Binary and ternary structures of the evolutions in the universe (2 × 3 × 2 × · · · -world) III. The Galois theory of language and the anthropic problem in physics

  • Julian Ławrynowicz Department of Solid State Physics, University of Łódź, Poland
  • Małgorzata Nowak-Kępczyk Institute of Mathematics and Computer Science, The John Paul II Catholic University of Lublin, Poland
  • Osamu Suzuki Department of Computer and System Analysis, College of Humanities and Sciences, Nihon University
  • Mohd Fauzi Othman Department of Electronic Systems Engineering, Malaysia-Japan International Institute of Technology
Keywords: the universal language, formal language theory, Turing machine, the evolution of the universe, non-commutative Galois theory, Fibonacci sequence, Tribonacci sequence

Abstract

(1) The non-commutative Galois theory of languages is presented and the universal language of natural languages is constructed. (2) The Galois theory for natural languages is given. (3) The Galois theory for the formal language theory is given. (4) Finally, we find intimate connections between language and physics and discuss the anthropological problem in physics from the point of view of our language theory. (5) In Appendix we give a virtual language defined by Fibonacci and Tribonacci sequences

References

J. Barrow, Theories of everything, Oxford University Press, 1991.

N. Chomsky, Three models of the description of languages, PGIT, 2:3, 113-124, 1956.

F. Ducastelle and F. Gauthier, Generalized perturbation theory in disordered transitional alloys: Applications to the calculation of ordering energies, J. Phys. F 6 (1976), 2039; doi: 10:1088/0305-4608/6/11/065.

P. G. de Gennes, Scaling Concepts in Polymer Physics, Cornel University Press 1979.

C. R. Darwin, The origin of species, 6th Ed., The world’s classics, London, Oxford University Press 1872.

W. Feller, An introduction to probability theory and its applications (Vol. 1) Springer Verlag, New York, Inc. (1988), John Wiley and Sons 1957.

H. F. Gilbert, Basic Concepts in Biochemistry (A Student Survival Guide), McGraw-Hill, Inc. 1992.

R. P. Grimaldi, Fibonacci and Catalan Numbers (An Introduction), A John Wiley & Sons, INC. Publication, 2012.

J. Ławrynowicz, M. Nowak-Kępczyk, and M. Zubert, Mathematics behind two related nobel prizes 2016: in physics - topology governing physics of phase transitions, in chemistry - geometry of molecular nanoengines, Bull. Soc. Sci. Lettres Łódź Ser. Rech. Deform. 69, vol 1 (2019).

J. Ławrynowicz, O. Suzuki, A. Niemczynowicz, M. & Nowak- Kępczyk, Fractals and chaos related to Ising-Onsager-Zhang lattices. Ternary approach vs. binary approach, Int. J. of Geom. Meth. in Modern Physics, Vol. 15, No. 11, 1850187 (2018). 01 Nov 2018, https://doi.org/10.1142/S0219887818501876 .

J. Ławrynowicz, M. Nowak- Kępczyk, A. Valianti, and M. Zubert, Physics of complex alloys - one dimensional relaxation problem, Bull. Soc. Sci. Lettres Łódź Ser. Rech. Deform. 65, 27–48 (2015).

J. Ławrynowicz, K. Nôno, D. Nagayama, and O. Suzuki, Non-commutative Galois theory on Nonion algebra and su(3) and its application to construction of quark models, Proc. of the Annual Meeting of the Yukawa Inst. Kyoto ”The Hierarchy Structure in Physics and Information Theory” Soryuusironnkennkyuu, Yukawa Institute, Kyoto 2011, pp. 145–157 [http://www2.yukawa.kyoto-u.ac.jp].

J. Ławrynowicz, K. Nôno, D. Nagayama, and O. Suzuki, A method of noncommutative Galois theory for binary and ternary Clifford Analysis, Proc. ICMPEA (Internat. Conf. on Math. Probl. in Eng. Aerospace, and Sciences) Wien 2012, AIP (Amer. Inst. of Phys.) Conf. 1493 (2012), 1007–1014.

J. Ławrynowicz, K. Nôno, and O. Suzuki, Binary and ternary Clifford analysis vs. non-commutative Galois extensions. I. Basics of the comparison, Bull. Soc. Sci. Lettres Łódź Ser. Rech. Deform. 62, no. 1 (2012), 33–42.

R. N. Moll, M. A. Arbib, and A. J. Kfoury: Introduction to formal language theory, Springer-Verlag, New York, 1988.

R. Nevalinna, Analytic functions, Springer-Verlag, Berlin-Heidelberg-New York 1970.

O. Suzuki, Mathematical theory of symmetry breaking in binary and ternary structures, Bull. Soc. Sci. Lettres Łódź Ser. Rech. Deform. 70, no. 1 (2020),

O. Suzuki, Binary and ternary structure in the evolutions of the universe (2 × 3 × 2 × 2×· · · world). From space-time to molecular biology, Bull. Soc. Sci. Lettres Łódź Ser. Rech. Deform. 69, no. 1 (2019), 13–26.

O. Suzuki, Binary and ternary structure in the evolutions of the universe (2 × 3 ×2 × 2 × · · · world) II. The description of further stages of the evolutions (Polymers, molecular biology, and natural language), Bull. Soc. Sci. Lettres Łódź Ser. Rech. Deform. 69, no. 1 (2019), 27–34.

O. Suzuki, J. Ławrynowicz, M. Nowak- Kępczyk, and M. Zubert, Some geometrical aspects of binary, ternary, quaternary, quinary and senary structures in physics, Bull. Soc. Sci. Lettres Łódź Ser. Rech. Deform. 68 no. 2, (2018) 109–122. DOI: 10.26485/0459-6854/2018/68.2/11

C. Tsallis, Introduction to nonextensive statistical mechanics (Approaching a complex world), Springer Verlag, New York, Inc. 2009.

H. Umezawa, Advanced field theory (Micro, Macro and Thermal Physics), American Institute of Physics 1993.

B. L. van der Waerden, Moderne algebra 2, Berlin Verlag von Julius Springer 1937.

Published
2021-08-12
Section
Articles