Spatially Heterogeneous Changes in the Frequency and Intensity of Precipitation in Iran

Authors

  • Alireza Sadeghinia Farhangian University, Department of Geography Education, Iran
  • Somayeh Rafati Sayyed Jamaleddin Asadabadi University, Department of Geography, Asadabad, Hamedan, Iran
  • Zoleikha Khezerluei Mohammadyar Islamic Azad University, PhD in Climatology, Ulum Tahghighat, Tehran, Iran
  • Hamid Nazaripour University of Sistan and Baluchestan, Department of Physical Geography, Zahedan, Iran

DOI:

https://doi.org/10.26485/AGL/2025/118/1

Keywords:

precipitation frequency, precipitation intensity, long-term precipitation periods, short-term precipitation periods, global mean surface temperature, Iran

Abstract

The total precipitation trend has been investigated by many researchers in Iran. However, it is important to consider short-term and long-term precipitation separately. This study analyzed trends in 12 indices of precipitation, including 1-day precipitation frequency (1-DPF) to 6-day-and-more precipitation frequency (6-DMPF) and 1-day precipitation intensity (1-DPI) to 6-day-and-more precipitation intensity (6-DMPI) during 1968–2017 in Iran. Additionally, their relationships with the global mean surface temperature (GMST) trend were investigated. Trends were detected using the Mann–Kendall test and Sen's slope estimator. The ordinary least squares regression was used to calculate the percentage change in frequency and intensity of precipitation with increasing GMST. Several important findings emerged from this study: (1) the frequency of long-term precipitation has decreased in most regions of Iran, indicating a reduction in the length of precipitation periods; (2) the intensity of short-term and long-term precipitation has also decreased in most regions, suggesting that Iran's climate has become drier during this period; (3) changes in the frequency and intensity of precipitation are spatially heterogeneous, with a more significant decrease in the southern regions compared to the northern regions; (4) in higher latitudes of Iran, the contribution of long-term precipitation has decreased while the contribution of short-term precipitation (one-day and two-day) has increased. In contrast, all precipitation periods have decreased in lower latitudes; (5) 1-DPF and 2-day precipitation frequency (2-DPF) increase with global warming, with an average sensitivity of 2.6% K-1 and 2.7% K-1, respectively, while the other ten indices decrease with global warming. Therefore, most of the precipitation indices have decreased along with global warming in Iran.

References

Acar Z., Gönençgil B. 2022. Investigation of extreme precipitation indices in Turkey. Theoretical and Applied Climatology 148: 679-691.

Alavinia S.H., Zarei M. 2021. Analysis of spatial changes of extreme precipitation and temperature in Iran over a 50-year period. International Journal of Climatology 41: E2269-E2289. https://doi.org/10.1002/joc.6845

Alijani B., Rezaey M., Jafari F., Pazhooh F. 2015. The variability of 500 hPa geopotential height and its role on January oscillation of Iran. Journal of Arid Regions Geographic Studies 6(20): 34-45.

Arkeh J., Hamzawy A. 2024. Climate Change in the Middle East and North Africa: Mitigating Vulnerabilities and Designing Effective Policies. Carnegie Endowment for International Peace.

Asakereh H., Ashrafi S. 2023. Variation in frequency and proportion of duration of rainy days in Iran’s precipitation. Theoretical and Applied Climatology 151: 1257-1268. https://doi.org/10.1007/s00704-022-04352-6

Ashraf Vaghefi S.A., Keykhai M., Jahanbakhshi F., Sheikholeslami J., Ahmadi A. 2019. The future of extreme climate in Iran. Scientific reports 9(1): 1464. https://doi.org/10.1038/s41598-018-38071-8

Bahrami F., Saadatabadi A.R., Krakauer N.Y., Mesbahzadeh T., Sardoo F.S. 2021. Synoptic–Dynamic Patterns Affecting Iran’s Autumn Precipitation during ENSO Phase Transitions. Climate 9(7): 106. DOI:10.3390/cli9070106

Brogli R., Sørland S.L., Kröner N., Schär C. 2019. Causes of future Mediterranean precipitation decline depend on the season. Environmental Research Letters 14: 114017. https://10.1088/1748-9326/ab4438

Dinpanah Y., Fakhri-Fard A., Moghaddam M., Jahanbakhsh S., Mirnia M. 2004. Selection of variables for the purpose of regionalization of Iran s precipitation climate using multivariate methods. Journal of Hydrology 297: 109-123.

Darand M., Masoodian A., Nazaripour H., Mansouri Daneshvar M.R. 2015. Spatial and temporal trend analysis of temperature extremes based on Iranian climatic database (1962–2004). Arabian Journal of Geosciences 8: 8469-8480. https://doi.org/10.1007/s12517-015-1840-5

Doostan R. 2020. An Analysis of Precipitation Changes in Iran. Journal of Climate Research 40: 13-25.

Fischer E.M., Beyerle U., Schleussner C.F., King A.D., Knutti R. 2018. Biased estimates of changes in climate extremes from prescribed SST simulations. Geophysical Research Letters 45: 8500-8509. https://doi.org/10.1029/2018GL079176

Hansen J., Sato M., Ruedy R. 2010. Global surface temperature change. Reviews of Geophysics 48(4): RG4004. https://doi.org/10.1029/2010RG000345

Hansen J., Ruedy R., Sato M., Lo K. 2010. Global surface temperature change. Reviews of Geophysics 48: RG4004. https://doi.org/10.1029/2010RG000345

He J., Soden B.J. 2017. A re-examination of the projected subtropical precipitation decline. Nature Climate Change 7: 53-57. https://doi.org/10.1038/nclimate3157

Hejazizadeh Z., Halbian A.H., Karblaee Doree A., Toulabi M. 2020. Detection of extreme values variations of precipitation over Iran. Journal of Natural Environmental Hazards 23: 135-150. https:10.22111/JNEH.2019.29874.1519

Held I.M., Soden B.J. 2006. Robust Responses of the Hydrological Cycle to Global Warming. Journal of Climatology 19(21): 5686-5699. https://doi.org/10.1175/JCLI3990.1

IPCC. Climate Change. 2022. Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In: H.O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.). Cambridge University Press. Cambridge and New York, UK and USA. https://doi.org/10.1017/9781009325844

Jamali M., Gohari A., Motamedi A., Haghighi A.T. 2022. Spatiotemporal Changes in Air Temperature and Precipitation Extremes over Iran. Water 14(21): 3465. https://doi.org/10.3390/w14213465

Jamalizadeh N., Zohoriyan Pordel M., Lashkari H., Shakiba A., Mohammadi Z. 2019. Anomalies Analysis and Changes in the Dynamic Structure of Summer Patterns in Khuzestan Province. Quarterly of Geography & Regional Planing 9(36): 863-874.

Jenelle A. Bartletta, Dedekorkut-Howes A. 2022. Adaptation strategies for climate change impacts on water quality: a systematic review of the literature. Journal of Water and Climate Change 14(3): 651-675.

Jones M., Lee R. 2021. Precipitation intensity under global temperature rise scenarios. Environmental Science Review 19(4): 123-136.

Kambale J.B., Singh D.K., Sarangi A. 2017. Impact of climate change on groundwater recharge in a semi-arid region of northern India. Applied Ecology and Environmental Research 15(1): 335-362.

Katiraie P.S., Arkian F., Rezaei Farkosh R. 2011. Trend of humidity (specific and relative) in synoptic stations in Iran in period 1976–2005. Journal of Marine Science and Technology Research 6(2): 19-30.

Kim H.R., Moon M., Yun J., Ha K.J. 2023. Trends and Spatio‑Temporal Variability of Summer Mean and Extreme Precipitation across South Korea for 1973–2022. Asia-Pacific Journal of Atmospheric Sciences: 392. https://doi.org/10.1007/s13143-023-00323-7

Kumar S., Merwade V., Kam J., Thurner K. 2009. Stream flow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains. Journal of Hydrology 374: 171-183. https://doi.org/10.1016/j.jhydrol.2009.06.012

Li M., Sun Q., Lovino M.A., Ali S., Islam M., Li T., Li C., Jiang Z. 2022: Non-uniform changes in different daily precipitation events in the contiguous United States. Weather and Climate Extremes 35: 100417. https://doi.org/10.1016/j.wace.2022.100417

Mahadevan M., Noel J.K., Umesh M., Santhosh A.S., Suresh S. 2024. Climate Change Impact on Water Resources, Food Production and Agricultural Practices. In: P. Singh, N. Yadav (eds) The Climate-Health-Sustainability Nexus. Springer, Cham.

Mahbod M., Rafie Rafiee M. 2021. Trend analysis of extreme precipitation events across Iran using percentile indices. International Journal of Climatology 41(2): 952-969. https://doi.org/10.1002/joc.6708

Mansouri Daneshvar M.R., Ebrahimi M., Nejadsoleymani H. 2019. An overview of climate change in Iran: facts and statistics. Environmental System Research 8(7): 1-10.

Mathbout S., Lopez-Busting J.A., Roye D., Martin-Vide J., Bech J., Rodrigo F.S. 2018. Observed Changes in Daily Precipitation Extremes at Annual Timescale Over the Eastern Mediterranean During 1961–2012. Pure and Applied Geophysics 175: 3875-3890. https://doi.org/10.1007/s00024-017-1695-7

Mohammadi B. 2011. Trend Analysis of annual precipitation over Iran. Geography and Environmental Planning Journal 43(3): 21-24.

Mohammadi H., Azizi G., Khoshahklagh K., Ranjbar R. 2017. Analysis of Daily Precipitation Extreme Indices Trend in Iran. Physical Geography Journal Quartrly 49: 21-37. http://10.22059/JPHGR.2017.61577

Moshir Panahi D., Destouni G., Kalantari Z., Zahabiyoun B. 2022. Distinction of driver contributions to wetland decline and their associated basin hydrology around Iran. Journal of Hydrology: Regional Studies 42: 101126. https://doi.org/10.1016/j.ejrh.2022.101126

Muzammil M., Zahid A., Farooq U., Saddique N., Breuer L. 2023. Climate change adaptation strategies for sustainable water management in the Indus basin of Pakistan. Science of The Total Environment 878: 163143.

Myhre G., Alterskjær K., Stjern C.W., Hodnebrog Ø., Marelle L., Samset B.H., Sillmann J., Schaller N., Fischer E., Schulz M., Stohl A. 2019. Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific Reports 9:16063.

NCCOI. 2014. Third National Communication to UNFCCC. National Climate Change Office of Iran. Online: https://unfccc.int/sites/ default/files/resource/Third%20National%20communication%20IRAN.pdf

Rahimi M., Mohammadian N., Rezei Vanashi A. Whan K. 2018. Trends in Indices of Extreme Temperature and Precipitation in Iran over the Period 1960–2014. Open Journal of Ecology 8: 396-415. https://doi.org/10.4236/oje.2018.87024

Raziei T., Daneshkar-Arasteh P., Saghafian B. 2005. Annual Precipitation Trend Analysis in Arid and Semi-Arid Regions of Central and Eastern Iran. Journal of Water & Wastewater 54: 73-81.

Sadeghinia A., Rafati S., Sedaghat M. 2022. Spatial analysis of climate change in Iran. Journal of Spatial Analysis. Environmental Hazards 8(4): 55-70. https://jsaeh.khu.ac.ir/article-1-3253-en.html

Scheff J., Frierson D. 2012. Twenty-first-century multimodel subtropical precipitation declines are mostly midlatitude shifts. Journal of Climate 25: 4330-4347. https://doi.org/10.1175/ JCLI-D-11-00393.1

Sen P.K. 1968. Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association 63:1379-1389.

Serrano A., Mateos V.L., Garcia J.A. 1999. Trend analysis of monthly precipitation over the Iberian Peninsula for the period 1921–1995. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 24(1–2): 85-90.

Serrano-Notivoli R., Beguería S., Ángel Saz M., Luis M.D. 2018. Recent trends reveal decreasing intensity of daily precipitation in Spain. International Journal Of Climatology 38(11): 4211-4224.

Smith J., Johnson A., White B. 2022. The impact of global warming on precipitation patterns. Climate Change Journal 35(2): 45-67.

Stokes C., Howden M. 2010. Adapting Agriculture to Climate Change: Preparing Australian Agriculture, Forestry and Fisheries for the Future. CSIRO Publishing, Canberra.

Sun S., Shi P., Zhang Q., Wang J., Wu J., Chen D. 2022. Evolution of future precipitation extremes: Viewpoint of climate change classification. International Journal of Climatology 42(2): 1220-1230. https://doi.org/10.1002/joc.7298

Toulabinejad M., Hejazizadeh Z., Lupo A., Saligheh M. 2021. Connection of Eurasia-Northern Atlantic Blockings with Pervasive wet and dry months in Iran. Journal of Geography and Environmental Hazards 10(3): 83-104.

Trenberth K. 2011. Changes in precipitation with climate change. Climate Research 47: 123-138.

Tuel A., Eltahir E.A.B. 2018. Large-scale circulation and precipitation decline in the Mediterranean. American Geophysical Union, Fall Meeting 2018. Abstract A41F-08.

Tuel A., Eltahir E.A.B. 2020. Why Is the Mediterranean a Climate Change Hot Spot? Journal of Climate 33: 5829-5843. DOI: 10.1175/JCLI-D-19-0910.1

Visser M.A., Kumetat G., Scott G. 2024. Drought, water management, and agricultural livelihoods: Understanding human-ecological system management and livelihood strategies of farmer’s in rural California. Journal of Rural Studies 109: 103339.

Wang X.L., Chen H., Wu Y., Feng Y., Pu Q. 2010. New techniques for detection and adjustment of shifts in daily precipitation data series. Journal of Applied Meteorology and Climatology 49(12): 2416-2436.

Wang X.L. 2008a. Accounting for autocorrelation in detecting mean-shifts in climate data series using the penalized maximal t or F test. Journal of Applied Meteorology Climatolgy 47: 2423-2444.

Wang X.L. 2008b. Penalized maximal F-test for detecting undocumented meanshifts without trend-change. Cover Journal of Atmospheric and Oceanic Technology. Journal of Atmospheric and Oceanic Technology 25(3): 368-384.

Wang X.L., Feng Y. 2013. RHtests_dlyPrcp User Manual. Climate Research Division Atmospheric Science and Technology Directorate Science and Technology Branch, Environment Canada Toronto, Ontario, Canada. Online: http://etccdi.pacificclimate. org/software.shtml.

Wood R.R., Lehner F., Pendergrass A.G., Schlunegger S. 2021. Changes in precipitation variability across time scales in multiple global climate model large ensembles. Environmental Research Letters 16(8): 084022.

Yue S., Pilon P., Phinney B., Cavadias G. 2002. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Process 16: 1807-1829.

Downloads

Published

2025-04-30

How to Cite

Sadeghinia , A., Rafati , S., Mohammadyar, Z. K., & Nazaripour, H. (2025). Spatially Heterogeneous Changes in the Frequency and Intensity of Precipitation in Iran. Acta Geographica Lodziensia, 118, 7–21. https://doi.org/10.26485/AGL/2025/118/1

Issue

Section

Articles