
https://doi.org/10.26485/0459-6854/2018/68.3/7 PL ISSN 0459-6854

B U L L E T I N
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Summary

This paper presents the analyses of heat distribution based on non-linear order time

derivative. The described problem has been demonstrated on a simple rectangular struc-

ture made of the silicon. Moreover, the thermal model called Dual-Phase-Lag has been

employed to obtain the solution. Furthermore, the new approximation of Dual-Phase-Lag

model has been proposed. This modification has been based on Grünwald-Letnikov defini-

tion of fractional derivative. The time derivative order, which appears in Fourier-Kirchhoff

model, has been modified to non-integer order. Next, received normalized rises of the tem-

perature have been compared with results obtained using Dual-Phase-Lag equation. Then,

the orders of the fractional time derivative have been matched to different values of the heat

flux and temperature time lags. Eventually, the final formula, which takes into consideration

the order of time derivative and both model parameters of Dual-Phase-Lag equation, the

heat flux and temperature time lags, is determined. Furthermore, the approximation of the

Dual-Phase-Lag heat transfer model is also shown.

Keywords and phrases: Dual-Phase-Lag model, Grünwald Letnikov, heat transfer approxi-

mation, Fourier-Kirchhoff modification, non-linear order time derivative

1. Introduction

Currently, the technical and technology development leads to the production of mod-

ern electronic devices. One of the characteristic feature of these appliances is their
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small size. The restriction related to the small size of the devices demands on elec-

tronic producers meaningful reduction of the size of implemented integrated circuits.

It causes that significant increase of the generated heat desity in electronic appli-

ances is observed. These growths cause that many of thermal problems related to the

proper operation of the entire electronic systems occur and lead to the malfunctions

and damages. Thus, nowadays one of the crucial aspect regarding the designing of

electronic structures is taking into account all new phenomena which occur in such

small and modern devices and estimating proper temperature distribution in the

structure during its operating process. Due to mentioned reasons, new methodolo-

gies of thermal estimation are desired.

1.1. Dual-Phase-Lag model description

The classical thermal approach, which has been used almost throught twenty decades,

has been established by Fourier [1]. This methodology uses the Fourier’s law and

Fourier-Kirchhoff equation. The (1) and (2) shows the mathematical description of

mentioned physical dependencies.

−q (x, y, t) = k∇T (x, y, t) (1)

cv
∂T (x, y, t)

∂t
= −∇ · q (x, y, t) + qgen (x, y, t) (2)

where q (x, y, t) means the density of the heat flux, while cv is the volumetric heat

capacity, qgen (x, y, t) and T (x, y, t) are the heat generation inside the structure and

the temperature function, respectively. In all presented functions, points (x, y) are

from two-dimensional space where x ∈ R, y ∈ R, and time t ≥ 0.

Presented approach is suitable for structures made in technology node greater

than 180 nm. Received accuracy of thermal simulation is at high level [2]. On the

contrary, for structures significantly smaller than mentioned 180 nm, the classical

method is not an appropriate choice. First of all, this model does not take into

account some physical phenomena, which are especially significant in the case of such

small electronic structures. Moreover, it assumes the infinite speed of propagation

of the heat and instantaneous heat flux change. These limitations cause meaningful

errors during the thermal simulation in the case of nanometric systems [3], [4].

One of the solution, which is getting more and more popular nowadays, is im-

plementation of Dual-Phase-Lag model. This new thermal model was established in

1995 by D. Y. Tzou [5] and contains several modifications of fundamental Fourier-

Kirchhoff method. The mathematical formula can be express as follows:
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cv
∂T (x,y,t)

∂t = −q (x, y, t)

q (x, y, t) + τq
∂q(x,y,t)

∂t = −k∇T (x, y, t)− kτT ∂∇T (x,y,t)
∂t

(3)

where k reflects the value of material thermal conductivity. As it can be seen, this

approach contains two new parameters which reflect the heat flux time lag (τq) and

the temperature time lag (τT ), respectively. Moreover, if the heat generation is not

visible inside the structure and thermal conductivity of investigated materials is

independent form temperature, the Dual-Phase-Lag model can be described in the

case of second-order formula presented in following equations:





cv
∂T (x,y,t)

∂t = −q (x, y, t)

cv

(
τq
∂2T (x,y,t)

∂t2 + ∂T (x,y,t)
∂t

)
− k

(
τT

∂4T (x,y,t)
∂t +4T (x, y, t)

)
= 0

(4)

One of the biggest advantages of Dual-Phase-Lag model is fact that it can be imple-

mented for both parabolic and hyperbolic cases. Thus, application of this model can

be relatively wide.

On the contrary, the direct implementation of Dual-Phase-Lag model can have

some difficulties. Firstly, it is characterized by the big computational complexity. In

the case when the analyzed structure is characterized by huge number of nodes,

the computation of the distribution of the temperature based on full-order model

can take definitely much more time. Due to this fact, some approximations of Dual-

Phase-Lag moddel, which allow easier implementation and simulation time reduction,

is required. One of that approximation has been shown in [6]. This approach has been

based on the model order reduction using Krylov subspaces. In this paper, the other

methodology is investigated.

1.2. Grünwald-Letnikov methodology

The analyses carried out in this paper use the fractional derivative based on definition

of Grünwald-Letnikov. The form of this mathematical expression can be presented

in the following way [7]:

Dα
0,tu(t) =

m−1∑

k=0

u(k)(0)t−α+k

Γ(−α+ k + 1)
+

1

m− α

∫ t

0

(t− τ)m−α−1u(m)(τ)dτ (5)

where u(t) represents the function of t variable for which the determination of deriva-

tive should be carried out. The α parameter means the derivatives order. It is worth

highlighting that presented mathematical expression is very hard to implement due

to numerical issues. Thus, to prepare an easier and more reliable numerical form of
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Grünwald-Letnikov derivative, the Finite Difference Method has been applied. Based

on this approach, the new formula has been determined and presents as follows [7]:

Dα
0,tu(t)GL = lim

∆t→0

1

∆tα

N∑

k=0

(−1)k
(
α

k

)
u(t− k∆t) (6)

where ∆t means the difference between the next two points in created mesh, N

represents the ceil function of parameter α and
(
α
k

)
is a binomial coefficient.

It was assumed that if the parameter α has a non-integer value, the determination

of binomial coefficient uses the gamma functions. Furthermore, to ensure the proper

character of the derivative, the formula for N coefficient has been modified and it

presents as follows:

N = round(α, 0) (7)

where round(α,m) represents the function which rounds α to m decimal places.

The obtained discrete fractional Grünwald Letnikov derivative formula has the

following form:

Dα
0,tu(t)GL =

1

∆tα

round(α,0)∑

k=0

(−1)k
Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
u(t− k∆t) (8)

The above expression has been applied to determine the Dual-Phase-Lag approx-

imation scheme, which is the meaningful modification of Fourier-Kirchhoff equation.

To employ the Grünwald-Letnikov fractional time derivative in equation (2), the

derivative on the left side of this equation has been changed. At the same time, the

space derivative observed on the right side of (2) has not been modified. It was as-

sumed that described modification of Fourier-Kirchhoff model is marked by the ’GL

FK’ abbreviation.

2. Structure

In presented analyses, the two-dimensional rectangular slab has been taken into

account. Moreover, it was assumed that structure has been heated in one corner.

The heat is generated outside the structure. On the other parts of the slab, the

adiabatic or zero boundary conditions have been established. Figure 1 shows the

mentioned situation.

As it was previously mentioned to obtain the temperature distribution the numer-

ical method, called Finite Difference Method, has been used. Firstly, the discretiza-

tion mesh of considered structure has to be determined. It was done according to the

following formulas:

qk (t) = q (x, y, t) for x = i · 4x, y = j · 4y (9)
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Fig. 1. The visualization of the investigated two-dimensional rectangular slab with marked
adiabatic and zero boundary conditions and direction of the heat flux.

Tk (t) = T (x, y, t) for x = i · 4x, y = j · 4y (10)

Moreover, i ∈ {1, 2, . . . , nl}, j ∈ {1, 2, . . . , nw}, k ∈ {1, 2, . . . , nl · nw}. Values nw
and nl mean the number of mesh nodes along the width and length of the structure,

respectively. The expression nw ·nl reflects to the whole number of nodes. Numbering

of nodes starts from the corner, where the heat flux is located, through neighboring

nodes on the same side of the structure to the node located on opposite corner. After

that, the numbering process is repeated. The procedure of numbering of nodes is

finished when the last layer of nodes is numbered. Moreover, the assumption that

difference between nodes placed along the width and length of the slab is equal, has

been established. The described numbering process of discretization nodes of the

square is shown in Figure 2.

The list of initial and boundary conditions which have been used during the

temperature distribution is as follows:

Tk (t) = 0 for k ∈ {1, 2, . . . , nl · nw}, t = 0 (11)

qk (t) = c for k = 1, t ≥ 0, c ∈ R+ (12)
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Fig. 2. The graphical representation of the discretization mesh nodes inside the structure
and the way of nodes numbering process [6].

Tk (x, y, t) = 0 for t ≥ 0,

(x = 0 ∧ y > 0) ∨ (x = nl · 4x ∧ y ≥ 0)∨
∨ (y = 0 ∧ x > 0) ∨ (y = nw · 4y ∧ x ≥ 0)

(13)

3. Simulation and Results

During the simulation process it was assumed that α, order of derivative, comes from

the interval [0.5; 1.5). This assumption is caused by the fact that time of derivative

is expressed by the first order. Thus, it also implies that in expression (8), the limit

value of the superior round(α, 0) in the sum is equal to unity and the derivative
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character is kept.

First analysis is related to the determination of the character of changes of the

temperature rises in the node where the heating is observed. During the investigation,

the different values of the parameter α has been used and the GL FK model has been

applied. The obtained results are presented in Figure 3.

Fig. 3. Comparison of normalized temperature rises in heating node

As it is visible, the received temperature rises for classical FK approach are

marked by dark solid line while the DPL results are presented by green solid line.

Moreover, the results obtained for GL FK model for different value of order of deriva-

tive are demonstrated by solid and dashed red as well as blue lines. Four different

values of the α coefficient have been tested.

It occurred that in the case of parameter α smaller that one, the determined

curves related to the temperature rises are observed from the left side of the line

representing the FK approach. On the contrary, in the case of α greater than 1, the

obtained characteristics are visible on the right side of the FK lines. Moreover, in

the case of α equal to one, the FK model is observed.

Taking into account previously obtained results, it can be concluded that distri-

butions of the temperature in the case of FK and DPL models have similar charac-

ters but temperature rises received by the DPL model are visible later than for FK

method. It is caused by the appearance of two time lags in the DPL equation. On

the contrary, the dependence of determined temperature rises in the case of GL FK

model is different. At the beginning of the simulation time this behavior is similar to

the DPL model for chosen time lag parameters, however when the temperature rise
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achieves the maximal point, it starts declining. Furthermore, this magnitude of this

collapse depends on the time derivative order (α). It is a results of the form of the

GL FK formula. Due to this fact, the compensation process has to be applied and

its formula is presented below:

Tcompα(t) = max
s≤t
{Tα(x, s)} (14)

In presented formula, the maximal value of the temperature Tα in the period of time

s ≤ t is chosen.

Next analyses are related to the determination of the temperature distribution

in the entire structure. Figure 4 shows the comparison of obtained temperature dis-

tribution in both cases, for FK and DPL approaches.

Fig. 4. Comparison of normalized steady state temperatures in the structure in the case of
usage of FK and DPL models

As it is visible, the steady state temperature distributions are the same. Moreover,

it the temperature distribution for GL FK method in the case of different value of

the parameter α have also been compared. Results are presented in Figure 5. In the

case of coefficient α smaller than one, the determined temperature distributions are

also similar.

However, different behavior is visible in the case of α greater than one. Obtained

results are demonstrated in Figure 6.

As it is visible, the significant differences are observed. Obtained temperatures

are meaningfully smaller than for α smaller than one. Moreover, the area of the heat

propagation is different. Thus, the results do not fit to previously obtained ones.

Therefore, the compensation formula 14 has been employed.
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Fig. 5. Comparison of normalized steady state temperatures in the structure in the case of
usage of GL FK model for α smaller than 1

Fig. 6. Comparison of normalized steady state temperatures in the structure in the case of
usage of GL FK model for α bigger than 1

After the compensation, the character of curves is similar to these ones obtained

using DPL model. Moreover, for certain pair of heat flux and the temperature time

lags, the value of the order α has been chosen in a way that the relative error of GL

FK curve fitting to the DPL one is as small as possible. Yielded results are shown in

Figure 7.

The above figure shows the comparison of normalized temperature rises for chosen

parameters of DPL model, marked by black lines, and compensated GL FK model
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Fig. 7. Comparison of normalized temperature rises in heating for DPL and modified GL
FK models

for fitted values of parameter α, marked by the colored lines. As it is visible, three

examples of the fitting of compensated GL FK models to the DPL one are presented.

It is possible to obtain the similar character of temperature rises for compensated GL

FK model which can reflect the DPL model in the heating node. Of course, the range

of adequate τT , τq and α parameters has to be established to obtain quite accurate

matching. The dependence between α and time lags can be presented according to

the following model:

α = aT · log10τT + bT (15)

where coefficient aT and bT can be described by the below expressions:

aT = a1 · τ b1q + c1 (16)

bT = a2 · τ b2q + c2 (17)

Thus, the α is a superposition of logarithmic and power functions. The investigation

and determination of the exact values of above parameters have been carried out

in [8].

The presented dependence is valid for the heating node. However, in the case

of determination of the temperature distribution for the entire structure, obtained

results do not coincide. Determined outputs for transient analyses for certain time

instants, DPL and GL FK parameters are presented in Figures 8 11.

As it is visible, in every pair of results, the distribution of the temperature in DPL

and GL FK is different. Firstly, the temperature rise is similar (Figure 8). However,
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Fig. 8. Comparison of the normalized temperature distribution in the structure in the case
of GL FK and DPL models in the initial analysis time

Fig. 9. Comparison of the normalized temperature distribution in the structure in the case
of GL FK and DPL models during the initial part of the DPL model temperature rise

after that initial part, the temperature rise is significantly slower for GL FK approach

than for DPL one (Figures 9 10). Moreover, at the end the analysis, the GL FK

model generates a little higher temperatures than DPL model. Thus, bigger part of

the structure is characterized by the higher temperatures. This situation is probably

caused by the the compensation procedure. However, further consideration in this

area is needed.
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Fig. 10. Comparison of the normalized temperature distribution in the structure in the case
of GL FK and DPL models during the final part of the DPL model temperature rise

Fig. 11. Comparison of the normalized steady state temperature distribution in the struc-
ture in the case of GL FK and DPL models

4. Conclusions

In this paper, the consideration of application of different approaches on non-integer

orders to the Dual-Phase-Lag model approximation has been presented. The anal-

yses are based on the comparison of normalized temperature rises obtained using

modified Fourier-Kirchhoff model with Grünwald-Letnikov time derivative and the

Dual-Phase-Lag one.

Analyses have shown that in some particular cases DPL model can be approxi-

mated by the modified FK model, for which the classical time derivative has been

replaced by the Grünwald-Letnikov one. However, currently it is limited mainly to
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the heating node, for which the relative error is on the acceptable level. Moreover, it

is possible only for τq, τT and α belonging to some limited intervals.

Taking into consideration these limitations, the final formula connecting the time

derivative as well as the heat flux and the temperature time lags has been established.

The approximation of the DPL model using the modified GL FK one leads to the

significant reduction of the time of simulation and reduction of computational power.

However, in order to extend the range of applicability this approximation, the further

research is needed.
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ANALIZA ROZK LADU CIEP LA PRZY UŻYCIU POCHODNEJ

TEMPERATURY NIECA LKOWITEGO RZȨDU W CZASIE

S t r e s z c z e n i e
Artyku l prezentuje analizy dotycza̧ce rozk ladu ciep la w namometrycznych strukturach

elektronicznych uzyskane przy użyciu pochodnej temperatury nieca lkowitego rzȩdu w cza-
sie. Opisany problem ukazany zosta l na przyk ladzie prostej, symetrycznej struktury. W celu
wyznaczenia rozk ladu ciep la wykorzystano nowoczesny model termiczny o nazwie Dual-
Phase-Lag. Ponadto, zaproponowano nowe podej́scie aproksymujce model Dual-Phase-Lag.
Nowy model oparto na klasycznym modelu przep lywu ciep la Fouriera-Kirchhoffa, jednakże
zamiast klasycznej definicji pochodnej temperatury w czasie, zastosowano definicjȩ pochod-
nej nieca lkowitego rzȩdu Grünvalda-Letnikova. Nastȩpnie, otrzymane znormalizowane przy-
rosty temperatur przy użyciu tak zmodyfikowanego modelu Fouriera-Kirchhoffa zosta ly
porównane z przyrostami otrzymanymi przy użyciu modelu Dual-Phase-Lag. W dalszej kole-
jności, rzȩdy pochodnych temperatury w czasie zosta ly dopasowane do modeli Dual-Phase-
Lag, charakteryzuja̧cych siȩ różnymi wartościami opóźnień strumienia ciep la i temperatury.
Wyznaczono ponadto ostateczne postaci wzorów przybliżaja̧cych rza̧d pochodnych tempe-
ratury nieca lkowitego rzȩdu w czasie w zależności od parametrów modelu Dual-Phase-Lag.

S lowa kluczowe: model Dual-Phase-Lag, pochodna Grünwalda-Letnikova, aproksymacja roz-

k ladu ciep la, modyfikacja modelu Fouriera-Kirchhoffa, nieca lkowity rza̧d pochodnej tempe-

ratury w czasie


