. It remains to consider the case where the inclusion $\mathcal{F} \subset S$ does not hold. If so, then $\mathcal{F} \cap S \neq \mathcal{F}$. By the assumption \mathcal{F} is a closed set in $\mathbf{H}(\mathfrak{P})$. Since $g \in L^2(B, \mathcal{A}_y, P_y)$, g^* is a continuous functional on $\mathbf{H}(\mathfrak{P})$, and so S is also a closed set in $\mathbf{H}(\mathfrak{P})$. Therefore $\mathcal{F} \cap S$ is a closed set in $\mathbf{H}(\mathfrak{P})$, and consequently

$$\Theta \subset \mathcal{F} \cap S \neq \mathcal{F} . \tag{2.12}$$

Hence $\mathcal{F} \setminus (\mathcal{F} \cap S) \neq \emptyset$. Since $\mathcal{F} \cap S$ is closed in $\mathbf{H}(\mathfrak{P})$, it follows that each $h \in \mathcal{F} \setminus (\mathcal{F} \cap S)$ has an orthogonal projection h_S onto $\mathcal{F} \cap S$, i.e.,

$$h_S \in \mathcal{F} \cap S$$
 and $\langle h - h_S | h' \rangle = 0$, $h' \in \mathcal{F} \cap S$. (2.13)

Hence $h - h_S \in (\mathcal{F} \cap S)^{\perp} \cap \mathcal{F}$. If $h - h_S \in \Theta$, then from (2.12) and (2.13) it follows that $h = h_S + (h - h_S) \in \mathcal{F} \cap S + \Theta = \mathcal{F} \cap S$, which is impossible. Therefore $h - h_S \notin \Theta$, and so $h - h_S \in (\mathcal{F} \cap S)^{\perp} \cap \mathcal{F} \setminus \Theta$. Thus $(\mathcal{F} \cap S)^{\perp} \cap \mathcal{F} \setminus \Theta \neq \emptyset$. Given $h \in (\mathcal{F} \cap S)^{\perp} \cap \mathcal{F} \setminus \Theta$ we see that $||h|| \neq 0$, and so $g^*(h) \neq 0$. Hence, for each $h' \in \mathcal{F}$,

$$h'_{S} := h' - \frac{g^{*}(h')}{g^{*}(h)}h \in \mathcal{F} \cap S$$
 and $h' - h'_{S} = \frac{g^{*}(h')}{g^{*}(h)}h \in (\mathcal{F} \cap S)^{\perp} \cap \mathcal{F}$. (2.14)

Since

$$\frac{\overline{g^*(h)}}{\|h\|^2}h \in (\mathcal{F} \cap S)^{\perp} \cap \mathcal{F} ,$$

we conclude from (2.14) that

$$\begin{split} \left\langle h' \Big| \frac{\overline{g^*(h)}}{\|h\|^2} h \right\rangle = &\left\langle h' - h'_S \Big| \frac{\overline{g^*(h)}}{\|h\|^2} h \right\rangle = \left\langle \frac{g^*(h')}{g^*(h)} h \Big| \frac{\overline{g^*(h)}}{\|h\|^2} h \right\rangle \\ = & \frac{g^*(h')}{g^*(h)} \overline{\left(\frac{\overline{g^*(h)}}{\|h\|^2}\right)} \langle h|h \rangle = g^*(h') , \qquad h' \in \mathcal{F} . \end{split}$$

Applying now Theorem 2.1, we see that

$$f := \frac{\overline{g^*(h)}}{\|h\|^2} h \in \operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) , \qquad h \in (\mathcal{F} \cap S)^{\perp} \cap \mathcal{F} \setminus \Theta .$$
 (2.15)

Therefore $\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) \neq \emptyset$ and, combining (2.15) with (2.11), we derive the equality (2.9) provided the inclusion $\mathcal{F} \subset S$ does not hold.

In both the cases $\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_q) \neq \emptyset$, which completes the proof. \Box

3. Calculating procedure of the regression functions

Write $\mathbb{Z}_{p,q} := \{n \in \mathbb{Z} : p \leq n \leq q\}$ and $\mathbb{Z}_p := \{n \in \mathbb{Z} : p \leq n\}$ for $p, q \in \mathbb{Z}$. In particular $\mathbb{N} = \mathbb{Z}_1$. Given a nonempty set $S \subset L^2(A, \mathcal{A}_x, P_x)$, we denote by $\lim(S)$ the set of all linear combinations $\sum_{k=1}^n \lambda_k v_k$ where $n \in \mathbb{N}$, $\mathbb{Z}_{1,n} \ni k \mapsto \lambda_k \in B$ and $\mathbb{Z}_{1,n} \ni k \mapsto v_k \in S$. It is easy to check that $\lim(S)$ is the smallest linear subset of $L^2(A, \mathcal{A}_x, P_x)$ containing S.

Assume that \mathcal{F} is arbitrarily chosen linear and closed set in the space $\mathbf{H}(\mathfrak{P})$ and $g \in L^2(B, \mathcal{A}_y, P_y)$ is given. Then by Theorem 2.3 we conclude that $\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) \neq \emptyset$. Moreover, Theorem 2.3 enables us to find regression functions in \mathcal{F} with respect to \mathfrak{P}_g provided we can determine the linear set $(\mathcal{F} \cap S)^{\perp} \cap \mathcal{F}$. This is rather difficult task, in general. However in the case where the set \mathcal{F} is finitely dimensional we can effectively calculate all the regression functions in \mathcal{F} with respect to \mathfrak{P}_g in terms of a given base of this space. Obviously, this case is most essential from the practical point of view and will be considered later on.

For every $f, h \in L^2(A, \mathcal{A}_x, P_x)$, we will write $f \perp h$ if $\langle f | h \rangle = 0$. Given $p, q \in \mathbb{Z}$, $p \leq q$, and a sequence $\mathbb{Z}_{p,q} \ni k \mapsto \mathcal{F}_k$ of nonempty sets in the space $\mathbf{H}(\mathfrak{P})$, we write $\sum_{k=p}^{q} \mathcal{F}_k$ for the set of all $\sum_{k=p}^{q} f_k$ where $\mathbb{Z}_{p,q} \ni k \mapsto f_k \in \mathcal{F}_k$. Obviously, $\sum_{k=1}^{2} \mathcal{F}_k = \mathcal{F}_1 + \mathcal{F}_2$.

Theorem 3.1. Given $p \in \mathbb{N}$ let $\mathbb{Z}_{1,p} \ni k \mapsto h_k \in L^2(A, \mathcal{A}_x, P_x) \setminus \Theta$ be an orthogonal sequence in $\mathbf{H}(\mathfrak{P})$, *i.e.*,

$$h_k \perp h_j, \qquad k, j \in \mathbb{Z}_{1,p}, \ k \neq j$$
 (3.1)

If $g \in L^2(B, \mathcal{A}_y, P_y)$, then

$$\operatorname{Reg}(\mathcal{F},\mathfrak{P}_g) = \left\{ \sum_{k=1}^p \frac{\overline{g^*(h_k)}}{\|h_k\|^2} h_k \right\} , \qquad (3.2)$$

where

$$\mathcal{F} := \ln(\{h_k \colon k \in \mathbb{Z}_{1,p}\}) . \tag{3.3}$$

Proof. Fix $p \in \mathbb{N}$ and a sequence $\mathbb{Z}_{1,p} \ni k \mapsto h_k \in L^2(A, \mathcal{A}_x, P_x) \setminus \Theta$ satisfying the assumptions. From (3.3) and (3.1) it follows that $\mathcal{F}_0 := \Theta + \mathcal{F}$ is a closed set in $\mathbf{H}(\mathfrak{P})$. Therefore $\operatorname{Reg}(\mathcal{F}_0, \mathfrak{P}_g) \neq \emptyset$ by the assumption $g \in L^2(B, \mathcal{A}_y, P_y)$ and Theorem 2.3. If $g^*(h_k) = 0$ for $k \in \mathbb{Z}_{1,p}$, then by (3.3), $\mathcal{F}_0 \subset S := (g^*)^{-1}(0)$. From Theorem 2.3 it follows that $\operatorname{Reg}(\mathcal{F}_0, \mathfrak{P}_g) = \Theta$. Hence, and by Corollary 2.2, we conclude that $\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) = \Theta \cap \mathcal{F}$. Fix $h \in \mathcal{F} \cap \Theta$. By (3.3) there exists a sequence $\mathbb{Z}_{1,p} \ni k \mapsto \lambda_k \in B$ such that $h = \sum_{k=1}^p \lambda_k h_k$. From (3.1) it follows that

$$\sum_{k=1}^{p} |\lambda_k|^2 ||h_k||^2 = ||h||^2 = 0$$

By the assumption, $||h_k|| > 0$ for $k \in \mathbb{Z}_{1,p}$. Therefore $\lambda_k = 0$ for $k \in \mathbb{Z}_{1,p}$ and so $h = \theta$. Consequently

$$\mathcal{F} \cap \Theta = \{\theta\} . \tag{3.4}$$

Thus $\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_q) = \{\theta\}$, and so the equality (3.2) holds.

Assume, in contrary, that $g^*(h_k) \neq 0$ for some $k \in \mathbb{Z}_{1,p}$. Then $\mathcal{F}_0 \setminus S \neq \emptyset$ and applying again Theorem 2.3 we can see that $(\mathcal{F}_0 \cap S)^{\perp} \cap \mathcal{F}_0 \setminus \Theta \neq \emptyset$ as well as that the equality (2.9) holds. Thus we have to find an element $h \in \mathcal{F}$ such that $h \in (\mathcal{F}_0 \cap S)^{\perp} \cap \mathcal{F}_0 \setminus \Theta$. Then by (3.3) there exists a sequence $\mathbb{Z}_{1,p} \ni k \mapsto \lambda_k \in B$ such that

$$h = \sum_{k=1}^{p} \lambda_k \cdot h_k \ . \tag{3.5}$$

If p = 1, then $h = \lambda_1 h_1$ and $g^*(h_1) \neq 0$. Hence $\lambda_1 \neq 0$, and $h_1 \in \mathcal{F}_0 \setminus \Theta$. Moreover, for any $f \in \mathcal{F}_0 \cap S$ there exist $\lambda \in B$ and $f_0 \in \Theta$ such that $f = f_0 + \lambda h_1$. Since $f \in S$, we obtain

$$0 = g^*(f) = g^*(f_0) + \lambda g^*(h_1) = \lambda g^*(h_1)$$

and so $\lambda = 0$. Therefore, $f = f_0 \in \Theta$, which gives $\langle h_1 | f \rangle = 0$. Hence $h_1 \in (\mathcal{F}_0 \cap S)^{\perp}$, and we see that $h = \lambda_1 h_1 \in (\mathcal{F}_0 \cap S)^{\perp} \cap \mathcal{F}_0 \setminus \Theta$. Then Theorem 2.3 leads to

$$\operatorname{Reg}(\mathcal{F}_0,\mathfrak{P}_g) = \Theta + \frac{\overline{g^*(h)}}{\|h\|^2}h = \Theta + \frac{\overline{g^*(h_1)}}{\|h_1\|^2}h_1.$$
(3.6)

It remains to consider the case where p > 1. Without lost of generality we may assume now that $g^*(h_1) \neq 0$. Since $h_k - \frac{g^*(h_k)}{g^*(h_1)}h_1 \in S$ for $k \in \mathbb{Z}_{1,p}$ and $h \in (\mathcal{F}_0 \cap S)^{\perp} \cap \mathcal{F}_0$ we have

$$h \perp h_k - \frac{g^*(h_k)}{g^*(h_1)}h_1, \quad k \in Z_{1,p}$$

Combining this with (3.1) and (3.5) we see that for each $j \in \mathbb{Z}_{1,p}$,

$$0 = \left\langle h \middle| h_j - \frac{g^*(h_j)}{g^*(h_1)} h_1 \right\rangle = \left\langle h \middle| h_j \right\rangle - \left\langle h \middle| \frac{g^*(h_j)}{g^*(h_1)} h_1 \right\rangle$$
$$= \left\langle \sum_{k=1}^p \lambda_k \cdot h_k \middle| h_j \right\rangle - \overline{\left(\frac{g^*(h_j)}{g^*(h_1)}\right)} \left\langle \sum_{k=1}^p \lambda_k \cdot h_k \middle| h_1 \right\rangle$$
$$= \sum_{k=1}^p \lambda_k \left\langle h_k \middle| h_j \right\rangle - \overline{\left(\frac{g^*(h_j)}{g^*(h_1)}\right)} \sum_{k=1}^p \lambda_k \left\langle h_k \middle| h_1 \right\rangle$$
$$= \lambda_j \left\langle h_j \middle| h_j \right\rangle - \lambda_1 \overline{\left(\frac{g^*(h_j)}{g^*(h_1)}\right)} \left\langle h_1 \middle| h_1 \right\rangle = \lambda_j \|h_j\|^2 - \lambda_1 \overline{\left(\frac{g^*(h_j)}{g^*(h_1)}\right)} \|h_1\|^2$$

Hence

$$\lambda_j = \frac{\lambda_1}{\|h_j\|^2} \overline{\left(\frac{g^*(h_j)}{g^*(h_1)}\right)} \|h_1\|^2, \qquad j \in \mathbb{Z}_{1,p}.$$

This together with (3.5) leads to

$$h = \sum_{k=1}^{p} \lambda_k \cdot h_k = \sum_{k=1}^{p} \frac{\lambda_1}{\|h_k\|^2} \overline{\left(\frac{g^*(h_k)}{g^*(h_1)}\right)} \|h_1\|^2 \cdot h_k = \frac{\lambda_1}{\overline{g^*(h_1)}} \|h_1\|^2 \sum_{k=1}^{p} \frac{\overline{g^*(h_k)}}{\|h_k\|^2} h_k ,$$

whence $\lambda_1 \neq 0$. By (3.1) we see that

$$\|h\|^{2} = \left|\frac{\lambda_{1}}{\overline{g^{*}(h_{1})}}\|h_{1}\|^{2}\right|^{2} \cdot \left\|\sum_{k=1}^{p} \frac{\overline{g^{*}(h_{k})}}{\|h_{k}\|^{2}}h_{k}\right\|^{2} = \frac{|\lambda_{1}|^{2} \cdot \|h_{1}\|^{4}}{|g^{*}(h_{1})|^{2}} \cdot \sum_{k=1}^{p} \frac{|g^{*}(h_{k})|^{2}}{\|h_{k}\|^{2}}$$

Moreover,

$$\overline{g^*(h)} = \overline{g^*\left(\frac{\lambda_1}{\overline{g^*(h_1)}} \|h_1\|^2 \cdot \sum_{k=1}^p \frac{\overline{g^*(h_k)}}{\|h_k\|^2} h_k\right)}$$
$$= \frac{\overline{\lambda_1} \|h_1\|^2}{g^*(h_1)} \cdot \sum_{k=1}^p \frac{g^*(h_k)}{\|h_k\|^2} \cdot \overline{g^*(h_k)} = \frac{\overline{\lambda_1} \|h_1\|^2}{g^*(h_1)} \cdot \sum_{k=1}^p \frac{|g^*(h_k)|^2}{\|h_k\|^2} .$$

Applying now (2.9) we obtain

$$\operatorname{Reg}(\mathcal{F}_{0},\mathfrak{P}_{g}) = \Theta + \frac{\overline{g^{*}(h)}}{\|h\|^{2}} \cdot h = \Theta + \frac{\frac{\lambda_{1} \|h_{1}\|^{2}}{g^{*}(h_{1})} \cdot \sum_{k=1}^{p} \frac{|g^{*}(h_{k})|^{2}}{\|h_{k}\|^{2}}}{|\frac{\lambda_{1}|^{2} \cdot \|h_{1}\|^{4}}{|g^{*}(h_{1})|^{2}} \cdot \sum_{k=1}^{p} \frac{|g^{*}(h_{k})|^{2}}{\|h_{k}\|^{2}}} \cdot h$$
$$= \Theta + \frac{\overline{g^{*}(h_{1})}}{\lambda_{1} \|h_{1}\|^{2}} \cdot \frac{\lambda_{1}}{\overline{g^{*}(h_{1})}} \cdot \|h_{1}\|^{2} \cdot \sum_{k=1}^{p} \frac{\overline{g^{*}(h_{k})}}{\|h_{k}\|^{2}} \cdot h_{k}$$
$$= \Theta + \sum_{k=1}^{p} \frac{\overline{g^{*}(h_{k})}}{\|h_{k}\|^{2}} h_{k} .$$

Hence, and by (3.6), we see that for each $p \in \mathbb{N}$,

$$\operatorname{Reg}(\mathcal{F}_0, \mathfrak{P}_g) = \Theta + f, \qquad (3.7)$$

where, in view of (3.3),

$$f := \sum_{k=1}^{p} \frac{\overline{g^*(h_k)}}{\|h_k\|^2} h_k \in \lim(\{h_k \colon k \in \mathbb{Z}_{1,p}\}) = \mathcal{F} .$$
(3.8)

From Corollary 2.2, (3.7), (3.8) and (3.4) it follows that

$$\operatorname{Reg}(\mathcal{F},\mathfrak{P}_g) = \mathcal{F} \cap \operatorname{Reg}(\mathcal{F}_0,\mathfrak{P}_g) = \mathcal{F} \cap (\Theta + f) = (\mathcal{F} \cap \Theta) + f = \{f\}.$$

This yields the equality (3.2), which completes the proof.

As far as applications are concerned we will study theoretic models \mathcal{F} spanned by sequences $\mathbb{Z}_{1,p} \ni k \mapsto h_k$ which are not, in general, orthogonal in the space $\mathbf{H}(\mathfrak{P})$, because the pseudo-inner product $\langle \cdot | \cdot \rangle$ depends on the empirical data function $x: \Omega \to A$ and probability measure P. Therefore we can not apply Theorem 3.1 directly. However, in such a case we may orthogonalize those sequences. To this end we may use the generalized Gram - Schmidt orthogonalization method, saying that,

$$h'_1 := h_1 \quad \text{and} \quad h'_n := h_n - \sum_{k=1}^{n-1} \lambda(h_n, h'_k) \cdot h'_k , \qquad n \in \mathbb{Z}_{2,p} ,$$
 (3.9)

where λ is defined by

$$L^{2}(A, \mathcal{A}_{x}, P_{x}) \times L^{2}(A, \mathcal{A}_{x}, P_{x}) \ni (u, v) \mapsto \lambda(u, v) := \begin{cases} \frac{\langle u | v \rangle}{\|v\|^{2}} & \text{if } \|v\| > 0 \\ 0 & \text{if } \|v\| = 0 \end{cases}$$
(3.10)

Corollary 3.2. Given $p \in \mathbb{N}$ and $\mathbb{Z}_{1,p} \ni k \mapsto h_k \in L^2(A, \mathcal{A}_x, P_x)$ let $\mathbb{Z}_{1,p} \ni k \mapsto h'_k$ be a sequence defined by (3.9). If $g \in L^2(B, \mathcal{A}_y, P_y)$ and

$$||h'_k|| > 0 , \qquad k \in \mathbb{Z}_{1,p} ,$$
 (3.11)

then

$$\operatorname{Reg}(\mathcal{F},\mathfrak{P}_g) = \left\{ \sum_{k=1}^p \frac{\overline{g^*(h'_k)}}{\|h'_k\|^2} h'_k \right\} , \qquad (3.12)$$

where \mathcal{F} is given by (3.3).

Proof. Under the assumption we see that $h'_k \perp h'_l$ for $k, l \in \mathbb{Z}_{1,p}$ such that $k \neq l$. From (3.3) and (3.9) it follows that $\lim(\{h'_k \colon k \in \mathbb{Z}_{1,p}\}) = \mathcal{F}$. Moreover, by (3.11), $h'_k \in L^2(A, \mathcal{A}_x, P_x) \setminus \Theta$ for $k \in \mathbb{Z}_{1,p}$. Thus, applying Theorem 3.1 for the sequence $\mathbb{Z}_{1,p} \ni k \mapsto h_k$, replaced by its orthogonal associate $\mathbb{Z}_{1,p} \ni k \mapsto h'_k$ we derive the equality (3.12), which is our claim. \Box

Remark 3.3. From [6, Lemma 5.2] it follows the condition (3.11) holds if and only if a sequence $\mathbb{Z}_{1,p} \ni k \mapsto h_k$ is linearly independent and $\mathcal{F} \cap \Theta = \{\theta\}$. In particular, the condition (3.11) holds provided a sequence $\mathbb{Z}_{1,p} \ni k \mapsto h_k$ is linearly independent and the functional is a norm in $(L^2(A, \mathcal{A}_x, P_x), +, \cdot)$.

4. Examples and complementary remarks

In this section we present examples and comments which illustrate our considerations from the previous section. From now on we always assume that $\mathfrak{P} = (A, B, \delta; x, y)$ is a given probabilistic regression structure determined by a probability space $\mathcal{P} = (\Omega, \mathcal{A}, P)$ and $g \in L^2(B, \mathcal{A}_y, P_y)$ is arbitrarily fixed.

Example 4.1. Let us consider the case where the functional model \mathcal{F} is spanned by one arbitrarily fixed function $h_1 \in L^2(A, \mathcal{A}_x, P_x) \setminus \Theta$, i.e., $\mathcal{F} = \text{lin}(\{h_1\})$. Applying Theorem 3.1 we can see that

$$\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) = \left\{ \frac{\overline{g^*(h_1)}}{\|h_1\|^2} h_1 \right\} .$$
(4.1)

Using the expected value operator for the probability space \mathcal{P} we conclude from the formula (1.13) that

$$g^*(h_1) = \int_{\Omega} (h_1 \circ x(\omega)) \cdot \overline{g \circ y(\omega)} dP(\omega) = E[(h_1 \circ x) \cdot \overline{g \circ y}], \qquad (4.2)$$

and from the formula (1.8) and Theorem 1.2 that

$$\|h_1\|^2 = \int_A |h_1(t)|^2 dP_x(t) = \int_\Omega |h_1 \circ x(\omega)|^2 dP(\omega) = \mathbf{E}[|h_1 \circ x|^2] .$$
(4.3)

Hence we can rewrite (4.1) in terms of the expected value as follows

$$\operatorname{Reg}(\mathcal{F},\mathfrak{P}_g) = \left\{ \frac{\operatorname{E}[(\overline{h_1} \circ x)g \circ y]}{\operatorname{E}[|h_1 \circ x|^2]} \cdot h_1 \right\} .$$
(4.4)

Given $\alpha \in \mathbb{Z}_0$ suppose that A = B, $g \in L^2(B, \mathcal{A}_y, P_y)$ and $h_1 \in L^2(A, \mathcal{A}_x, P_x)$ where $h_1(t) := t^{\alpha}$ and g(t) := t for $t \in B$. Then

$$\mathbf{E}[(\overline{h_1} \circ x)(g \circ y)] = \mathbf{E}[\overline{x}^{\alpha} \cdot y] \quad \text{and} \quad \mathbf{E}[|h_1 \circ x|^2] = \mathbf{E}[|x|^{2\alpha}] ,$$

and so (4.4) implies

$$\operatorname{Reg}(\mathcal{F},\mathfrak{P}) = \left\{ A \ni t \mapsto \frac{\operatorname{E}[\overline{x}^{\alpha} \cdot y]}{\operatorname{E}[|x|^{2\alpha}]} \cdot t^{\alpha} \right\} , \qquad (4.5)$$

provided x is not equal 0 a.s. on Ω .

If x is a real random variable, then putting $\alpha := 1$ in (4.5) we see that E[xy] can be expressed by means of regression functions $\operatorname{Reg}(\mathcal{F}, \mathfrak{P})$ and $E[x^2]$. Putting $\alpha := 0$ in (4.5) we obtain

$$\operatorname{Reg}(\mathcal{F},\mathfrak{P}) = \{A \in t \mapsto \operatorname{E}[y]\} \quad . \tag{4.6}$$

Notice that the equality (4.6) is still valid even if $A \neq B$.

Example 4.2. Let us consider the case where the functional model \mathcal{F} is spanned by two arbitrarily fixed functions $h_1, h_2 \in L^2(A, \mathcal{A}_x, P_x)$, i.e., $\mathcal{F} = \text{lin}(\{h_1, h_2\})$. Suppose that $||h'_1|| > 0$ and $||h'_2|| > 0$, where $\mathbb{Z}_{1,2} \ni k \mapsto h'_k$ is a sequence defined by (3.9). Applying Corollary 3.2 we can see that

$$\operatorname{Reg}(\mathcal{F},\mathfrak{P}_g) = \left\{ \frac{\overline{g^*(h_1')}}{\|h_1'\|^2} h_1' + \frac{\overline{g^*(h_2')}}{\|h_2'\|^2} h_2' \right\} , \qquad (4.7)$$

where, according to (3.9),

$$h'_1 := h_1$$
 and $h'_2 := h_2 - \frac{\langle h_2 | h_1 \rangle}{\|h_1\|^2} h_1$. (4.8)

Hence $h'_2 \perp h_1$, and consequently

$$\|h_{2}'\|^{2} = \langle h_{2}'|h_{2}'\rangle = \langle h_{2}'|h_{2} - \frac{\langle h_{2}|h_{1}\rangle}{\|h_{1}\|^{2}}h_{1}\rangle = \langle h_{2}'|h_{2}\rangle$$

$$= \langle h_{2} - \frac{\langle h_{2}|h_{1}\rangle}{\|h_{1}\|^{2}}h_{1}|h_{2}\rangle = \|h_{2}\|^{2} - \frac{|\langle h_{2}|h_{1}\rangle|^{2}}{\|h_{1}\|^{2}}.$$

$$(4.9)$$

Setting

$$\alpha_2 := \frac{\overline{g^*(h_2)} \|h_1\|^2 - \overline{g^*(h_1)\langle h_2 | h_1 \rangle}}{\|h_2\|^2 \|h_1\|^2 - |\langle h_2 | h_1 \rangle|^2} \quad \text{and} \quad \alpha_1 := \frac{\overline{g^*(h_1)} - \langle h_2 | h_1 \rangle \alpha_2}{\|h_1\|^2} \tag{4.10}$$

we conclude from (4.7), (4.8) and (4.9) that

$$\operatorname{Reg}(\mathcal{F},\mathfrak{P}_g) = \{\alpha_2 h_2 + \alpha_1 h_1\}.$$
(4.11)

We can calculate the coefficients α_2 and α_1 by means of the expected value operator E for the probability space \mathcal{P} using the following equalities

 $g^*(h_k) = \operatorname{E}[(h_k \circ x) \cdot \overline{g \circ y}] \quad \text{and} \quad \|h_k\|^2 = \operatorname{E}[|h_k \circ x|^2] , \quad k \in \mathbb{Z}_{1,2}$ (4.12)

as well as

$$\langle h_2 | h_1 \rangle = \int_A h_2(t) \cdot \overline{h_1(t)} dP_x(t) = \mathbf{E}[(h_2 \circ x) \overline{(h_1 \circ x)}] .$$
(4.13)

To prove them we appeal to the equalities (4.2), (4.3), (1.6) and Theorem 1.2. In particular, suppose that A = B, $g \in L^2(B, \mathcal{A}_y, P_y)$ and $h_1, h_2 \in L^2(A, \mathcal{A}_x, P_x)$ where g(t) := t, $h_1(t) := 1$ and $h_2(t) := t$ for $t \in B$. Applying now the equalities (4.12), (4.13) we can rewrite the formulas (4.10) as

$$\alpha_2 = \frac{\mathbf{E}[\overline{x} \cdot y] - \mathbf{E}[\overline{x}] \cdot \mathbf{E}[y]}{\mathbf{E}[|x|^2] - (\mathbf{E}[x])^2} \quad \text{and} \quad \alpha_1 = \mathbf{E}[y] - \mathbf{E}[x] \cdot \alpha_2 \tag{4.14}$$

provided x is a not a constant a.s. on Ω . Therefore the coefficients α_2 and α_1 given by (4.14) coincide with the classical linear regression coefficients in the case of real random variables, cf. [3], [4].

Example 4.3. Let us consider the case where the functional model \mathcal{F} is spanned by three arbitrarily fixed functions $h_1, h_2, h_3 \in L^2(A, \mathcal{A}_x, P_x)$, i.e., $\mathcal{F} = \text{lin}(\{h_1, h_2, h_3\})$. Suppose that $||h'_k|| > 0$ for $k \in \mathbb{Z}_{1,3}$, where $\mathbb{Z}_{1,3} \ni k \mapsto h'_k$ is a sequence defined by (3.9). Applying Corollary 3.2 we obtain

$$\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) = \left\{ \sum_{k=1}^3 \frac{\overline{g^*(h'_k)}}{\|h'_k\|^2} h'_k \right\} , \qquad (4.15)$$

where, by (3.9), we have

$$\begin{split} h_{1}' = & h_{1} , \\ h_{2}' = & h_{2} - \frac{\langle h_{2} | h_{1} \rangle}{\|h_{1}\|^{2}} \cdot h_{1} , \\ h_{3}' = & h_{3} + \eta \cdot h_{2} - \frac{\langle h_{3} | h_{1} \rangle + \eta \cdot \langle h_{2} | h_{1} \rangle}{\|h_{1}\|^{2}} \cdot h_{1} \\ \text{and} \qquad \eta := \frac{\langle h_{3} | h_{1} \rangle \langle h_{2} | h_{1} \rangle - \langle h_{3} | h_{2} \rangle \langle h_{1} | h_{1} \rangle}{\|h_{2}\|^{2} \|h_{1}\|^{2} - |\langle h_{2} | h_{1} \rangle|^{2}} \end{split}$$

In particular, suppose that x and y are independent real random variables with normal distributions $N(\mu_1, \sigma_1)$ and $N(\mu_2, \sigma_2)$ respectively. Then, cf. [4],

$$\mathbf{E}[(x-\mu_1)^{2s+1}] = 0 \quad \text{and} \quad \mathbf{E}[(x-\mu_1)^{2s}] = (2s-1)!! \cdot \sigma_1^{2s} \,, \quad s \in \mathbb{N} \,. \tag{4.16}$$

Setting $A := \mathbb{R}$ and $B := \mathbb{R}$ we see that $h_1, h_2, h_3 \in L^2(A, \mathcal{A}_x, P_x)$ and $g \in L^2(B, \mathcal{A}_y, P_y)$, where g(t) := t, $h_1(t) := 1$, $h_2(t) := t$ and $h_3(t) := t^2$ for $t \in B$.

Using Theorem 1.2 we conclude from the formula (1.6) that

$$\langle h_n | h_k \rangle = \int_{\mathbb{R}} h_n(t) \overline{h_k(t)} \, \mathrm{d}P_x(t) = \int_{\mathbb{R}} t^{n+k-2} \, \mathrm{d}P_x(t)$$

$$= \int_{\Omega} x^{n+k-2}(\omega) \, \mathrm{d}P(\omega) = \mathrm{E}[x^{n+k-2}] , \qquad n,k \in \mathbb{Z}_{1,3} .$$

$$(4.17)$$

Combining (4.17) with (4.16) we calculate

Hence $\eta = -2\mu_1$ and so

$$h'_1 = h_1$$
, $h'_2 = h_2 - \mu_1 h_1$, $h'_3 = h_3 - 2\mu_1 h_2 + (\mu_1^2 - \sigma_1^2) h_1$. (4.18)

Since x and y are independent, we conclude from the formula (1.13) that

$$g^*(h_k) = \int_{\Omega} h_k \circ x(\omega) \cdot \overline{g \circ y(\omega)} \, \mathrm{d}P(\omega) = \int_{\Omega} x^{k-1}(\omega) \cdot y(\omega) \, \mathrm{d}P(\omega)$$
$$= \mathrm{E}[x^{k-1} \cdot y] = \mathrm{E}[x^{k-1}] \cdot \mathrm{E}[y] \,, \qquad k \in \mathbb{Z}_{1,3} \,.$$

This together with (4.18) yields

$$g^*(h'_1) = \mathbf{E}[y] = \mu_2$$
, $g^*(h'_2) = 0$, and $g^*(h'_3) = 0$.

Using now (4.15) we obtain

$$\operatorname{Reg}(\mathcal{F},\mathfrak{P}) = \{\mathbb{R} \ni t \mapsto \mu_2\}$$
.

In particular for $\mu_2 := 0$ we get

$$\operatorname{Reg}(\mathcal{F},\mathfrak{P}) = \{\theta\}$$
.

Example 4.4. Assume that A = B. Let \mathcal{F} be a functional model consisting of all polynomials f with coefficients in B and degree deg $f \leq p - 1$, where $p \in \mathbb{N}$. Setting $B \ni t \mapsto h_k(t) := t^{k-1}$ for $k \in \mathbb{Z}_{1,p}$ we see that $\mathcal{F} = \text{lin}(\{h_k : k \in \mathbb{Z}_{1,p}\})$. Suppose that $h_k \in L^2(A, \mathcal{A}_x, P_x)$ for $k \in \mathbb{Z}_{1,p}$ and $||h'_k|| > 0$ for $k \in \mathbb{Z}_{1,p}$, where $\mathbb{Z}_{1,p} \ni k \mapsto h'_k$ is a sequence defined by (3.9). Applying Corollary 3.2 we get

$$\operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g) = \left\{ \sum_{k=1}^p \frac{\overline{g^*(h'_k)}}{\|h'_k\|^2} h'_k \right\} .$$
(4.19)

According to the classical definition, cf., e.g. [3], [10], by a polynomial regression of the random variable y with respect to the random variable x, we mean each polynomial $f_0 \in \mathcal{F}$ such that

$$\mathbf{E}[|f \circ x - y|^2] \ge \mathbf{E}[|f_0 \circ x - y|^2] , \qquad f \in \mathcal{F} .$$

From (1.2) it follows that

$$F(f) = \operatorname{E}[|f \circ x - y|^2], \qquad f \in \mathcal{F}.$$

36

Therefore the class of all such f_0 coincides with the class $\operatorname{Reg}(\mathcal{F}, \mathfrak{P})$. Suppose that $g \in L^2(B, \mathcal{A}_y, P_y)$, where g(t) := t for $t \in B$. Then $\operatorname{Reg}(\mathcal{F}, \mathfrak{P}) = \operatorname{Reg}(\mathcal{F}, \mathfrak{P}_g)$ and by (4.19) we see that there exists the unique polynomial regression $f_0 \in \mathcal{F}$ of y with respect to x and f_0 can be determined by the following equality

$$f_0 = \sum_{k=1}^p \frac{\overline{g^*(h'_k)}}{\|h'_k\|^2} h'_k .$$

Acknowledgement

Most of the presented results were obtained by the author during Monday's Seminar on Applications of Mathematical Methods at the State School of Higher Education in Chełm.

References

- R. B. Ash, *Real Analysis and Probability*, Probability and Mathematical Statistics, Academic Press, Inc., New York and London, 1972.
- [2] P. Billingsley, *Probability and Measure*, John Wiley & Sons, Inc., New York 1995.
- [3] N. R. Draper and H. Smith, Applied Regression Analysis, John Wiley & Sons, Inc., New York 1998.
- [4] M. Fisz, Probability Theory and Mathematical Statistics, John Wiley & Sons, Inc., New York 1967.
- [5] D. Partyka and J. Zając, Generalized problem of regression, Bulletin De La Société des Sciences et des Lettres De Łódź, vol. LX (2010), pp. 77–94.
- [6] D. Partyka and J. Zając, Generalized approach to the problem of regression, Anal. Math. Phys. (2015) 5:249-320 DOI 10.1007/s13324-014-0096-7.
- [7] M. M. Rao and R. J. Swift, *Probability Theory with Applications*, Springer, New York 2006.
- [8] A. Rényi, Probability Theory, Akadémiai Kiadó, Budapest 1970.
- [9] W. Rudin, Real and complex analysis, McGRAF-HILL, Inc., New York 1970.
- [10] G. A. F. Seber and C. J. Wild, Nonlinear Regression, John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.
- [11] G. Strang, *Linear Algebra and its Applications*, Stamford, CT: Cengage Learning, 2005.

Institute of Mathematics and Information Technology The State School of Higher Education in Chełm Pocztowa 54, PL-22-100 Chełm Poland E-mail: aszumera@pwsz.chelm.pl Presented by Adam Paszkiewicz at the Session of the Mathematical-Physical Commission of the Łódź Society of Sciences and Arts on June 25, 2018.

PROBABILISTYCZNE STRUKTURY REGRESJI

Streszczenie

Nowe podejście uogólniające klasyczną koncepcję regresji jest szeroko prezentowane w [5] i [6] na gruncie przestrzeni Hilberta. W niniejszym artykule wyniki tej pracy zostały przeniesione na przestrzeń probabilistyczną, gdzie uogólnione zagadnienie regresji ma postać rozwiązania problemu ekstremalnego, zdefiniowanego na przestrzeni probabilistycznej.

Słowa kluczowe: regresja nieliniowa, regresja wielomianowa, przestrzeń probabilistyczna, funkcje regresji, struktura regresji