Mathematics behind two related Nobel prizes 2016: in physics - topology governing physics of phase transitions, in chemistry geometry of molecular nanoengines

Authors

  • Julian Ławrynowicz Department of Solid State Physics, University of Łódź; Polish Academy of Sciences, Poland
  • Małgorzata Nowak-Kępczyk Institute of Mathematics and Computer Science, The John Paul II Catholic University of Lublin, Poland
  • Mariusz Zubert Department of Microelectronics and Computer Science, Łódź University of Technology, Poland

Keywords:

topological phase transition of matter, topological phase of matter, molecular nanoengine, pentacene, polymer, pentagonal (quinary) structure, hexagonal (senary) structure

Abstract

Pentacene and other polymers are discussed form the point of view of theoretical discoveries of topological phase transitions and phases of matter (Nobel Prize in Physics 2016) and for the design and synthesis of molecular nanoengines (Nobel Prize in Chemistry 2016), in particular, the changes of senary to quinary structures and vice versa.

References

P. G. de Gennes: Scaling Concepts in Polymer Physics, Cornell University Press (1979).

Duncan, F., Haldane, M.: Nobel Lecture: Topological quantum matter. Rev. Mod. Phys. 89 (2017), 040502 .

F. Duncan, M. Haldane, Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model. Phys. Lett. A 93 (1983), 464-468.

F. Duncan, M. Haldane, Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis N´eel State, Phys. Rev. Lett. 50 (1983), 1153–1156 .

F. Duncan, M. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the Parity Anomaly. Phys. Rev. Lett. 61 (1988), 2015–2018 .

E. Z. Frątczak, J. Ławrynowicz, M. Nowak-Kępczyk, H. Polatoglou, and L.Wojtczak, A theorem on generalized nonions and their properties for the applied structures in physics, Dedicated to professor Vladimir Gutlianskii on the occasion of his 75th birthday, Lobachevskii J. Math., Lobachevskii J. of Math., Vol. 38, No. 2 (2017), 255–261. DOI: 10.1134/S199508021702007X

E. Z. Frątczak, J. Ławrynowicz, L. Wojtczak, Małgorzata Nowak-Kępczyk, Zhidong Zhang, Dynamical modelling for special quinary and senary structures in relations to pentacene and the theorem on generalized nonions in: Current Research in Mathematical and Computer Sciences, Publisher UWM, Olsztyn, 2017, 173–187.

B. Gaveau, L. S. Schulman, Dynamical metastability, J. Phys. A, Mat. Gen. 20 (1987), 2865–2873.

R. Kerner, Ternary and non-associative structures, Int. J. Geom. Methods Mod. Phys. 5 (2008), 1265–1294.

R. Kerner, Space-time emerging from quark algebra, XXIX Max Born Symposium,Wrocław, 2011, 98 pp, www.ift.uni.wroc.pl/mborn29/lecturers.html.

R. Kerner and O. Suzuki, Internal symmetry groups of cubic algebra, Int. J. Geom. Methods Mod. Phys. 9 (2012) 1261007. Methods Mod. Phys. 9 (2012) 1261007.

J. M. Kosterlitz, The critical properties of the two-dimensional xy model. J. Phys. C: Solid State Phys. 7, 1046–1060 (1974).

J. M. Kosterlitz, Nobel Lecture: Topological defects and phase transitions, Nobelprize. org, nobel-kosterlitz-lecture.html

J. M. Kosterlitz, D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C: Solid State Phys. 6, 1181–1203 (1973).

J. M. Kosterlitz, Nobel Lecture: Topological defects and phase transitions, Rev. Mod. Phys. B 89, 040501 (2017).

J. M. Kosterlitz, D. J. Thouless, Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory). J. Phys. C: Solid State Phys. 5, L124 (1972)

L. N. Lipatov, M. Rausch de Traubenberg, and G. G. Volkov, On the ternary complex Analysis and its Applications, J. Math. Phys. 49 (2008), 013502 (20 pp.)

J. Ławrynowicz, K. Nono, D. Nagayama and O. Suzuki, A method of noncommutative Galois theory for binary and ternary Clifford Analysis, in Proc. ICMPEA (Int. Conf. Mathematical Problems in Engineering Aerospace, and Sciences), Wien, 2012, AIP (American Institute of Physics) Conference 2012, Vol. 1493, 1007–1014.

J. Ławrynowicz, Małgorzata Nowak-Kępczyk, O. Suzuki, Fractals and chaos related to Ising-Onsager-Zhang lattices vs. the Jordan-von Neumann-Wigner procedures, Quaternary approach, Int. J. Bifurcation Chaos, vol. 22 No. 01, 1230003 (2012).

J. Ławrynowicz, M. Nowak-Kępczyk, A. Valianti, and M. Zubert, Physics of complex alloys one dimensional relaxation problem, Bull. Soc. Sci. Lettres Łódź Sér. Rech. Déform. 65, 27–48 (2015).

J. Ławrynowicz, O. Suzuki and A. Niemczynowicz, On the Ternary Approach to Clifford Structures and Ising Lattices, Adv. Appl. Cliff ord Algebras 22 (2012), 757– 769.

J. Ławrynowicz, O. Suzuki, A. Niemczynowicz, Fractals and chaos related to Ising- Onsager-Zhang lattices vs. the Jordan-von Neumann-Wigner procedures. Ternary approach, Internat. J. of Nonlinear Sci. and Numer. Simul. 14(3–4), 211–215 (2013).

Ławrynowicz, J., Suzuki, O., Niemczynowicz, A., & Nowak-Kępczyk, M., Fractals and chaos related to Ising-Onsager-Zhang lattices. Ternary approach vs. binary approach, Int. J. of Geom. Meth. in Modern Physics, Vol. 15, No. 11, 1850187 (2018). 01 Nov 2018, https://doi.org/10.1142/S0219887818501876 .

Ławrynowicz, J., Suzuki, O., Niemczynowicz, A., & Nowak-Kępczyk, M., Fractals and chaos related to Ising-Onsager-Zhang lattices. Quaternary approach vs. ternary approach, Adv. Appl. Cliff. Alg., 29 no.3, 29–45 (2019) (2019-04-30) DOI: 10.1007/s00006-019-0957-0

J. Ławrynowicz, O. Suzuki, A. Niemczynowicz, and M. Nowak-Kępczyk, Fractals and chaos related to Ising-Onsager lattices. Relations to the Onsager model, in: Current Research in Mathematical and Computer Sciences II, Publisher UWM, Olsztyn, ed. A. Lecko (2018) 131–140.

M. Nowak-Kępczyk, An algebra governing reduction of quaternary structures to ternary structures I. Reductions of quaternary structures to ternary structures Bull. Soc. Sci. Lettres Łódź Sér. Rech. Déform. 64 no. 2, (2014) 101–109.

M. Nowak-Kępczyk, An algebra governing reduction of quaternary structures to ternary structures II. A study of the multiplication table for the resulting algebra generators, Bull. Soc. Sci. Lettres Łódź Sér. Rech. Déform. 64 no. 3 (2014), 81–90.

M. Nowak-Kępczyk, An algebra governing reduction of quaternary structures to ternary structures III. A study of generators of the resulting algebra Bull. Soc. Sci. Lettres Łódź Sér. Rech. Déform. 66 no. 1 (2016), 123–133.

M. Nowak-Kępczyk, On matrices satisfying the condition AB-_BA = 0, _- commutativity, Quaternions, nonions, sedecions, etc., in: Current Research in Mathematical and Computer Sciences, Publisher UWM, Olsztyn, 2017, 163–171.

R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Series: The International Series of Monographs in Chemistry, Oxford Univ. Press, New York 1989.

C. S. Peirce, On Nonions, in: Collected Papers of Charles Sanders Peirce, 3rd ed., vol. III, Harvard University Press, Cambridge Mass 1967, 411–416.

J. -P. Sauvage, Sir J. Fraser Stoddart, and B. L. Feringa, Nobel Prize Lecture in Chemistry 2016, Swedish Academy of Sciences, Stockholm 2016, 12pp.

Osamu Suzuki, Julian Ławrynowicz, Małgorzata Nowak-Kępczyk, and Mariusz Zubert, Some geometrical aspects of binary, ternary, quaternary, quinary and senary structures in physics Bull. Soc. Sci. Lettres Łódź Sér. Rech. Déform. 68 no. 2 (2018), 109–122. DOI: 10.26485/0459-6854/2018/68.2/11

J. J. Sylvester, A word on nonions, John Hopkins Univ. Circulars 1 (1882), 241-242 (1883), 46; in: The Collected Mathematical Papers of James Joseph Sylvester, vol. III, Cambridge Univ. Press, Cambridge 1909, 647–650.

J. J. Sylvester, On quaternions, nonions, sedenions etc., Johns Hopkins Univ. Circulars 3 (1984), 7–9; in: The Collected Mathematical Papers of James Joseph Sylvester, vol. IV, Cambridge Univ. Press, Cambridge 1909, 122–132.

J. J. Sylvester, On the involution of two matrices of the second order, Brit. Assoc. Report 1883, 430–432; in: The Collected Mathematical Papers of James Joseph Sylvester, vol. IV, Cambridge Univ. Press, Cambridge 1912, 115–117.

D. J. Thouless, F. D. M. Haldane, and J. M. Kosterlitz, Nobel prize lecture in physics, Stockholm 2016, 12 pp. (F. D. M. Haldane Nobel Lecture: Topological Quantum Matter. Nobelprize.org. Nobel Media AB 2016. Web. 22 Jan 2017. http://www.nobelprize.org/nobelprizes/physics/laureates/2016/haldanelecture. html; J. M. Kosterlitz, Nobel Lecture: Topological Defects and Phase Transitions. Nobelprize.org. Nobel Media AB 2016. Web. 22 Jan 2017. http://www.nobelprize.org/nobelprizes/physics/laureates/2016/koster-litzlecture. html

Downloads

Published

2020-10-01

Issue

Section

Articles