Exploring soundscapes of Central Poland: a quantitative study of middle Pilica River basin within the Radomsko and Opoczno Hills
DOI:
https://doi.org/10.26485/AGL/2024/114/7Keywords:
soundscape analysis, geoinformatics, audio processing, data engineering, Pilica RiverAbstract
The research project focuses on analyzing the acoustic environment of the middle Pilica River basin. The study aims to understand the variability of soundscapes, the structure of biotic and abiotic sounds, and the impact of human-generated noise in various spatial and temporal contexts. As part of the research, sound recording devices were deployed in three test areas: the Czarna River, the Pilica River, and the Cieszanowice Reservoir, collecting over 2,200 hours of high-quality audio recordings. The collected data was analyzed using advanced sound processing and spatial analysis techniques. The results reveal a high acoustic diversity across the studied areas, considering both natural factors and anthropogenic influences. The findings contribute to a deeper understanding of the role of soundscapes in the Central Poland ecosystems, highlighting their importance for environmental conservation and spatial planning. The methodology developed within the project, combining geomatics, data engineering, and data analysis, enables research scalability and the exploration of new research areas.
References
Adamiak M. 2021. Deep learning in the geographical space remote sensing interpretation – review of selected issues. Czasopismo Geograficzne 92(1): 49–72. DOI: https://doi.org/10.12657/czageo-92-03.
Adamiak M. 2022. Applying machine learning and remote sensing techniques to support the geographical space interpretation (unpublished PhD Thesis). University of Łódź, Łódź, Online:
http://dspace.uni.lodz.pl:8080/xmlui/handle/11089/42382.
Bernat S. 2015. Krajobrazy dźwiękowe jako przedmiot zainteresowań geografii. AnnalesUniversitatis Mariae Curie-Sklodowska, sectio B – Geographia, Geologia, Mineralogia et Petrographia 70(2): 165–177. DOI: http://doi.org/10.17951/b.2015.70.2.165.
Bossche J. V. d., Jordahl K., Fleischmann M., Richards M., McBride J., Wasserman J., Badaracco A. G., et al. 2024. Geopandas. DOI: http://doi.org /10.5281/zenodo.12625316 (last accessed: 10.12.2024).
Farina A. 2018. Ecoacoustics: A Quantitative Approach to Investigate the Ecological Role of Environmental Sounds. Mathematics 7(1): 21. DOI: http://doi.org/10.3390/math7010021.
Fleming G. M., ElQadi M. M., Taruc R. R., Tela A., Duffy G. A., Ramsay E. E., Faber P. A., et al. 2023. Classification and ecological relevance of soundscapes in urban informal settlements. People and Nature 5(2): 742–757. DOI: http://doi.org/10.1002/pan3.10454.
Gasc A., Sueur J., Pavoine S., Pellens R., Grandcolas P. 2013. Biodiversity Sampling Using a Global Acoustic Approach: Contrasting Sites with Microendemics inNewCaledonia. PLOS ONE 8(5): 1–10. DOI: http://doi.org/10.1371/journal.pone.0065311.GCP. 2024. Online: https://cloud.google.com/gcp (last accessed: 10.12.2024).
Grinfeder E., Lorenzi C., Haupert S., Sueur J. 2022. What Do We Mean by “Soundscape”? A Functional Description. Frontiers in Ecology and Evolution 10: 1–14. DOI: http://doi.org/10.3389/fevo.2022.894232.
Hill A. P., Prince P., Snaddon J. L., Doncaster C. P., Rogers A. 2019. AudioMoth: A low-cost acoustic device for monitoring biodiversity and the environment. HardwareX 6: 1–19. DOI: http://doi.org/10.1016/j.ohx.2019.e00073.
Hiramatsu K. 2000. Soundscapegraphy of oldtown of Kyoto with the Gion Festival. Journal of The Acoustical Society of America - J ACOUST SOC AMER 108(5). DOI: http://doi.org/10.1121/1.4743217.
Krysiak S., Majchrowska A., Papińska E. 2021a. Wzgórza Opoczyńskie 342.12. In: Richling A., Solon J., Macias A., Balon J., Borzyszkowski J., Kistowski M. (eds). Regionalna geografia fizyczna Polski. 395–396. Bogucki Wyd. Naukowe, Poznań.
Krysiak S., Majchrowska A., Papińska E. 2021b. Wzgórza Radomszczańskie 342.11. In: Richling A., Solon J., Macias A., Balon J., Borzyszkowski J., Kistowski M. (eds). Regionalna geografia fizyczna Polski. 394–395. Bogucki Wyd. Naukowe, Poznań.
Lisowski A. 2014. The types of space and geography. Prace Komisji Krajobrazu Kulturowego( 24): 7–18.
McFee B., McVicar M., Faronbi D., Roman I., Gover M., Balke S., Seyfarth S., et al. 2024. librosa/librosa: 0.10.2.post1. DOI: http://doi.org/10.5281/zenodo.11192913 (last accessed: 9.7.2024).
Ney B. 2007. Spatial Information in Earth Science Research. Roczniki Geomatyki - Annals of Geomatics 5(6): 119–124.
Open Acoustic Devices. 2024. Online: https://www.openacousticdevices.info/applications (last accessed: 10.12.2024).
Pieretti N., Farina A., Morri D. 2011. A new methodology to infer the singing activity of an avian community: The Acoustic Complexity Index (ACI). Ecological Indicators 11(3): 868–873. DOI: http://doi.org/10.1016/j.ecolind.2010.11.005.
Pijanowski B. C., Farina A., Gage S. H., Dumyahn S. L., Krause B. L. 2011. What is soundscape ecology? An introduction and overview of an emerging new science. Landscape Ecology 26(9): 1213–1232. DOI: http://doi.org/10.1007/s10980-011-9600-8.
Planet Satellite Imaging. 2024. Online: https://www.planet.com (last accessed: 10.12.2024).
Raifer M., Troilo R., Mocnik F.-B., Schott M. 2023. OSHDB. DOI: http://doi.org/10.5281/ZENODO.8391737 (last accessed: 24.8.2024).
ray-project/ray. 2024. Online: https://github.com/ray-project/ray (last accessed: 10.12.2024).
Schafer R. M. 1976. The tunning of the world. Toronto: Mc Clelland / Stewart,
Seewave. 2024. Online: https://rug.mnhn.fr/seewave/ (last accessed: 10.12.2024).
Sentinel Hub. 2024. Online: https://www.sentinel-hub.com/index.html (last accessed: 10.12.2024).
Solon J., Borzyszkowski J., Bidłasik M., Richling A., Badora K., Balon J., Brzezińska-Wójcik T., et al. 2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonia. DOI: http://doi.org/10.7163/GPol.0115.
Southworth M. F. 1969. The Sonic Environment of Cities. Environment and Behavior 1(1): 49–70. DOI: http://doi.org/10.1177/001391656900100104.
Towsey M.,Wimmer J.,Williamson I.,Roe P. 2014. The use of acoustic indices to determine avian species richness in audio-recordings of the environment. Ecological Informatics 21: 110– 119. DOI: http://doi.org/10.1016/j.ecoinf.2013.11.007.
Ulloa J. S., Haupert S., Latorre J. F., Aubin T., Sueur J. 2021. scikit-maad: An open-source and modular toolbox for quantitative soundscape analysis in Python. Methods in Ecology and Evolution 12(12): 2334–2340. DOI: http://doi.org/10.1111/2041-210X.13711.
Villanueva-Rivera L. J., Pijanowski B. C., Doucette J., Pekin B. 2011.Aprimer of acoustic analysis for landscape ecologists. Landscape Ecology 26(9): 1233–1246. DOI: http://doi.org/10.1007/s10980-011-9636-9.
Yang Y.-Y., Hira M., Ni Z., Chourdia A., Astafurov A., Chen C., Yeh C.-F., et al. 2022. TorchAudio: Building Blocks for Audio and Speech Processing. DOI: http://doi.org/10.48550/arXiv.2110.15018 (last accessed: 10.12.2024).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Łódzkie Towarzystwo Naukowe
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.