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NO-HOLE λ -L(k,k−1, . . . ,2,1)-LABELING FOR SQUARE GRID

Summary
Motivated by a frequency assignment problem, we demonstrate, for a fixed positive integer k, how

to label an infinite square grid with a possibly small number of integer labels, ranging from 0 to λ −1,
in such a way that labels of adjacent vertices differ by at least k, vertices connected by a path of length
two receive values which differ by at least k− 1, and so on. The vertices which are at least k + 1
distance apart may receive the same label. By finding a lower bound for λ , we prove that the solution
is close to optimal, with approximation ratio at most 9

8 . The labeling presented is a no-hole one, i.e., it
uses each of the allowed labels at least once.

Keywords and phrases: graph labeling, labeling number, no-hole labeling, square grid, frequency as-
signment problem, approximation ratio

1. Introduction

The frequency assignment problem (FAP) is a problem of assigning frequencies to different
radio transmitters so that no interference occurs [1]. This problem is also known as the chan-
nel assignment problem (CAP) [2,3]. Frequencies are assigned to different radio transmitters
in such a way that comparatively close transmitters receive frequencies with more gap than
the transmitters which are significantly apart from each other.

Motivated by this problem, a long line of researchers looked for various graph labellings
with similar properties. The labelling we consider for a graph G = (V,E) is a function
f : V → {0, . . . ,λ − 1} such that | f (x)− f (y)|+ d(x,y) ≥ k + 1 for x 6= y, where k and λ

are a fixed positive integers, and d(x,y) is the length of the shortest path joining x and y. The
objective is, for a given k, to find a labelling with a smallest possible λ . Traditionally, the
problem is called a λ -L(k,k−1, . . . ,2,1)-labeling, and although the name is a bit clumsy, we

1Part of this work was done when Soumen Atta visited the Faculty of Mathematics and Computer
Science, University of Łódź, Łódź, Poland as an Erasmus+ Exchange PhD Student.

[9]
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stick to it for historical reasons. For example, Yeah [4] and after that Griggs and Yeh [5] pro-
posed an L(2,1)-labeling for a simple graph. Various generalizations of the original problem,
for diverse types of graphs, finite or infinite, has been described in the literature [6–15].

This paper, dealing with an infinite square grid, was directly inspired by that of Nandi
et al. [16], who presented an L(k,k−1, . . . ,1)-labeling for a triangular lattice. Nevertheless,
our paper differs from it in several important respects. The most important difference is the
level of formalism — instead of informal considerations we present formal proofs of most
of our results. After proposing a set of four formulas for the labelling function f , one for
each remainder of k modulo 4, we show that they really work. The proof is conducted in
one of the four cases only — the reason is that the method used is completely elementary,
and it is enough to demonstrate it for one particular choice. The readers can easily check
the other cases, or trust the authors that they have already done it for them. A formal proof
given for the lower bound on λ allows one to avoid some inaccuracies to be found in the
above-mentioned paper of Nandi et al. [16]. The approximation ratio obtained is also better.

The definition of the problem is given in Section 2. The lower bound on the value of
the labeling number λk, i.e. the smallest value of λ for the given k, is derived in Section 3.
In Section 4, a formula is given that attaches a label to any vertex of an infinite square
grid for arbitrary values of k. The correctness proof of the proposed formula is given in
Section 4.1. In Section 4.2, we prove that the proposed formula gives a no-hole labeling. Our
λ -labeling yields immediately an upper bound on λk, given together with the approximation
ratio implied by the proposed formula in Section 4.3. Finally, the paper is concluded in
Section 5.

2. Problem Definition

Let G = (V,E) be a graph with a set of vertices V and a set of edges E, and let d(u,v)

denote the shortest distance between vertices u, v ∈ V . Given a fixed k ∈ Z+ and λ ∈ Z+,
a λ -L(k,k−1, . . . ,2,1)-labeling of the graph is a mapping f : V → {0, . . . ,λ −1} such that
the following inequalities are satisfied:

| f (x)− f (y)| ≥



k : d(x,y) = 1

k−1 : d(x,y) = 2
...

1 : d(x,y) = k,

which can be written more compactly as

| f (x)− f (y)| ≥ k + 1−d(x,y) for x 6= y. (*)

We shall call any function f : V → Z satisfying the inequality a labeling function.
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If the distance between two vertices is at least k + 1, the same label can be used for
both of them. This minimum distance is known as the reuse distance [16]. The L(k,k−
1, . . . ,2,1)-labeling number for the graph, denoted by λk, is the minimum λ for which a
valid λ -L(k,k−1, . . . ,2,1)-labeling for the graph exists. Hence, our objective is to find, for
each k, a no-hole λ -L(k,k−1, . . . ,2,1)-labeling with λ as close to λk as possible.

We consider an infinite planar square grid G = (V,E) with the set of vertices V = Z×Z
and the set of edges E = {{u,v} : u = (u1,u2),v = (v1,v2),and either |u1− v1| = 1,u2 =

v2 or u1 = v1, |u2− v2| = 1}. It will be called ‘the square grid’ in the sequel. The distance
between u and v used in the sequel is the Manhattan distance: d(u,v) = |u1−v1|+ |u2−v2|.

3. Lower Bound on λk

Theorem 3.1. For k ≥ 1,

λk ≥

{
2
3 p(p + 1)(2p + 1)+ 2 if k = 2p is even,
2
3 p(p + 1)(2p + 3)+ 2 if k = 2p + 1 is odd.

Proof. We start with the case of even k = 2p. We shall write Bm for the ball {u∈V : d(0,u)≤
m}, and Sm for the sphere {u ∈V : d(0,u) = m} (here 0 = (0,0)). Note that there is just one
point in S0 and 4m points in Sm for m > 0 (See Fig. 1). It is easy to calculate that there
are exactly 1 + 4 + . . .+ 4m = 2m2 + 2m + 1 points in Bm. To obtain a lower bound on the
L(k,k−1, . . . ,2,1)-labeling number, we identify the smallest interval containing all integers
needed to label the vertices in the ball Bp. To this aim, we use a labeling function f : V → Z.
It is clear that λk ≥max f (Bp)−min f (Bp)+ 1.

: S0

: S1

: S2

: S3

Fig. 1. Sm when m = 0,1,2,3.

Let us put all the values of the function f on Bp in increasing order: z0 < z1 < .. . < zn.
We have λk ≥ zn− z0 + 1. Note that because of (*), the function f is injective on Bp, hence
n = 2p2 + 2p is one less than the number of points in Bp. Let ui = f−1(zi) and and let q,r
be such that u0 ∈ Sq,un ∈ Sr.
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The method of obtaining the lower bound is a formalization of that used by Nandi et
al. [16]. According to (*), zi+1 − zi ≥ 2p + 1−max{d(ui,v) : v ∈ Bp \ {ui}}. If ui ∈ Sm,
then max{d(ui,v) : v ∈ Bp \{ui}} = m + p, hence zi+1− zi ≥ p + 1−m. Considering zi for
i = 0,1, . . . ,n−1, we can already estimate that

zn− z0 = (z1− z0)+ . . .+(zn− zn−1)

≥ |Sp|+ 2|Sp−1|+ . . .+ p|S1|+(p + 1)|S0|− (p + 1− r).

Let us call the number on the RHS of the inequality cp. Now, if a point ui is such that
i < n and ui+1 ∈ Bp−1, then zi+1− zi ≥ 2p+1−max{d(ui,v) : v ∈ Bp−1 \{ui}}= p+2−m
(instead of p + 1−m). There are at least |Bp−1| points like this if q = p, and |Bp−1|− 1 if
q 6= p, and the RHS of the inequality above can be increased by the amount. Continuing
further in this manner, we get

zn− z0 ≥ cp +(|Bp−1|−1)+ . . .+(|Bq|−1)+ |Bq−1|+ . . .+ |B0|
= cp + |Sp−1|+ 2|Sp−2|+ . . .+(p−1)|S1|+ p|S0|− (p−q)

= 4
( p

∑
m=1

m(p + 1−m)+
p−1

∑
m=1

m(p−m)
)

+(r + q).

Using

1 · p + 2 · (p−1)+ . . .+(p−1) ·2 + p ·1 =
p(p + 1)(p + 2)

6
,

and the fact that r + q is at least 1, which happens if p,q ∈ {0,1} (note that they must be
different, since there is only one point in S0), we easily get λk ≥ 2

3 p(p + 1)(2p + 1)+ 2.
Now, if k = 2p + 1 is odd, each of the 2p2 + 2p summands z1− z0,z2− z1, . . . ,zn− zn−1

is larger by one, hence λk ≥ 2
3 p(p + 1)(2p + 3) + 2. A better estimate can be obtained by

considering the set T0 = {(0,0),(0,1)} and, for m > 0, the sets Tm = {u ∈ Z×Z : d(u,T0) =

m} (see Fig. 2). This, however, does not change the asymptotic behavior of λk.

: T0

: T1

: T2

: T3

Fig. 2. Tm when m = 0,1,2,3.

�
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4. Proposed Formula

In this section a formula is given to find the label of any vertex of the square grid under
L(k,k− 1, . . . ,2,1)-labeling for general k. Let the label assigned to the vertex v(x,y) be
denoted by L(x,y). Formula 1 gives the definition of L(x,y).

Formula 1.

L(x,y) =



[(2p + 3)x +(3p2 + 7p + 5)y] mod 1
2 (p + 1)(3p2 + 5p + 4),

if k = 2p + 1 and p(≥ 1) is odd;
[(2p + 3)x +(3p2 + 6p + 3)y] mod 1

2 (3p3 + 8p2 + 8p + 4),

if k = 2p + 1 and p(≥ 0) is even;
[(2p + 1)x +(3p2 + 4p + 2)y] mod 1

2 (3p3 + 5p2 + 5p + 1),

if k = 2p and p(≥ 3) is odd;
[(2p + 1)x +(3p2 + 3p + 1)y] mod 1

2 p(3p2 + 5p + 4),

if k = 2p and p(≥ 2) is even.

Note that many correct labelings may exist when the coefficients of x and y are restricted
to be co-prime. If this restriction is removed then correct labelings also exist with reduced
λk. Thus, we have considered all possible combinations of the coefficients for x and y at the
time of designing Formula 1 for finding a labeling with the minimum λk. The assignment of
labeling for k = 7 is shown in Fig. 3 for some vertices.
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Fig. 3. Assignment of labeling for k = 7

4.1. Correctness Proof of the Proposed Formula

Formula 1 is said to be correct if and only if the inequality constraints of the problem men-
tioned in Section 2 are satisfied. The proof of Theorem 4.1 shows the correctness of For-
mula 1. Lemma 4.2 is needed to prove Theorem 4.1.
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Theorem 4.1. Formula 1 yields a λ -L(k,k−1, . . . ,2,1)-labeling of the square grid, with

λ =


1
2 (p + 1)(3p2 + 5p + 4) if k = 2p + 1 and p(≥ 1) is odd;
1
2 (3p3 + 8p2 + 8p + 4) if k = 2p + 1 and p(≥ 0) is even;
1
2 (3p3 + 5p2 + 5p + 1) if k = 2p and p(≥ 3) is odd;
1
2 p(3p2 + 5p + 4) if k = 2p and p(≥ 2) is even.

(**)

More precisely, if |x1− x2|+ |y1− y2|= r, then |L(x1,y1)−L(x2,y2)| ≥ k + 1− r, where
0 < r ≤ k + 1 and L(x,y) is defined by Formula 1.

Lemma 4.2. Let a, b, c ∈ Z+ and L(x,y) = (ax + by) mod c. Now for any x1, y1, x2, y2 ∈
Z, if L(x1,y1) > L(x2,y2) then |L(x1,y1)−L(x2,y2)|= L(x1− x2,y1− y2).

Proof. Clearly 0≤ L(x,y)< c for any x, y ∈ Z. Hence, 0≤ |L(x1,y1)−L(x2,y2)|< c. Again,
for any A, B ∈ Z, (A mod c−B mod c) mod c =(A−B) mod c. Put A = ax1 + by1 and
B = ax2 + by2. Then |L(x1,y1)−L(x2,y2)|= A mod c−B mod c = (A mod c−B mod c)
mod c=(A−B) mod c = L(x1− x2,y1− y2). �

Proof of Theorem 4.1. We prove it for L(x,y) = [(2p + 3)x +
(
3p2 + 7p + 5

)
y] mod 1

2 (p +

1)(3p2 + 5p + 4) and k = 2p + 1, p(≥ 3) is odd, and show the correctness for p = 1 sepa-
rately. The correctness of Formula 1 can be proved for other values of k in a similar way.

We can change the order of (x1,y1) and (x2,y2) in such a way that L(x1,y1)≥ L(x2,y2),
since exchanging indices 1 and 2 does not change r. By Lemma 4.2 we have to show that
for x, y ∈ Z with |x|+ |y|= r, L(x,y)≥ k +1− r. Note that the inequality is always satisfied
for r = k + 1. Hence, we can assume 0 < r < k + 1.

Put a = 2p + 3, b = 3p2 + 7p + 5 and c = p+1
2 (3p2 + 5p + 4). Note that |ax + by| < 5c

for any x, y with |x|+ |y|= r.
Case-I Assume that ct ≤ by≤ ax + by < c(t + 1) for some t ∈ [−5,4]∩Z. Then

(ax + by) mod c = ax + by− ct ≥ ax > 2p + 2.

(Since x > 0, ax≥ a = 2p + 3.) Hence, L(x,y) > 2p + 2 = k + 1≥ k + 1− r.
Case-II Assume that x = 0. Let Yt = {y : ct ≤ by < c(t + 1)} and yt = min(Yt), t ∈

[−5,4]∩Z for |yt | ≤ k. Note that b > 0, so that whenever L(x,yt) ≥ k + 1, also ∀y ∈ Yt ,
L(x,y)≥ k + 1. Since y 6= 0 (we already have x = 0), we have y0 = 1 and by0 mod c = b >

2p + 2 = k + 1. Hence, we need only consider t 6= 0. Put d = 2p2+3p+1
6p2+14p+10 = ( p+1

2 )( 2p+1
b ).

Note that for each odd p 6= 1, 1
4 < d < 1

3 . Now yt ≥ ct
b = t( p+1

2 −d), so that yt = t( p+1
2 )+e,

where

e =


0 if t = 1,2 or 3;

−1 if t = 4;

1 if t =−1,−2 or −3;

2 if t =−4 or t =−5.
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We have L(0,yt) = byt − ct = t(b p+1
2 − c) + be = t

2 (2p2 + 3p + 1) + be. The inequality
L(0,yt) ≥ 2p + 2 is obviously true if t is positive and e = 0. If t = 4, we have L(0,yt) =

2(2p2 +3p+1)−b = p2− p−3≥ 2p+2 for odd p≥ 5, and L(0,yt)≥ k +1− r for p = 3.
For t =−1,−2 or −3, it is enough to check the “worst” case, namely t =−3, which yields
L(0,yt) = (5p + 7)/2 ≥ 2p + 2. Again, we can omit t = −4 and check that for t = −5 we

get L(0,yt) = (2p2+13p+15)
2 ≥ 2p + 2.

Case-III Assume that by < ct ≤ ax + by. Note that then c(t − 1) < by < ct ≤ ax +

by < c(t + 1). We will show that there exist at most two y’s satisfying the inequality. Let
yt =max{y : by < ct ∧ (∃x : ct ≤ ax + by)}. Thus byt < ct ≤ ax + byt for some x. Suppose
b(yt−2) < ct ≤ ax+b(yt−2) for some x. Then ax+b(yt−1) = (ax−2b)+byt ≥ ct > byt .
But ax−2b≤ a(2p+2)−2b = 2[(p+1)(2p+3)−(3p2 +7p+5)] = 2(−p2−2p−2)< 0,
which is a contradiction. If we find xt = min{x : byt < ct ≤ ax + byt} and x′t = min{x :
b(yt − 1) < ct ≤ ax + b(yt − 1)} and if |xt |+ |yt | < 2p + 2 (similarly |x′t |+ |yt | < 2p + 2),
then it is enough to check that L(xt ,yt)≥ k + 1− r and L(x′t ,yt −1)≥ k + 1− r.

Put d = 2p2+3p+1
6p2+14p+10 = ( p+1

2 )( 2p+1
b ). Note that for each odd p 6= 1, 1

4 < d < 1
3 . Now

yt <
ct
b = t( p+1

2 −d), so that yt = t( p+1
2 )+ e, where

e =


−1 if t = 1,2 or 3;

−2 if t = 4;

0 if t =−1,−2,−3 or −4;

1 if t =−5.

Using ct ≤ axt + byt ⇒ xt ≥ ct−byt
a , and L(xt ,yt) = axt + byt − ct, we construct Table 1.

Whenever |yt |, |xt | or r is at least 2p + 2, there is no need for further calculation, and the
respective positions are filled with dashes.

Using ct ≤ ax′t + b(yt −1)⇒ x′t ≥
ct−b(yt−1)

a , and L(x′t ,yt −1) = ax′t + b(yt −1)− ct, we
construct Table 2 with the corresponding values. As above, we use dashes whenever |yt−1|,
|x′t | or r is at least 2p + 2, and there is no need for further calculation.

Case-IV Assume that ax+by< ct ≤ by, where t ∈ [−4,4]∩Z. Then c(t−1)< ax+by<
ct ≤ by < c(t− 1) and ax + by ≥ ax + ct = c(t− 1) + (ax + c). Hence, L(x,y) = (ax + by)

mod c = ax + c.
Since ax≥ a(−2p−2) =−2(2p + 3)(p + 1), we have

L(x,y) =
(p+1)(3p2+5p+4)

2 −2(2p + 3)(p + 1) = 3
2 p3− 11

2 p−4≥ 2p + 2, for p≥ 3.
Therefore, for p≥ 3, L(x,y)≥ k + 1− r.
Case-V Assume that x < 0, ax + by≥ ct and by < c(t + 1).
Let Yt = {y : ∃ x s.t. ct ≤ ax + by < by < c(t + 1)}. Then it is enough to check the in-

equality for yt = min(Yt) and for yt + 1, and for them we should check if for xt = min{x :
ct ≤ ax+byt < byt < c(t +1)} and x′t = min{x : ct ≤ ax+b(yt +1) < b(yt +1) < c(t +1)}.

Thus we need to check L(xt ,yt)≥ k + 1− r and L(x′t ,yt + 1)≥ k + 1− r.
Using byt < c(t + 1), we construct Table 3.
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Table 1.

t yt xt r = |xt |+ |yt | k + 1− r L(xt ,yt)

1 p−1
2 (p + 2) 3

2 (p + 1) 1
2 (p−3) 3

2 (p + 1)

2 p (p+3)
2

3
2 (p + 1) 1

2 (p−3) 1
2 (p + 1)

3 (3p+1)
2 2 1

2 (3p + 5) 1
2 (p−1) 1

2 (3p + 5)

4 2p (p + 1) 3p + 1 − −

−1 − (p+1)
2

(p+1)
2 p + 1 p + 1 p + 1

−2 −(p + 1) (p + 1) 2(p + 1) − −

−3 − 3(p+1)
2 (3p + 1) 1

2 (9p + 5) − −

−4 −2(p + 1) − − − −

−5 − (5p+3)
2 − − − −

Table 2.
t yt −1 x′t r = |x′t |+ |yt −1| k + 1− r L(x′t ,yt −1)

1 p−3
2

(5p+7)
2 3p + 2 − −

2 (p−1) 2p + 3 − − −

3 (3p−1)
2


3(p+1)

2 , if p = 3,5
3p+1

2 , if p(≥ 7)
− − −

4 2p−1 (5p+9)
2 − − −

−1 − (p+3)
2 2p + 2 − − −

−2 −(p + 2)
(5p+3)

2 − − −

−3 − (3p+5)
2 (3p + 2) − − −

−4 −(2p + 3) − − − −

−5 − 5(p+1)
2 − − − −

Table 3.

t 1 2 3 4 −1 −2 −3 −4 −5

yt p (3p+1)
2 2p + 1 (5p−1)

2 −1 − (p+1)
2 −(p + 1) − 3(p+1)

2 −(2p + 1)

If we calculate the values of xt and x′t from ct ≤ axt + byt and ct ≤ ax′t + b(yt + 1) re-
spectively, then xt and x′t are always greater than 2p+2. This completes the proof for p≥ 3.
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Case p = 1. Then k = 3 and L(x,y) = (5x + 15y) mod 12. We just need to consider dif-
ferent values of x and y such that x ∈ {−3,−2,−1} and y ∈ {−3,−2,−1,0,1,2,3}. Clearly
when (x,y) ∈ {(−3,−3),(−3,−2),(−3,−1), (−3,1),(−3,2),(−3,3),(−2,−3),(−2,−2),

(−2,3),(−2,2),(−1,3),(−1,−3)}, we don’t need to check anything because r = |x|+ |y| ≥
4. When (x,y) = (−3,0),L(x,y) = 9 and k + 1− r = 1. Similarly, when (x,y) ∈ {(−2,−1),

(−2,0),(−2,1), (−1,−2),(−1,−1),(−1,0), (−1,1), (−1,2)}, L(x,y)≥ k + 1− r.
Hence, we always have L(x,y)≥ k + 1− r.

4.2. No-hole Labeling Proof

Theorem 4.3. Formula 1 gives no-hole labeling.

Proof. Formula 1 is of the form (ax + by) mod c, with a,b and c depending on parity of k
and p. We shall show that it is enough to check that gcd(a,b,c) is 1. In fact, let m = gcd(a,b)

and denote by (m) the principal ideal in Z generated by m. It is well known (and easy to
see) that the set {ax + by : x,y ∈ Z} equals (m). Now, if gcd(m,c) = gcd(a,b,c) = 1, then
mu + cv = 1 for some u,v ∈ Z. If k ∈ {0,1, . . . ,c−1}, then kmu + kcv = k, so that kmu≡ k
mod c. But kmu ∈ (m), which means that for some x,y ∈ Z,(ax + by) mod c = k, and all
integer values from 0 up to c−1 are attained.

We note the values of gcd(a,b) for different values of k.

gcd(a,b) =


1 or 5 if k = 2p + 1 and p(≥ 1) is odd;

1 or 3 if k = 2p + 1 and p(≥ 0) is even;

1 or 3 if k = 2p and p(≥ 3) is odd;

1 if k = 2p + 1 and p(≥ 2) is even.

Consider the case when k = 2p + 1 and p(≥ 1) is odd. In this case a = 2p + 3,b =

3p2 +7p+5 and c = 1
2 (p+1)(3p2 +5p+4). If gcd(a,b) = 1, gcd(a,b,c) = 1, and there is

nothing to prove. If gcd(a,b) = 5, then p is congruent to 1 modulo 5, and c is congruent to
2 modulo 5. So, c is not divisible by 5, and hence gcd(a,b,c) = 1. The proof will be similar
for other values of k. �

4.3. Upper Bound on λk and approximation ratio

Theorem 4.4. We have λk ≤ λ , with λ given by (**). Consequently, the approximation ratio
for the problem is not greater than 9

8 .

Proof. The first statement follows directly from Theorem 4.1: λk ≤ λ for any λ -labeling.
The approximation ratio is the ratio between the upper bound (UB), given by λ from (**),
and the lower bound (LB), given in Theorem 3.1. Note that for all the cases mentioned in

Formula 1, lim
p→∞

UB
LB

=
9
8

. �
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5. Conclusion

In this paper λ -L(k,k−1, . . . ,2,1)-labeling for square grid is proposed and the lower bound
on λk, the L(k,k− 1, . . . ,2,1)-labeling number, is computed. A formula for a no-hole λ -
L(k,k−1, . . . ,2,1)-labeling of square grid is given, implying at most 9

8 approximation ratio.
The correctness proof of the proposed formula is given and it is also proved that the proposed
formula gives a no-hole labeling.
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BEZLUKOWE λ -L(K,K−1, . . . ,2,1)-ETYKIETOWANIE KWADRATOWEJ KRATY

S t r e s z c z e n i e
Motywowani Problemem Przypisania Czȩstotliwości (Frequency Allocation Problem), pokazu-

jemy, dla ustalonej liczby naturalnej k, w jaki sposób przypisać wartości wierzchołkom nieskończonej
kwadratowej kraty, używaja̧c możliwie małej liczby całkowitych etykiet, zmieniaja̧cych siȩ od 0 do
λ − 1, w taki sposób, by etykiety wierzchołków przylegaja̧cych różniły siȩ przynajmniej o k, wierz-
chołki poła̧czone droga̧ o długości dwa otrzymały wartości różnia̧ce siȩ przynajmniej o k− 1, itd..
Wierzchołki, których odległość wynosi przynajmniej k + 1 moga̧ być oznaczone ta̧ sama̧ etykieta̧.
Znalezione ograniczenie dolne dla λ pozwala pokazać, że przedstawione rozwia̧zanie jest bliskie op-
tymalnemu, ze stosunkiem aproksymacji 9

8 . Etykietowanie to nie posiada luk, to znaczy używa każdej
z dopuszczalnych etykiet przynajmniej raz.

Słowa kluczowe: etykietowanie grafu, stała etykietowania, etykietowanie bezlukowe, Problem Przy-
pisania Czȩstotliwości, stosunek aproksymacji




