B U L L E T I N

DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE ŁÓDŹ 2019

Luis Javier Carmona Lomeli and Lino Feliciano Reséndis Ocampo

WEIGHTED BERGMAN SPACES AND THE BERGMAN PROJECTION

Summary

It is well known that if $-1<q, \beta<\infty$ and $1 \leq p<\infty$ then the Bergman projection P_{β} is a bounded operator from $L^{p}\left(\mathbb{D}, d A_{q}\right)$ onto the Bergman space \mathcal{A}_{q}^{p} if and only if $q+1<(\beta+1) p$. In this paper we study the Bergman operator P_{β} from $L^{p}\left(\mathbb{D}, d A_{q}\right)$ in the weighted Bergman space ${ }_{s} \mathcal{A}_{q}^{p}$ and it is proved that P_{β} is a bounded operator for certain values of β, p, q and s, that in particular satisfy $q+1 \geq(\beta+1) p$.

Keywords and phrases: Bloch space, Bergman projection, \mathcal{A}_{q}^{p} weighted space

1. Introduction

Let $\varphi_{z}: \mathbb{C} \backslash\left\{\frac{1}{\bar{z}}\right\} \rightarrow \mathbb{C}$ be the Möbius transformation

$$
\varphi_{z}(w)=\frac{z-w}{1-\bar{z} w},
$$

with pole at $w=\frac{1}{z}$, which verifies $\varphi_{z}^{-1}=\varphi_{z}$ and

$$
\begin{equation*}
1-\left|\varphi_{z}(w)\right|^{2}=\frac{\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)}{|1-\bar{z} w|^{2}}=\left(1-|w|^{2}\right)\left|\varphi_{z}^{\prime}(w)\right| \tag{1.1}
\end{equation*}
$$

Let $\mathbb{D} \subset \mathbb{C}$ be the unit disk and denote by \mathcal{H} the space of analytic functions $f: \mathbb{D} \rightarrow$ \mathbb{C}. Let $-1<q<\infty, 0 \leq p<\infty$. We recall that f belongs to the Bergman space \mathcal{A}_{q}^{p} if $f \in \mathcal{H} \cap L^{p}\left(\mathbb{D}, d A_{q}\right)$, where $d A_{q}(w)=(q+1)\left(1-|w|^{2}\right)^{q} d A$, see [4]. If f is in
$L^{p}\left(\mathbb{D}, d A_{q}\right)$, we write

$$
\|f\|_{p, q}=\left(\int_{\mathbb{D}}|f(z)|^{p} d A_{q}(z)\right)^{1 / p}
$$

When $1 \leq p<\infty$, the space $L^{p}\left(\mathbb{D}, d A_{q}\right)$ is a Banach space with the above norm; when $0<p<1$, the space $L^{p}\left(\mathbb{D}, d A_{q}\right)$ is a complete metric space with the metric defined by

$$
d(f, g)=\|f-g\|_{p, q}^{p} .
$$

Let $0<s<\infty$ be fixed and we add the weight $\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s}$ in the integral definition of the Bergman space, so we have for each $f \in \mathcal{A}_{q}^{p}$

$$
\begin{equation*}
\int_{\mathbb{D}}|f(w)|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w) \leq \int_{\mathbb{D}}|f(w)|^{p} d A_{q}(w)<\infty \tag{1.2}
\end{equation*}
$$

that is, the Bergman space \mathcal{A}_{q}^{p} is a subspace of each member of the two parameter family of spaces $L^{p}\left(\mathbb{D}, d \mu_{q}\right)$, with $d \mu_{q}(w)=d \mu_{q}(s, z)(w)=\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w)$, $0<s<\infty$ and $z \in \mathbb{D}$. In particular

$$
\sup _{z \in \mathbb{D}} \int_{\mathbb{D}}|f(w)|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w) \leq \int_{\mathbb{D}}|f(w)|^{p} d A_{q}(w)
$$

for each $0<s<\infty$. The previous discussion motivates the following definition.
For $0<p<\infty,-1<q<\infty, 0 \leq s<\infty$ and $f \in \mathcal{H}$ define

$$
\begin{equation*}
l_{p, q, s}(f)(z):=\int_{\mathbb{D}}|f(w)|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w) \tag{1.3}
\end{equation*}
$$

The q, s-weighted p-Bergman space ${ }_{s} \mathcal{A}_{q}^{p}$ is defined by

$$
{ }_{s} \mathcal{A}_{q}^{p}:=\left\{f \in \mathcal{H}: \sup _{z \in \mathbb{D}} l_{p, q, s}(f)(z)<\infty\right\}
$$

and for $0<s<\infty$ its associated little space is

$$
{ }_{s, 0} \mathcal{A}_{q}^{p}:=\left\{f \in \mathcal{H}: \lim _{|z| \rightarrow 1^{-}} l_{p, q, s}(f)(z)=0\right\}
$$

We observe that ${ }_{0} \mathcal{A}_{q}^{p}=\mathcal{A}_{q}^{p}$.
With the previous definitions, from (1.2) we get

$$
\begin{equation*}
\mathcal{A}_{q}^{p} \subset{ }_{s} \mathcal{A}_{q}^{p} \subset \bigcap_{z \in \mathbb{D}} L^{p}\left(\mathbb{D}, d \mu_{q}(s, z)\right) \tag{1.4}
\end{equation*}
$$

Thus each Bergman space \mathcal{A}_{q}^{p} can be included in each space ${ }_{s} \mathcal{A}_{q}^{p}$ in a natural way. If $f \in{ }_{s} \mathcal{A}_{q}^{p}$ we write

$$
\|f\|_{\varphi}=\sup _{z \in \mathbb{D}}\left(l_{p, q, s}(f)(z)\right)^{\frac{1}{p}}
$$

Let $0<\alpha<\infty$. We say that $f \in \mathcal{H}$ belongs to the α-growth space (or α-type Bloch space), denoted by $\mathcal{A}^{-\alpha}$ (see [4]), if

$$
\|f\|_{-\alpha}=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}|f(z)|<\infty
$$

and belongs to the little α-growth space, denoted by $\mathcal{A}^{-\alpha, 0}$, if

$$
\|f\|_{-\alpha}=\lim _{|z| \rightarrow 1^{-}}\left(1-|z|^{2}\right)^{\alpha}|f(z)|=0
$$

It is clear that $\mathcal{A}^{-\alpha, 0} \subset \mathcal{A}^{-\alpha}$; moreover with the definitions of $\|f\|_{\varphi}$ and $\|f\|_{-\alpha}$, each one of the previous spaces are complete spaces, see [3] and [4]. In fact, for $1 \leq p<\infty$ they are Banach spaces.

Let $-1<q<\infty$. For each $f \in L^{1}\left(\mathbb{D}, d A_{q}\right)$, the Bergman projection of f is defined as

$$
P_{q} f(z)=\int_{\mathbb{D}} \frac{f(w) d A_{q}(w)}{(1-z \bar{w})^{2+q}}
$$

In this article we study first several properties of the Banach spaces ${ }_{s} \mathcal{A}_{q}^{p}$ and the Bergman projection in the growth and ${ }_{s} \mathcal{A}_{q}^{p}$ spaces.

Now, from the well known result (see [4]):
Theorem 1.1. Suppose $-1<q, \beta<\infty$ and $1 \leq p<\infty$. Then P_{q} is a bounded projection from $L^{p}\left(\mathbb{D}, d A_{q}\right)$ onto \mathcal{A}_{q}^{p} if and only if $q+1<(\beta+1) p$,
we see that is worthy of study the Bergman projection in the spaces ${ }_{s} \mathcal{A}_{q}^{p}$ when $q+1 \geq(\beta+1) p$ for certain values of p, q, s and β, see Theorems 4.5, 4.6, 4.7 and 4.8, where in fact, we get some extensions of Theorem 1.1.

2. Some properties of the Bergman spaces ${ }_{s} \mathcal{A}_{q}^{p}$.

In this section we give some properties of the weighted Bergman spaces ${ }_{s} \mathcal{A}_{q}^{p}$ an we prove that the integral operator defined by the formula of the Bergman projection is a bounded operator in the growth spaces $\mathcal{A}^{-\alpha}$.

We will use the following results.
Theorem 2.1 ([4]). Let $t>-1, c \in \mathbb{R}$. Define $I_{t, c}: \mathbb{D} \rightarrow \mathbb{R}$ by

$$
I_{t, c}(z)=\int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{t}}{|1-\bar{z} w|^{2+t+c}} d A(w)
$$

and $J_{c}: \mathbb{D} \rightarrow \mathbb{R}$ by

$$
J_{c}(z)=\int_{0}^{2 \pi} \frac{d \theta}{\left|1-z e^{-i \theta}\right|^{1+c}}
$$

Then

$$
I_{t, c}(z) \approx J_{c}(z) \approx h_{c}(z)= \begin{cases}1 & \text { if } c<0 \\ \ln \frac{1}{1-|z|^{2}} & \text { if } c=0 \\ \frac{1}{\left(1-|z|^{2}\right)^{c}} & \text { if } c>0\end{cases}
$$

as $|z| \rightarrow 1^{-}$.
Let $0<R<1$. The pseudohyperbolic disk is defined by

$$
D(z, R):=\varphi_{z}\left(\mathbb{D}_{R}\right)=\left\{w \in \mathbb{D}:\left|\varphi_{z}(w)\right|<R\right\}
$$

In fact $D(z, R)$ is an Euclidean disk with center and radius given by

$$
\begin{equation*}
c=\frac{1-R^{2}}{1-R^{2}|z|^{2}} z, \quad r=\frac{1-|z|^{2}}{1-R^{2}|z|^{2}} R \tag{2.5}
\end{equation*}
$$

and we denote by $|D(z, R)|$ its area.
Proposition 2.1. Let $0<r<1$ and $0<R<1$. Then there exist $\rho>0$ such that if $\rho<|z|<1$, we get

$$
D(z, R) \subset \mathbb{A}_{r}:=\mathbb{D} \backslash \mathbb{D}_{r}
$$

The following results were proved in Lemma 2.2, Corollary 2.5 and Theorems 2.4 and 3.4 of [3]. In particular Theorem 2.3 improves (1.4).

Lemma 2.1. Let $-2<q<\infty$ and $0<s<\infty$. Then

$$
\lim _{|z| \rightarrow 1^{-}} \int_{\mathbb{D}}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w)=0
$$

Corollary 2.1. Let $0<p<\infty,-2<q<\infty$. Then $\mathcal{A}_{q}^{p} \subset \mathcal{A}^{-\frac{q+2}{p}, 0}$.
Theorem 2.2. Let $0<p<\infty,-2<q<\infty$ and $1<s<\infty$. Then ${ }_{s} \mathcal{A}_{q}^{p}=\mathcal{A}^{-\frac{q+2}{p}}$.
Theorem 2.3. Let $0<p<\infty,-1<q<\infty$. Then

$$
\mathcal{A}_{q}^{p} \subset \bigcap_{0<s<\infty} s, 0 \mathcal{A}_{q}^{p} \subset \bigcap_{0<s<\infty}{ }_{s} \mathcal{A}_{q}^{p}
$$

Proof. We prove the first inclusion. Let $f \in \mathcal{A}_{q}^{p}, 1 \leq s<\infty$ and $\varepsilon>0$. By Corollary 2.1, there exists $0<R<1$ such that

$$
\begin{equation*}
\left(1-|w|^{2}\right)^{q+2}|f(w)|^{p}<\varepsilon \quad \text { for all } \quad w \in \mathbb{A}_{R} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{A}_{R}}|f(w)|^{p} d A_{q}(w)<\varepsilon \tag{2.7}
\end{equation*}
$$

by absolute continuity of the integral. We split the integral

$$
\begin{aligned}
& h_{p, q, s}(f)(z) \\
& \quad=\int_{\mathbb{D}_{R}}|f(w)|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w)+\int_{\mathbb{A}_{R}}|f(w)|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w) .
\end{aligned}
$$

By Lemma 2.1 the first integral goes to 0 when $|z| \rightarrow 1^{-}$. We split again the second integral: By Proposition 2.1 we can choose R^{\prime} fix, such that $\sqrt{1-e^{-\frac{1}{\pi}}}<R<R^{\prime}<$
$|z|<1$ with $D\left(z, R^{\prime}\right) \subset \mathbb{A}_{R}$, and

$$
\begin{aligned}
& \int_{\mathbb{A}_{R}}|f(w)|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w) \\
& =\int_{\mathbb{A}_{R} \backslash D\left(z, R^{\prime}\right)}|f(w)|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w)+\int_{D\left(z, R^{\prime}\right)}|f(w)|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w) .
\end{aligned}
$$

Now by (2.7) we have

$$
\int_{\mathbb{A}_{R} \backslash D\left(z, R^{\prime}\right)}|f(w)|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w) \leq \int_{\mathbb{A}_{R} \backslash D\left(z, R^{\prime}\right)}|f(w)|^{p} d A_{q}(w)<\varepsilon
$$

Otherwise, we have by Theorem 2.1

$$
\begin{aligned}
\int_{D\left(z, R^{\prime}\right)}|f(w)|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w) & \leq \int_{D\left(z, R^{\prime}\right)} \frac{\varepsilon}{\left(1-|w|^{2}\right)^{q+2}}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w) \\
& \leq \varepsilon\left(1-|z|^{2}\right)^{s} \int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{s-2}}{|1-z \bar{w}|^{2 s}} d A(w) \\
& <\varepsilon
\end{aligned}
$$

since $1<s<\infty$.
For $s=1$, by (2.6) and the change of variable $w=\varphi_{z}(\zeta)$ we have

$$
\begin{aligned}
\int_{D\left(z, R^{\prime}\right)}|f(w)|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w) & \leq \int_{D\left(z, R^{\prime}\right)} \frac{\varepsilon}{\left(1-|w|^{2}\right)^{2}}\left(1-\left|\varphi_{z}(w)\right|^{2}\right) d A(w) \\
& =\varepsilon \int_{\mathbb{D}_{R^{\prime}}} \frac{\left(1-|\zeta|^{2}\right)}{\left(1-\left|\varphi_{z}(\zeta)\right|^{2}\right)^{2}} \frac{\left(1-|z|^{2}\right)^{2}}{|1-z \bar{\zeta}|^{4}} d A(\zeta) \\
& =\varepsilon \int_{\mathbb{D}_{R^{\prime}}} \frac{1}{1-|\zeta|^{2}} d A(\zeta) \\
& <-\varepsilon \pi \ln \left(1-R^{\prime 2}\right) \\
& <\varepsilon
\end{aligned}
$$

Thus

$$
\int_{D\left(z, R^{\prime}\right)}|f(w)|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w)<\varepsilon
$$

for all $1 \leq s<\infty$.

On the other hand, let $0<s, s^{\prime}<1$ with $s+s^{\prime}=1$. By Hölder's inequality,

$$
\begin{aligned}
\int_{\mathbb{D}} & |f(w)|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w) \\
& =\int_{\mathbb{D}}|f(w)|^{p s}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s}|f(w)|^{p-p s} d A_{q}(w) \\
& \leq\left[\int_{\mathbb{D}}\left(|f(w)|^{p s}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s}\right)^{\frac{1}{s}} d A_{q}(w)\right]^{s}\left[\int_{\mathbb{D}}\left(|f(w)|^{p-p s}\right)^{\frac{1}{1-s}} d A_{q}(w)\right]^{1-s} \\
& =\left[\int_{\mathbb{D}}|f(w)|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right) d A_{q}(w)\right]^{s}\left[\int_{\mathbb{D}}|f(w)|^{p} d A_{q}(w)\right]^{1-s},
\end{aligned}
$$

and the fact that $\mathcal{A}_{q}^{p} \subset_{1,0} \mathcal{A}_{q}^{p}$ we get

$$
\lim _{|z| \rightarrow 1^{-}} \int_{\mathbb{D}}|f(w)|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w)=0
$$

Thus $f \in \in_{s, 0} \mathcal{A}_{q}^{p}$ for all $s>0$, and the proof is complete.
The following lemma is used to give another proof (see Theorem 4.2 in [3]) of a different characterization of the q, s-weighted p-Bergman spaces. This characterization is related with classic theory of \mathcal{Q}_{p} spaces started by R. Aulaskari and P. Lappan [1] and developed by many others [2], [8], [7] etc.

We need the following notation. Let $p, q, \ldots \in \mathbb{R}$ fixed. We say that two quantities $A(p, q, \ldots)$ and $B(p, q, \ldots)$ are comparable if there exists a constant $C>0$ possibly depending on p, q, \ldots such that

$$
\frac{A}{C} \leq B \leq A C
$$

and write $A \approx B$. In analogous form we define $B \preceq A$ if $B \leq A C$.
Lemma 2.2 ([7]). Let $q(r)$ and $p(r)$ be two integrable and nonnegative functions on $[0,1), p(r)>0$. If there exists τ^{\prime} with $0<\tau^{\prime}<1$ fixed and C a positive constant such that $q(r) \leq C p(r)$ for all $r \in\left[\tau^{\prime}, 1\right)$, then for all τ with $\tau^{\prime}<\tau \leq 1$ and all $h(r)$ a nondecreasing and nonnegative function on $[0,1)$, there exists a constant $K=K(\tau) \geq C$, independent of τ^{\prime} and h, such that

$$
\int_{0}^{\tau} h(r) q(r) d r \leq K \int_{0}^{\tau} h(r) p(r) d r
$$

that is

$$
\int_{0}^{\tau} h(r) q(r) d r \preceq \int_{0}^{\tau} h(r) p(r) d r .
$$

Theorem 2.4 ([3]). Let $0<p<\infty,-1<q<\infty$ and $0 \leq s<\infty$. Then $f \in{ }_{s} \mathcal{A}_{q}^{p}$ if and only if

$$
\sup _{z \in \mathbb{D}} \int_{\mathbb{D}}|f(w)|^{p} g^{s}(w, z) d A_{q}(w)<\infty
$$

where $g(w, z)$ is the Green's function of \mathbb{D}, given by

$$
g(w, z)=\ln \frac{|1-\bar{z} w|}{|z-w|}=\ln \frac{1}{\left|\varphi_{z}(w)\right|} .
$$

Proof. We need to prove that

$$
\begin{equation*}
\int_{\mathbb{D}}|f(w)|^{p} \ln ^{s} \frac{1}{\left|\varphi_{z}(w)\right|} d A_{q}(w) \approx \int_{\mathbb{D}}|f(w)|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w) \tag{2.8}
\end{equation*}
$$

and the constant of comparability does not depend on z. In order to do this, we use the change of variable $w=\varphi_{z}(\lambda)$ and so, we have to prove that

$$
\begin{aligned}
& \int_{\mathbb{D}}\left|f\left(\varphi_{z}(\lambda)\right)\right|^{p}\left(1-\left|\varphi_{z}(\lambda)\right|^{2}\right)^{q} \frac{\left(1-|z|^{2}\right)^{2}}{|1-\bar{z} \lambda|^{4}} \ln ^{s} \frac{1}{|\lambda|} d A(\lambda) \\
& \approx \int_{\mathbb{D}}\left|f\left(\varphi_{z}(\lambda)\right)\right|^{p}\left(1-\left|\varphi_{z}(\lambda)\right|^{2}\right)^{q} \frac{\left(1-|z|^{2}\right)^{2}}{|1-\bar{z} \lambda|^{4}}\left(1-|\lambda|^{2}\right)^{s} d A(\lambda)
\end{aligned}
$$

By (1.1), we rewrite the previous expression as

$$
\begin{align*}
& \int_{\mathbb{D}}\left|f\left(\varphi_{z}(\lambda)\right)\right|^{p}\left(1-|\lambda|^{2}\right)^{q} \frac{\left(1-|z|^{2}\right)^{q+2}}{|1-\bar{z} \lambda|^{4+2 q}} \ln ^{s} \frac{1}{|\lambda|} d A(\lambda) \\
& \approx \int_{\mathbb{D}}\left|f\left(\varphi_{z}(\lambda)\right)\right|^{p}\left(1-|\lambda|^{2}\right)^{q+s} \frac{\left(1-|z|^{2}\right)^{q+2}}{|1-\bar{z} \lambda|^{4+2 q}} d A(\lambda) \tag{2.9}
\end{align*}
$$

Since $g(\lambda)=\frac{f\left(\varphi_{z}(\lambda)\right)}{(1-\bar{z} \lambda)^{\frac{4+2 q}{p}}}$ is holomorphic in \mathbb{D}, then the function $H: \mathbb{D} \rightarrow \mathbb{R}$ given by

$$
H(\lambda)=\left|f\left(\varphi_{z}(\lambda)\right)\right|^{p} \frac{\left(1-|z|^{2}\right)^{q+2}}{|1-\bar{z} \lambda|^{4+2 q}}
$$

is subharmonic. Using this notation and polar coordinates in (2.9) we have to prove that

$$
\int_{0}^{1}\left(1-r^{2}\right)^{q} r \ln ^{s} \frac{1}{r} \int_{0}^{2 \pi} H\left(r e^{i \theta}\right) d \theta d r \approx \int_{0}^{1}\left(1-r^{2}\right)^{q+s} r \int_{0}^{2 \pi} H\left(r e^{i \theta}\right) d \theta d r
$$

Since $H\left(r e^{i \theta}\right)$ is a nonnegative subharmonic function, we have that

$$
h(r)=\int_{0}^{2 \pi} H\left(r e^{i \theta}\right) d \theta
$$

is a nondecreasing and nonnegative function. Moreover $q(r)=\left(1-r^{2}\right)^{q} r \ln ^{s} \frac{1}{r}$ and $p(r)=\left(1-r^{2}\right)^{q+s} r$ are continuous functions on $[0,1)$ (we define $q(0)=$ $\left.\lim _{r \rightarrow 0^{+}} q(r)=0\right)$. Let $\tau^{\prime}=0.450754 \ldots$ be a root of the equation $1-x^{2}=-\ln x$. Thus $q(r) \leq p(r)$ if $r \in\left[\tau^{\prime}, 1\right)$, and since $1-x^{2} \leq-2 \ln x$ for all $x \in[0,1)$ then $p(r) \leq 2 q(r)$ if $r \in\left[\tau^{\prime}, 1\right)$. So the conditions of Lemma 2.2 are satisfied, and we verify (2.8).

We recall that each ${ }_{s} \mathcal{A}_{q}^{p}$ is a complete space by itself and ${ }_{s} \mathcal{A}_{q}^{p} \subset{ }_{s^{\prime}} \mathcal{A}_{q}^{p}$ if $0<s<$ $s^{\prime}<\infty$. However, we will prove that ${ }_{s} \mathcal{A}_{q}^{p}$ is not a closed subspace of ${ }_{s^{\prime}} \mathcal{A}_{q}^{p}$.

For $n \in \mathbb{N}$, define

$$
I_{n}=\left\{k \in \mathbb{N}: 2^{n} \leq k<2^{n+1}\right\}
$$

The following lemma was proved by Mateljevic and Pavlovic.
Lemma 2.3. Let $0<\alpha<\infty$ and $0<p<\infty$. Let $f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$, with $0 \leq x<1,0 \leq a_{n}<\infty$ for each $n \in \mathbb{N}$. Then

$$
\sum_{n=0}^{\infty} \frac{t_{n}^{p}}{2^{n \alpha}} \approx \int_{0}^{1}(1-x)^{\alpha-1} f(x)^{p} d x
$$

where $t_{n}=\sum_{k \in I_{n}} a_{k}$.
Lemma 2.4. Let $0<p<\infty,-1<q<\infty, 0<s<\infty$ and $f(w)=\sum_{k=0}^{\infty} a_{k} w^{k}$. Then there exists a constant $C=C(p, q, s)$ such that

$$
\int_{\mathbb{D}}\left(\sum_{k=0}^{\infty}\left|a_{k}\right||w|^{k}\right)^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w) \leq C(p, q, s) \sum_{k=0}^{\infty} \frac{t_{n}^{p}}{2^{n(q+s+1)}}
$$

where $t_{n}=\sum_{k \in I_{n}}\left|a_{k}\right|$.
Proof. By using polar coordinates, we have

$$
\begin{align*}
I(z) & =\int_{\mathbb{D}}\left(\sum_{k=0}^{\infty}\left|a_{k}\right||w|^{k}\right)^{p}\left(1-\mid \varphi_{z}(w)^{2}\right)^{s}\left(1-|w|^{2}\right)^{q} d A(w) \\
& =\int_{0}^{1} \int_{0}^{2 \pi}\left(\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k}\right)^{p}\left(1-r^{2}\right)^{q} r \frac{\left(1-|z|^{2}\right)^{s}\left(1-r^{2}\right)^{s}}{\left|1-z r e^{-i \theta}\right|^{s}} d \theta d r \\
& \leq 2^{s} \int_{0}^{1}\left(\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k}\right)^{p}\left(1-r^{2}\right)^{q+s} r \int_{0}^{2 \pi} \frac{1}{\left|1-(z r) e^{-i \theta}\right|^{s}} d \theta d r \tag{2.10}\\
& \leq C_{1}(s) \int_{0}^{1}\left(\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k}\right)^{p}\left(1-r^{2}\right)^{q+s} d r
\end{align*}
$$

where we get the last inequality by Theorem 2.1. By Lemma 2.3 there is a constant $C_{2}(p, q, s)$ such that

$$
I(z) \leq C_{1}(s) \cdot C_{2}(p, q, s) \sum_{n=0}^{\infty} \frac{t_{n}^{p}}{2^{n(q+s+1)}} .
$$

The previous lemma is used to prove the following result.
Theorem 2.5. Let $0<p<\infty,-1<q<\infty$ and $0<t<s<1$. Then the subspace ${ }_{t} \mathcal{A}_{q}^{p}$ is not a closed subspace of ${ }_{s} \mathcal{A}_{q}^{p}$.

Proof. It is known that ${ }_{t} \mathcal{A}_{q}^{p} \subset{ }_{s} \mathcal{A}_{q}^{p}$, see [3]. Consider the Lacunary series and its partial sums

$$
f(z)=\sum_{n=0}^{\infty} 2^{\frac{n(q+t+1)}{p}} z^{2^{n}} \quad \text { and } \quad f_{n}(z)=\sum_{k=0}^{n} 2^{\frac{k(q+t+1)}{p}} z^{2^{k}}
$$

then $\left\{f_{n}\right\} \subset{ }_{H} \mathcal{A}_{q}^{p} \cap{ }_{s} \mathcal{A}_{q}^{p}$ and converges to the function f in the norm $\|\cdot\|_{\varphi}$. Indeed, by Lemma 2.4, for $0<s<1$ there is a constant $C(p, q, s)$ such that

$$
\begin{aligned}
I(z) & =\int_{\mathbb{D}}\left|f(w)-f_{n}(w)\right|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w) \\
& \leq \int_{\mathbb{D}}\left(\sum_{k=n+1}^{\infty} 2^{\frac{k(q+t+1)}{p}}|w|^{2^{k}}\right)^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w) \\
& \leq C(p, q, s) \sum_{k=n+1}^{\infty} \frac{2^{k(q+t+1)}}{2^{k(q+s+1)}} \\
& =C(p, q, s) \sum_{k=n+1}^{\infty} \frac{1}{2^{k(s-t)}} .
\end{aligned}
$$

Since $t<s$, then $\sum_{k=n+1}^{\infty} \frac{1}{2^{k(s-t)}}$ is a convergent series and thus f_{n} converges to f in the mentioned norm. In particular $\left\{f_{n}\right\}$ is a Cauchy sequence with respect to the norm $\|\cdot\|_{\varphi}$. By Theorem 5.5 in [3], $f \notin{ }_{t} \mathcal{A}_{q}^{p}$ since

$$
\sum_{k=0}^{\infty} \frac{2^{n(q+t+1)}}{2^{n(q+t+1)}}=\infty
$$

We present now two immediate results about the integral operator defined by the formula of the Bergman projection.

Theorem 2.6. Let $1<p<\infty,-1<q, \beta<\infty$ and $0 \leq s<\infty$. Then P_{β} : $L^{p}\left(\mathbb{D}, d A_{q}\right) \rightarrow{ }_{s} \mathcal{A}_{q}^{p}$ is a bounded operator if $q+1<(\beta+1) p$.
Proof. By (2.8) there exists $C>0$ such that

$$
\begin{aligned}
\sup _{z \in \mathbb{D}}\left\{\int_{\mathbb{D}}\left|P_{\beta} f(w)\right|^{p}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{s} d A_{q}(w)\right\}^{1 / p} & \leq\left\{\int_{\mathbb{D}}\left|P_{\beta} f(w)\right|^{p} d A_{q}(w)\right\}^{1 / p} \\
& =\left\|P_{\beta} f\right\|_{p, q} \\
& \preceq\|f\|_{p, q}
\end{aligned}
$$

We get the last inequality by Theorem 1.10 in [4].
The formula of the Bergman projection gives a bounded operator into the growth spaces.

Lemma 2.5. Let $-1<q, \beta<\infty$ and $1<p<\infty$. If $\alpha>\frac{q+2}{p}$, then

$$
P_{\beta}: L^{p}\left(\mathbb{D}, d A_{q}\right) \rightarrow \mathcal{A}^{-\alpha, 0}
$$

is a bounded operator.
If $\alpha=\frac{q+2}{p}$, then

$$
P_{\beta}: L^{p}\left(\mathbb{D}, d A_{q}\right) \rightarrow \mathcal{A}^{-\frac{q+2}{p}}
$$

is a bounded operator. (Recall that if $1<s<\infty$ then $\mathcal{A}^{-\frac{q+2}{p}}={ }_{s} \mathcal{A}_{q}^{p}$).
Proof. By the Hölder inequality we get the estimation

$$
\begin{aligned}
\left(1-|z|^{2}\right)^{\alpha}\left|P_{\beta} f(z)\right|= & \left(1-|z|^{2}\right)^{\alpha}\left|\int_{\mathbb{D}} \frac{f(w)}{(1-z \bar{w})^{2+\beta}} d A_{\beta}(w)\right| \\
= & \left(1-|z|^{2}\right)^{\alpha}\left|\int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{\beta-q}}{(1-z \bar{w})^{2+\beta}} f(w) d A_{q}(w)\right| \\
\leq & \left(1-|z|^{2}\right)^{\alpha} \int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{\beta-q}}{|1-z \bar{w}|^{2+\beta}}|f(w)| d A_{q}(w) \\
\leq & \left(1-|z|^{2}\right)^{\alpha}\left(\int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{(\beta-q) p^{*}}}{|1-z \bar{w}|^{(2+\beta) p^{*}}} d A_{q}(w)\right)^{1 / p^{*}} \\
& \cdot\left(\int_{\mathbb{D}}|f(w)|^{p} d A_{q}(w)\right)^{1 / p} \\
= & \left(1-|z|^{2}\right)^{\alpha}\|f\|_{p, q}\left(\int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{q+(\beta-q) p^{*}}}{|1-z \bar{w}|^{(2+\beta) p^{*}}} d A(w)\right)^{1 / p^{*}}
\end{aligned}
$$

As $p^{*}=\frac{p}{p-1}$, by Theorem 2.1 there is a constant $K>0$ such that

$$
\begin{aligned}
\left(1-|z|^{2}\right)^{\alpha}\left|P_{\beta} f(z)\right| & \leq K\left(1-|z|^{2}\right)^{\alpha}\|f\|_{p, q}\left(\frac{1}{\left(1-|z|^{2}\right)^{\frac{q+2}{p-1}}}\right)^{\frac{p-1}{p}} \\
& \leq K\left(1-|z|^{2}\right)^{\alpha-\frac{q+2}{p}}\|f\|_{p, q}
\end{aligned}
$$

Thus $P_{\beta} f \in \mathcal{A}^{-\alpha, 0}$ if $\alpha>\frac{q+2}{p}$ and if $\alpha=\frac{q+2}{p}$ then $P_{\beta} f \in \mathcal{A}^{-\frac{q+2}{p}}$.

3. An integral estimation

In order to study the integral operator defined by the formula of the Bergman projection into the spaces ${ }_{s} \mathcal{A}_{q}^{p}$, we need to estimate an integral that is cited without proof in [5]. We need several preliminaries to give a proof following the ideas in [6]. As we will see the proof is far to be straightforward.

Definition 3.1. For $z, \zeta \in \mathbb{C}$ let $d(\zeta, z)=|\bar{z}(z-\zeta)|+|\bar{\zeta}(\zeta-z)|$ be a non isotropic pseudo-distance.

Proposition 3.1. There exists a constant $C>0$ such that

$$
\begin{equation*}
d(\zeta, z) \leq C(d(\zeta, w)+d(w, z)) \tag{3.11}
\end{equation*}
$$

for all $\zeta, z, w \in \mathbb{D}$, that is $d(\zeta, z) \preceq d(\zeta, w)+d(w, z)$.
Proof. Suppose that for each $n \in \mathbb{N}$ there are $z_{n}, w_{n}, \zeta_{n} \in \overline{\mathbb{D}}$ such that

$$
d\left(z_{n}, \zeta_{n}\right)>n\left(d\left(z_{n}, w_{n}\right)+d\left(w_{n}, \zeta_{n}\right)\right)
$$

By Bolzano-Weierstrass, we can assume that $z_{n} \rightarrow z, w_{n} \rightarrow w$ and $\zeta_{n} \rightarrow \zeta$. Since

$$
d\left(z_{n}, \zeta_{n}\right)>n \max \left\{d\left(z_{n}, w_{n}\right), d\left(w_{n}, \zeta_{n}\right)\right\}
$$

then $z=\zeta=w$. Now, without loss of generality, suppose that $|z|=R$. Then there exists $N>3$ such that for $n \geq N$

$$
\begin{aligned}
3 R\left|\zeta_{n}-z_{n}\right| \geq d\left(z_{n}, \zeta_{n}\right) & \geq n\left(\left(\left|z_{n}\right|+\left|w_{n}\right|\right)\left|z_{n}-w_{n}\right|+\left(\left|w_{n}\right|+\left|\zeta_{n}\right|\right)\left|w_{n}-\zeta_{n}\right|\right) \\
& \geq n R\left(\left|z_{n}-w_{n}\right|+\left|w_{n}-\zeta_{n}\right|\right)
\end{aligned}
$$

Thus

$$
3\left(\left|z_{n}-w_{n}\right|+\left|w_{n}-\zeta_{n}\right|\right) \geq 3\left|\zeta_{n}-z_{n}\right| \geq n\left(\left|z_{n}-w_{n}\right|+\left|w_{n}-\zeta_{n}\right|\right)
$$

and we get a contradiction.
Given $\zeta, z \in \mathbb{D}$ and $C>0$ as in Proposition 3.1 we define

$$
\Omega=\left\{\eta \in \mathbb{D}: d(\eta, z) \leq \frac{d(\zeta, z)}{2 C}\right\} .
$$

In particular we obtain the partition $\Omega \cup(\mathbb{D} \backslash \Omega)$ of the unit disk \mathbb{D}.
Lemma 3.1. With the above definition of Ω, it holds

$$
|1-\bar{\eta} z| \preceq|1-\bar{\zeta} z| \preceq|1-\bar{\eta} \zeta|, \quad \text { for each } \eta \in \Omega \text {. }
$$

Proof. First we observe that

$$
\begin{equation*}
|1-\bar{\zeta} z| \approx 1-|\zeta|^{2}+d(\zeta, z) \approx 1-|z|^{2}+d(\zeta, z) \tag{3.12}
\end{equation*}
$$

for every $\zeta, z \in \mathbb{D}$. Indeed, we have

$$
\begin{aligned}
|1-\bar{\zeta} z| & =|1-\bar{\zeta} \zeta+\bar{\zeta} \zeta-\bar{\zeta} z| \leq|1-\bar{\zeta} \zeta|+|\bar{\zeta}(z-\zeta)| \\
& =\left|1-|\zeta|^{2}\right|+|\zeta||\zeta-z| \leq 1-|\zeta|^{2}+(|\zeta|+|z|)|\zeta-z| \\
& =1-|\zeta|^{2}+d(\zeta, z) .
\end{aligned}
$$

Otherwise, $1-|z|^{2} \leq 2(1-|z|) \leq 2|1-\bar{\zeta} z|$. Moreover

$$
\begin{aligned}
|z-\zeta| & =|z-z \zeta \bar{z}+z \zeta \bar{z}-\zeta|=\left|z(1-\bar{z} \zeta)+\zeta\left(|z|^{2}-1\right)\right| \\
& \leq|z||1-\bar{z} \zeta|+|\zeta|\left(1-|z|^{2}\right) \\
& \leq 3|1-\bar{z} \zeta|
\end{aligned}
$$

and so we have proved (3.12).
Now, we will prove

$$
|1-\bar{\eta} z| \preceq|1-\bar{\zeta} z| \preceq|1-\bar{\eta} \zeta|, \quad \text { for each } \eta \in \Omega .
$$

Since $\eta \in \Omega$, by (3.12) we have

$$
|1-\bar{\eta} z| \approx 1-|z|^{2}+d(\eta, z) \preceq 1-|z|^{2}+d(z, \zeta) \approx|1-\bar{\zeta} z| .
$$

On the other hand, we observe that

$$
d(z, \zeta) \leq C(d(z, \eta)+d(\eta, \zeta)) \leq C\left(\frac{d(z, \zeta)}{2 C}+d(\eta, \zeta)\right)
$$

and from here

$$
d(z, \zeta) \leq 2 C d(\eta, \zeta)
$$

Thus

$$
|1-\bar{\zeta} z| \approx 1-|\zeta|^{2}+d(z, \zeta) \preceq 1-|\zeta|^{2}+d(\eta, \zeta) \approx|1-\bar{\eta} \zeta|
$$

and we finished the proof.
Lemma 3.2. Assume that $-1<t_{2}<\infty, 0 \leq t_{1}<2+t_{2}<\infty$ and $-1 \leq t_{0}<t_{2}<$ $t_{0}+t_{1}<\infty$. Then

$$
\int_{\mathbb{D}} \frac{\left(1-|\eta|^{2}\right)^{t_{2}}}{|1-\bar{\eta} z|^{2+t_{0}}|1-\bar{\eta} \zeta|^{t_{1}}} d A(\eta) \preceq \frac{1}{|1-\bar{\zeta} z|^{t_{0}+t_{1}-t_{2}}}
$$

Proof. Let $z, \zeta \in \mathbb{D}$ and $\eta \in \Omega$. By the definition 3.1 and Lemma 3.1 we have

$$
|1-\bar{\zeta} z|+1-|\eta|^{2} \preceq|1-\bar{\eta} \zeta|,
$$

since $|1-\bar{\zeta} z| \preceq|1-\bar{\eta} \zeta|$ for all $\eta \in \Omega$ and $1-|\eta|^{2} \leq 2|1-\bar{\eta} \zeta|$. Now $|1-\bar{\zeta} z| \preceq|1-\bar{\eta} z|$ for all $\eta \in \mathbb{D} \backslash \Omega$ and $1-|\eta|^{2} \leq 2|1-\bar{\eta} \zeta|$ then

$$
(|1-\bar{\zeta} z|+|1-\bar{\eta} z|)^{2+t_{0}}\left(1-|\eta|^{2}\right)^{t_{1}} \preceq|1-\bar{\eta} z|^{2+t_{0}}|1-\bar{\eta} \zeta|^{t_{1}} .
$$

Thus we split the integral to obtain the estimation

$$
\begin{aligned}
I(z, \zeta):= & \int_{\mathbb{D}} \frac{\left(1-|\eta|^{2}\right)^{t_{2}}}{|1-\bar{\eta} z|^{2+t_{0}}|1-\bar{\eta} \zeta|^{t_{1}}} d A(\eta) \\
\preceq & \int_{\Omega} \frac{\left(1-|\eta|^{2}\right)^{t_{2}}}{|1-\bar{\eta} z|^{2+t_{0}}\left(|1-\bar{\zeta} z|+1-|\eta|^{2}\right)^{t_{1}}} d A(\eta) \\
& +\int_{\mathbb{D} \backslash \Omega} \frac{\left(1-|\eta|^{2}\right)^{t_{2}-t_{1}}}{(|1-\bar{\zeta} z|+|1-\bar{\eta} z|)^{2+t_{0}}} d A(\eta) .
\end{aligned}
$$

We change to polar coordinates, so

$$
\begin{aligned}
I(z, \zeta) \preceq & \int_{0}^{1} \int_{0}^{2 \pi} \frac{\left(1-r^{2}\right)^{t_{2}} r}{\left|1-r z e^{-i \theta}\right|^{2+t_{0}}\left(|1-\bar{\zeta} z|+1-r^{2}\right)^{t_{1}}} d \theta d r \\
& +\int_{0}^{1} \int_{0}^{2 \pi} \frac{\left(1-r^{2}\right)^{t_{2}-t_{1}} r}{\left(|1-\bar{\zeta} z|+\left|1-r z e^{-i \theta}\right|\right)^{2+t_{0}}} d \theta d r
\end{aligned}
$$

By Theorem 2.1

$$
\int_{0}^{2 \pi} \frac{d \theta}{\left|1-r z e^{-i \theta}\right|^{2+t_{0}}} \approx \frac{1}{\left(1-r^{2}|z|^{2}\right)^{1+t_{0}}}
$$

and since
$(1+|1-\bar{\zeta} z|)\left|1-\frac{r z}{1+|1-\bar{\zeta} z|} e^{-i \theta}\right|=\left|1+|1-\bar{\zeta} z|-r z e^{-i \theta}\right| \leq|1-\bar{\zeta} z|+\left|1-r z e^{i \theta}\right|$ we have

$$
\begin{aligned}
\int_{0}^{2 \pi} & \frac{d \theta}{\left(|1-\bar{\zeta} z|+\left|1-r z e^{-i \theta}\right|\right)^{2+t_{0}}} \\
& \leq \frac{1}{(1+|1-\bar{\zeta} z|)^{2+t_{0}}} \int_{0}^{2 \pi} \frac{d \theta}{\left|1-\frac{r z}{1+|1-\bar{\zeta} z|} e^{-i \theta}\right|^{2+t_{0}}} \\
& \preceq \frac{1}{(1+|1-\bar{\zeta} z|)^{2+t_{0}}} \frac{1}{\left(1-\frac{r^{2}|z|^{2}}{(1+|1-\bar{\zeta} z|)^{2}}\right)^{1+t_{0}}} \\
& \preceq \frac{1}{\left((1+|1-\bar{\zeta} z|)^{2}-r^{2}|z|^{2}\right)^{1+t_{0}}} \\
& \leq \frac{1}{\left(1+|1-\bar{\zeta} z|-r^{2}|z|^{2}\right)^{1+t_{0}}} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
I(z, \zeta) \preceq & \int_{0}^{1} \frac{\left(1-r^{2}\right)^{t_{2}} r}{\left(1-|z|^{2} r^{2}\right)^{1+t_{0}}\left(|1-\bar{\zeta} z|+1-r^{2}\right)^{t_{1}}} d r \\
& +\int_{0}^{1} \frac{\left(1-r^{2}\right)^{t_{2}-t_{1}} r}{\left(|1-\bar{\zeta} z|+1-|z|^{2} r^{2}\right)^{1+t_{0}}} d r .
\end{aligned}
$$

Moreover

$$
1-|z|^{2}+1-r^{2}<1-|z|^{2} r^{2}+1-|z|^{2} r^{2}<2\left(1-|z|^{2} r^{2}\right)
$$

and

$$
|1-\bar{\zeta} z|+1-r^{2}<|1-\bar{\zeta} z|+1-|z|^{2} r^{2}
$$

So

$$
\begin{aligned}
I(z, \zeta) \preceq & \int_{0}^{1} \frac{\left(1-r^{2}\right)^{t_{2}} r}{\left(1-|z|^{2}+1-r^{2}\right)^{1+t_{0}}\left(|1-\bar{\zeta} z|+1-r^{2}\right)^{t_{1}}} d r \\
& +\int_{0}^{1} \frac{\left(1-r^{2}\right)^{t_{2}-t_{1}} r}{\left(|1-\bar{\zeta} z|+1-r^{2}\right)^{1+t_{0}}} d r .
\end{aligned}
$$

Taking the change of variable $u=1-r^{2}$ we have

$$
I(z, \zeta) \preceq \int_{0}^{1} \frac{u^{t_{2}}}{\left(1-|z|^{2}+u\right)^{1+t_{0}}(|1-\bar{\zeta} z|+u)^{t_{1}}} d u+\int_{0}^{1} \frac{u^{t_{2}-t_{1}}}{(|1-\bar{\zeta} z|+u)^{1+t_{0}}} d u
$$

We now estimate the integral

$$
H_{1}:=\int_{0}^{1} \frac{u^{t_{2}}}{\left(1-|z|^{2}+u\right)^{1+t_{0}}(|1-\bar{\zeta} z|+u)^{t_{1}}} d u
$$

We note that

$$
\begin{aligned}
H_{1}= & \int_{0}^{|1-\bar{\zeta} z|} \frac{u^{t_{2}} d u}{\left(1-|z|^{2}+u\right)^{1+t_{0}}(|1-\bar{\zeta} z|+u)^{t_{1}}} \\
& +\int_{|1-\bar{\zeta} z|}^{1} \frac{u^{t_{2}} d u}{\left(1-|z|^{2}+u\right)^{1+t_{0}}(|1-\bar{\zeta} z|+u)^{t_{1}}}
\end{aligned}
$$

Since $u<u+1-|z|^{2}$ and $|1-\bar{\zeta} z|<|1-\bar{\zeta} z|+u$ for the first integral and for the second one $u<|1-\bar{\zeta} z|+u$ and $|1-\bar{\zeta} z|+u<2\left(u+1-|z|^{2}\right)$ we have

$$
\begin{aligned}
H_{1} & \preceq \frac{1}{|1-\bar{\zeta} z|^{t_{1}}} \int_{0}^{|1-\bar{\zeta} z|} u^{t_{2}-1-t_{0}} d u+\int_{|1-\bar{\zeta} z|}^{1}(u+|1-\bar{\zeta} z|)^{t_{2}-t_{0}-t_{1}-1} d u \\
& \preceq \frac{1}{|1-\bar{\zeta} z|^{t_{0}+t_{1}-t_{2}}} .
\end{aligned}
$$

We now estimate the integral

$$
H_{2}=\int_{0}^{|1-\bar{\zeta} z|} \frac{u^{t_{2}-t_{1}}}{(|1-\bar{\zeta} z|+u)^{1+t_{0}}} d u+\int_{|1-\bar{\zeta} z|}^{1} \frac{u^{t_{2}-t_{1}}}{(|1-\bar{\zeta} z|+u)^{1+t_{0}}} d u
$$

As $|1-\bar{\zeta} z|<|1-\bar{\zeta} z|+u$ for the first integral and $u<|1-\bar{\zeta} z|+u$ for the second
integral we obtain

$$
\begin{aligned}
H_{2} & \preceq \frac{1}{|1-\bar{\zeta} z|^{1+t_{0}}} \int_{0}^{|1-\bar{\zeta} z|} u^{t_{2}-t_{1}} d u+\int_{|1-\bar{\zeta} z|}^{1}(u+|1-\bar{\zeta} z|)^{t_{2}-t_{0}-t_{1}-1} d u \\
& \preceq \frac{1}{|1-\bar{\zeta} z|^{t_{0}+t_{1}-t_{2}}} .
\end{aligned}
$$

Thus

$$
I(z, \zeta) \leq H_{1}+H_{2} \leq \frac{C}{|1-\bar{\zeta} z|^{t_{0}+t_{1}-t_{2}}}
$$

4. The Bergman Projection in ${ }_{s} \mathcal{A}_{q}^{p}$

We recall the well known result, see [4].
Theorem 4.1. Suppose $-1<q, \beta<\infty$ and $1 \leq p<\infty$. Then P_{β} is a bounded projection from $L^{p}\left(\mathbb{D}, d A_{q}\right)$ onto \mathcal{A}_{q}^{p} if and only if $q+1<(\beta+1) p$.

In this section we study the integral operator defined by the formula of the Bergman projection into the spaces ${ }_{s} \mathcal{A}_{q}^{p}$ when $q+1 \geq(\beta+1) p$ for certain values of the parameters p, q, s and β.

The case $p=1$ is treated separately.
Theorem 4.2. Suppose $-1<q<\infty, 0<s<1, p=1$ and $(\beta+1) p=\beta+1=q+1$. Then $P_{\beta}=P_{q}$ is a bounded operator from $L^{1}\left(\mathbb{D}, d A_{q}\right)$ in $\mathcal{A}_{q}^{1}(\mathbb{D})$.
Proof. As $p=1$ we have $\beta=q$, thus

$$
P_{\beta} f(z)=P_{q} f(z)=\int_{\mathbb{D}} \frac{f(w)}{(1-z \bar{w})^{2+q}} d A_{q}(w) .
$$

By Fubini's theorem we have:

$$
\begin{aligned}
l_{1, q, s} & \left(P_{q} f\right)(a) \\
& =\int_{\mathbb{D}}\left|P_{q} f(z)\right|\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{s} d A_{q}(z) \\
& =\int_{\mathbb{D}}\left|\int_{\mathbb{D}} \frac{f(w)}{(1-z \bar{w})^{2+q}} d A_{q}(w)\right|\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{s} d A_{q}(z) \\
& \leq \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{q}}{|1-z \bar{w}|^{2+q}}|f(w)| d A(w) \frac{\left(1-|z|^{2}\right)^{s}\left(1-|a|^{2}\right)^{s}}{|1-z \bar{a}|^{2 s}} d A_{q}(z) \\
& =\int_{\mathbb{D}}\left(1-|w|^{2}\right)^{q}\left(1-|a|^{2}\right)^{s}|f(w)| \int_{\mathbb{D}} \frac{\left(1-|z|^{2}\right)^{s+q}}{|1-z \bar{w}|^{2+q}|1-z \bar{a}|^{2 s}} d A(z) d A(w)
\end{aligned}
$$

Writing $t_{0}=q, t_{1}=2 s$ and $t_{2}=s+q$ we get $-1<t_{3}, 0<t_{1}<2+t_{3}$ and $-1<t_{0}<t_{3}<t_{0}+t_{1}$. Then by Lemma 3.2 we have

$$
\begin{aligned}
l_{1, q, s}\left(P_{q} f\right)(a) & \preceq \int_{\mathbb{D}}\left(1-|w|^{2}\right)^{q}\left(1-|a|^{2}\right)^{s}|f(w)| \frac{1}{|1-a \bar{w}|^{s}} d A(w) \\
& \preceq \int_{\mathbb{D}}\left(1-|w|^{2}\right)^{q}|f(w)| \frac{(1-|a|)^{s}(1+|a|)^{s}}{(1-|a|)^{s}} d A(w) \\
& \preceq \int_{\mathbb{D}}|f(w)| d A_{q}(w) \\
& \preceq\|f\|_{1, q}
\end{aligned}
$$

and the proof follows from this estimation.
Following the same idea of the previous proof we obtain
Theorem 4.3. Suppose $-1<q<\infty, 0<s<1$, $p=1$ and $(\beta+1) p=\beta+1<q+1$. Then P_{β} is a bounded operator from $L^{1}\left(\mathbb{D}, d A_{q}\right)$ in ${ }_{s} A_{q}^{1}$ if $q<\beta+s$.

We analyze the case $1<p<\infty$ and $(\beta+1) p \leq q+1$.
From Lemma 2.1 is immediate the following result.
Lemma 4.1. Let $1<p<\infty,-1<q<\infty$ and $\beta \in \mathbb{R}$. Then

$$
I_{q, v}(z)=\int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{q}}{|1-z \bar{w}|^{(2+\beta) \cdot \frac{p}{p-1}}} d A(w) \approx h_{v}(z)= \begin{cases}1 & \text { if } v<0 \\ \ln \frac{1}{1-|z|^{2}} & \text { if } v=0 \\ \frac{1}{\left(1-|z|^{2}\right)^{v}} & \text { if } v>0\end{cases}
$$

where

$$
\begin{equation*}
v=v(p, q, \beta)=\frac{(2+\beta) p-(2+q)(p-1)}{p-1} . \tag{4.13}
\end{equation*}
$$

Let $-1<\beta<\infty, 1<p<\infty$ and $0<s<1$. Then

$$
\begin{aligned}
I(a) & =\int_{\mathbb{D}}\left|P_{\beta} f(z)\right|^{p}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{s} d A_{q}(z) \\
& =\int_{\mathbb{D}}\left|\int_{\mathbb{D}} \frac{f(w)}{(1-z \bar{w})^{2+\beta}} d A_{q}(w)\right|^{p} \frac{\left(1-|z|^{2}\right)^{s}\left(1-|a|^{2}\right)^{s}}{|1-a \bar{z}|^{2 s}} d A_{q}(z) .
\end{aligned}
$$

We estimate the Bergman projection using the Hölder inequality. Thus

$$
\begin{aligned}
\left|\int_{\mathbb{D}} \frac{f(w) d A_{q}(w)}{(1-z \bar{w})^{2+\beta}}\right| & \leq\left(\int_{\mathbb{D}}|f(w)|^{p} d A_{q}(w)\right)^{1 / p}\left(\int_{\mathbb{D}} \frac{d A_{q}(w)}{|1-z \bar{w}|^{(2+\beta) p^{*}}}\right)^{1 / p^{*}} \\
& =\|f\|_{p, q}\left(\int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{q} d A(w)}{|1-z \bar{w}|^{(2+\beta) p^{*}}}\right)^{1 / p^{*}}
\end{aligned}
$$

where $\frac{1}{p}+\frac{1}{p^{*}}=1$. By Lemma 4.1 we have

$$
\begin{equation*}
I(a) \preceq\|f\|_{p, q}^{p} \int_{\mathbb{D}} h_{v}^{p / p^{*}}(z) \frac{\left(1-|z|^{2}\right)^{s}\left(1-|a|^{2}\right)^{s}}{|1-\bar{a} z|^{2 s}} d A_{q}(z) . \tag{4.14}
\end{equation*}
$$

We will estimate the last integral applying again Lemma 2.1 and Lemma 4.1, in particular each case originated by the sign of (4.13).
Theorem 4.4. Let $-1<q<\infty, \frac{q+2}{q+1}<p<\infty, 0<s<1$ and $-1<\beta<$ $\frac{q(p-1)-2}{p}$. Then

$$
P_{\beta}: L^{p}\left(\mathbb{D}, d A_{q}\right) \mapsto{ }_{s} \mathcal{A}_{q}^{p}
$$

is a bounded operator if $v=\frac{(2+\beta) p-(2+q)(p-1)}{p-1} \leq 0$.
Proof. If $v \leq 0$, by Lemmas 4.1 and 2.1 we get immediately

$$
I(a) \preceq\|f\|_{p, q}^{p}
$$

and the proof follows from this claim.
We study now the integral (4.14) when $v>0$, that is

$$
\begin{align*}
\int_{\mathbb{D}} \frac{1}{\left(1-|z|^{2}\right)^{(2+\beta) p-(2+q)(p-1)}} & \cdot \frac{\left(1-|z|^{2}\right)^{s+q}}{|1-z \bar{a}|^{2 s}} d A(z) \\
& =\int_{\mathbb{D}} \frac{\left(1-|z|^{2}\right)^{p(q-\beta)+s-2}}{|1-z \bar{a}|^{2 s}} d A(z) \tag{4.15}
\end{align*}
$$

We estimate this integral applying Lemma 2.1. Then it is necessary to have $p(q-$ $\beta)+s-2>-1$, and this is equivalent to

$$
\begin{equation*}
\beta<\frac{p q+s-1}{p} \tag{4.16}
\end{equation*}
$$

and so we obtain the following result.
Lemma 4.2. Let $1<p<\infty,-1<q<\infty, \beta \in \mathbb{R}$ and $p(q-\beta)+s-2>-1$. Then

$$
I_{t, L}(z)=\int_{\mathbb{D}} \frac{\left(1-|z|^{2}\right)^{p(q-\beta)+s-2}}{|1-z \bar{a}|^{2 s}} d A(z) \approx h_{L}(z)= \begin{cases}1 & \text { if } L<0 \\ \ln \frac{1}{1-|z|^{2}} & \text { if } L=0 \\ \frac{1}{\left(1-|z|^{2}\right)^{L}} & \text { if } L>0\end{cases}
$$

where $L=L(p, q, s)=p(\beta-q)+s$.
Thus we need to study the three cases associated to L. We consider first the case $L>0$. The result is formulated in the following theorem, but we need the following straightforward result.

Lemma 4.3. Let $1<p<\infty,-1<q<\infty$ and $\frac{1}{2}<s<1$. Let
$a=\max \left\{-1, \frac{q(p-1)-2}{p}, \frac{p q-s}{p}\right\} \quad$ and $\quad b=\min \left\{\frac{q+1-p}{p}, \frac{p q+s-1}{p}\right\}$.
Then the interval (a, b) is notempty if and only if

$$
\frac{1-p-s}{p}<q<\frac{1-p+s}{p-1}
$$

Moreover

$$
a= \begin{cases}-1 & \text { if } \quad q<\frac{s-p}{p} \\ \frac{p q-s}{p} & \text { if } \quad q \geq \frac{s-p}{p}\end{cases}
$$

and

$$
b=\left\{\begin{array}{l}
\frac{q+1-p}{p} \quad \text { if } \quad q>\frac{2-p-s}{p-1} \\
\frac{p q+s-1}{p} \quad \text { if } \quad q \leq \frac{2-p-s}{p-1}
\end{array}\right.
$$

Theorem 4.5. Let $1<p<\infty, \frac{1}{2}<s<1, \frac{1-p-s}{p}<q<\frac{1-p+s}{p-1}, a<\beta<b$, with a and b as in the previous lemma and $v>0$ (see Lemma 4.1). Then

$$
P_{\beta}: L^{p}\left(\mathbb{D}, d A_{q}\right) \mapsto_{s} \mathcal{A}_{q}^{p}
$$

is a bounded operator. Moreover

$$
I(a) \preceq\left(1-|a|^{2}\right)^{-p(\beta-q)}\|f\|_{p, q}^{p} .
$$

Proof. By hypothesis $-1<\beta<\frac{q+1-p}{p}$. Since $v>0$, then $\beta>\frac{q(p-1)-2}{p}$ and we recall (4.15), then

$$
I(a) \preceq C\left(1-|a|^{2}\right)^{s}\|f\|_{p, q}^{p} \int_{\mathbb{D}} \frac{\left(1-|z|^{2}\right)^{p(q-\beta)+s-2}}{|1-a \bar{z}|^{2 s}} d A(z) .
$$

By hypothesis $\beta<\frac{p q+s-1}{p}$ and $L=p(\beta-q)+s>0$, and this is equivalent to $\frac{p q-s}{p}<\beta$. Then by Lemma 4.2 we have

$$
\begin{aligned}
I(a) & \preceq\left(1-|a|^{2}\right)^{s}\|f\|_{p, q}^{p} \frac{1}{\left(1-|a|^{2}\right)^{p(\beta-q)+s}} \\
& \preceq\left(1-|a|^{2}\right)^{p(q-\beta)}\|f\|_{p, q}^{p}
\end{aligned}
$$

and by hypothesis $\beta<q$ and we conclude the proof.
We describe explicitly the interval (a, b) of the previous theorem.

Proposition 4.1. With the hypothesis of the Lemma 4.3 we have
i. $(a, b)=\left(-1, \frac{q+1-p}{p}\right)$ if and only if $\frac{s}{2 s-1}<p<\infty$ and $\frac{2-p-s}{p-1}<q<$ $\frac{s-p}{p}$.
ii. $(a, b)=\left(-1, \frac{p q+s-1}{p}\right)$ if and only if
ii.1 $1<p<\frac{s}{2 s-1}$ and $\frac{1-p-s}{p}<q<\frac{s-p}{p}$ or
ii.2 $\frac{s}{2 s-1} \leq p$ and $\frac{1-p-s}{p}<q<\frac{2-p-s}{p-1}$
iii. $(a, b)=\left(\frac{p q-s}{p}, \frac{q+1-p}{p}\right)$, with
iii.1 $1<p<\frac{s}{2 s-1}$ and $\frac{2-p-s}{p-1}<q<\frac{1-p+s}{p-1}$ or iii.2 $\frac{s}{2 s-1} \leq p$ and $\frac{s-p}{p}<q<\frac{1-p+s}{p-1}$
iv. $(a, b)=\left(\frac{p q-s}{p}, \frac{p q+s-1}{p}\right)$ if and only if $1<p<\frac{s}{2 s-1}$ and $\frac{s-p}{p}<q<$ $\frac{2-p-s}{p-1}$.
Proof. To prove case i note that

$$
-1<\beta<\frac{q+1-p}{p}
$$

if only if

$$
q<\frac{s-p}{p} ; \quad q>\frac{2-p-s}{p-1} ; \quad \text { and } \quad \frac{1-p-s}{p}<q<\frac{1-p+s}{p-1}
$$

that is, q must satisfy

$$
\max \left\{\frac{2-p-s}{p-1}, \frac{1-p-s}{p}\right\}<q<\min \left\{\frac{s-p}{p}, \frac{1-p+s}{p-1}\right\}
$$

or equivalently

$$
\begin{aligned}
\frac{2-p-s}{p-1} & <\frac{s-p}{p}
\end{aligned} \Leftrightarrow p>\frac{2 s}{2 s-1} .
$$

Since $\frac{1}{2}<s<1$ then

$$
\max \left\{\frac{2-p-s}{p-1}, \frac{1-p-s}{p}\right\}=\frac{2-p-s}{p-1}
$$

and

$$
\min \left\{\frac{1-p+s}{p-1}, \frac{s-p}{p}\right\}=\frac{s-p}{p}
$$

This proves the claim. The other cases are analogous.
We now consider the case $L<0$, which is divided into two cases: $1<p \leq 2$ and $2<p<\infty$. In the following theorem, the result is formulated for $1<p \leq 2$ and we need the next straightforward result.

Lemma 4.4. Let $1<p \leq 2,-1<q<\infty$ and $0<s<1$. Let
$a=\max \left\{-1, \frac{q(p-1)-2}{p}\right\}$ and $b=\min \left\{\frac{q+1-p}{p}, \frac{p q+s-1}{p}, \frac{p q-s}{p}\right\}$.
Then the interval (a, b) is notempty if and only if

1. For $0<s \leq \frac{1}{2}$ we have $\frac{1-p-s}{p}<q<\infty$. Moreover

$$
a= \begin{cases}-1 & \text { if } \quad q<\frac{2-p}{p-1} \\ \frac{q(p-1)-2}{p} & \text { if } \quad q \geq \frac{2-p}{p-1}\end{cases}
$$

and

$$
b= \begin{cases}\frac{q+1-p}{p} & \text { if } q>\frac{2-p-s}{p-1} \\ \frac{p q+s-1}{p} & \text { if } q \leq \frac{2-p-s}{p-1} .\end{cases}
$$

2. For $\frac{1}{2}<s<1$ we have $\frac{s-p}{p}<q<\infty$. Moreover

$$
a= \begin{cases}-1 & \text { if } \quad q<\frac{2-p}{p-1} \\ \frac{q(p-1)-2}{p} & \text { if } \quad q \geq \frac{2-p}{p-1}\end{cases}
$$

and

$$
b= \begin{cases}\frac{q+1-p}{p} & \text { if } q>\frac{1-p+s}{p-1} \\ \frac{p q-s}{p} & \text { if } q \leq \frac{1-p+s}{p-1}\end{cases}
$$

Theorem 4.6. Let $1<p \leq 2,0<s<1$, $\max \left\{\frac{1-p-s}{p}, \frac{s-p}{p}\right\}<q<\infty$ and $a<\beta<b$, with a and b as in the previous lemma. Then

$$
P_{\beta}: L^{p}\left(\mathbb{D}, d A_{q}\right) \mapsto_{s} \mathcal{A}_{q}^{p}
$$

is a bounded operator. Moreover

$$
I(a) \preceq\left(1-|a|^{2}\right)^{s}\|f\|_{p, q}^{p}
$$

Proof. Observe that

$$
\max \left\{\frac{1-p-s}{p}, \frac{s-p}{p}\right\}= \begin{cases}\frac{1-p-s}{p} & \text { if } \quad 0<s<\frac{1}{2} \\ \frac{s-p}{p} & \text { if } \quad \frac{1}{2} \leq s<1\end{cases}
$$

and imitate the proof of Theorem 4.5.
We describe explicitly the intervals (a, b) of the previous theorem.

Proposition 4.2.

I. For $1<p \leq 2,0<s \leq \frac{1}{2}, \frac{1-p-s}{p}<q<\infty$ and a, b as in 1 from Lemma 4.4, we have that
i. $(a, b)=\left(-1, \frac{q+1-p}{p}\right)$ if and only if $\frac{2-p-s}{p-1}<q<\frac{2-p}{p-1}$.
ii. $(a, b)=\left(-1, \frac{p q+s-1}{p}\right)$ if and only if $\frac{1-p-s}{p}<q<\frac{2-p-s}{p-1}$.
iii. $(a, b)=\left(\frac{q(p-1)-2}{p}, \frac{q+1-p}{p}\right)$ if and only if $\frac{2-p}{p-1}<q<\infty$.
iv. $(a, b)=\left(\frac{q(p-1)-2}{p}, \frac{p q+s-1}{p}\right)=\emptyset$.
II. For $1<p \leq 2, \frac{1}{2}<s<1, \frac{s-p}{p}<q<\infty$ and a, b as in 2 from Lemma 4.4, we have that

$$
\text { i. }(a, b)=\left(-1, \frac{q+1-p}{p}\right) \text { if and only if } \frac{1-p+s}{p-1}<q<\frac{2-p}{p-1} \text {. }
$$

ii. $(a, b)=\left(-1, \frac{p q-s}{p}\right)$ if and only if $\frac{s-p}{p}<q<\frac{1-p+s}{p-1}$.
iii. $(a, b)=\left(\frac{q(p-1)-2}{p}, \frac{q+1-p}{p}\right)$ if and only if $\frac{2-p}{p-1}<q<\infty$.
iv. $(a, b)=\left(\frac{q(p-1)-2}{p}, \frac{p q-s}{p}\right)=\emptyset$.

Now the result is formulated for $L<0$ and $2<p<\infty$ and we will need the following straightforward result.

Lemma 4.5. Let $2<p<\infty,-1<q<\infty$ and $0<s<1$. Let
$a=\max \left\{-1, \frac{q(p-1)-2}{p}\right\} \quad$ and $\quad b=\min \left\{\frac{q+1-p}{p}, \frac{p q+s-1}{p}, \frac{p q-s}{p}\right\}$.
Then the interval (a, b) is notempty if and only if

1. For $0<s \leq \frac{1}{2}$ we have $\frac{1-p-s}{p}<q<\frac{3-p}{p-2}$. Moreover

$$
a= \begin{cases}-1 & \text { if } \quad q<\frac{2-p}{p-1} \\ \frac{q(p-1)-2}{p} & \text { if } \quad q \geq \frac{2-p}{p-1}\end{cases}
$$

and

$$
b= \begin{cases}\frac{q+1-p}{p} & \text { if } \quad q>\frac{2-p-s}{p-1} \\ \frac{p q+s-1}{p} & \text { if } \quad q \leq \frac{2-p-s}{p-1}\end{cases}
$$

2. For $\frac{1}{2}<s<1$ we have $\frac{s-p}{p}<q<\frac{3-p}{p-2}$. Moreover

$$
a= \begin{cases}-1 & \text { if } \quad q<\frac{2-p}{p-1} \\ \frac{q(p-1)-2}{p} & \text { if } \quad q \geq \frac{2-p}{p-1}\end{cases}
$$

and

$$
b= \begin{cases}\frac{q+1-p}{p} & \text { if } \quad q>\frac{1-p+s}{p-1} \\ \frac{p q-s}{p} & \text { if } \quad q \leq \frac{1-p+s}{p-1} .\end{cases}
$$

Theorem 4.7. Let $2<p<\infty, 0<s<1$, $\max \left\{\frac{1-p-s}{p}, \frac{s-p}{p}\right\}<q<\frac{3-p}{p-2}$ and $a<\beta<b$, with a and b as in the Lemma 4.5. Then

$$
P_{\beta}: L^{p}\left(\mathbb{D}, d A_{q}\right) \mapsto_{s} \mathcal{A}_{q}^{p}
$$

is a bounded operator. Moreover

$$
I(a) \preceq\left(1-|a|^{2}\right)^{s}\|f\|_{p, q}^{p} .
$$

Proof. The proof is similar to the made in the Theorem 4.5.
We describe explicitly the intervals (a, b) of the previous theorem.
Proposition 4.3. I. For $2<p<\infty, 0<s \leq \frac{1}{2}, \frac{1-p-s}{p}<q<\frac{3-p}{p-2}$ and a, b as in 1 from Lemma 4.5 we have that
i. $(a, b)=\left(-1, \frac{q+1-p}{p}\right)$ if and only if $\frac{2-p-s}{p-1}<q<\frac{2-p}{p-1}$.
ii. $(a, b)=\left(-1, \frac{p q+s-1}{p}\right)$ if and only if $\frac{1-p-s}{p}<q<\frac{2-p-s}{p-1}$.
iii. $(a, b)=\left(\frac{q(p-1)-2}{p}, \frac{q+1-p}{p}\right)$ if and only if $\frac{2-p}{p-1}<q<\frac{3-p}{p-2}$.
iv. $(a, b)=\left(\frac{q(p-1)-2}{p}, \frac{p q+s-1}{p}\right)=\emptyset$.
II. For $2<p<\infty, \frac{1}{2}<s<1, \frac{s-p}{p}<q<\frac{3-p}{p-2}$ and a, b as in 2 from Lemma 4.5 we have that
i. $(a, b)=\left(-1, \frac{q+1-p}{p}\right)$ if and only if $\frac{1-p+s}{p-1}<q<\frac{2-p}{p-1}$.
ii. $(a, b)=\left(-1, \frac{p q-s}{p}\right)$ if and only if $\frac{s-p}{p}<q<\frac{1-p+s}{p-1}$.
iii. $(a, b)=\left(\frac{q(p-1)-2}{p}, \frac{q+1-p}{p}\right)$ if only if $\frac{2-p}{p-1}<q<\frac{3-p}{p-2}$.
iv. $(a, b)=\left(\frac{q(p-1)-2}{p}, \frac{p q-s}{p}\right)=\emptyset$.

We now consider the case $L=0$. The result is formulated in the following theorem, but we need the following straightforward result.
Lemma 4.6. Let $1<p<\infty,-1<q<\infty$ and $\frac{1}{2}<s<1$. Let $\beta=\frac{p q-s}{p}$

$$
a=\max \left\{-1, \frac{q(p-1)-2}{p}\right\}, \quad \text { and } \quad b=\min \left\{\frac{q+1-p}{p}, \frac{p q+s-1}{p}\right\}
$$

Then $a<\beta<b$ if and only if

$$
\frac{s-p}{p}<q<\frac{1-p+s}{p-1} .
$$

Moreover

$$
a= \begin{cases}-1 & \text { if } \quad q<\frac{2-p}{p-1} \\ \frac{q(p-1)-2}{p} & \text { if } \quad q \geq \frac{2-p}{p-1}\end{cases}
$$

and

$$
b= \begin{cases}\frac{q+1-p}{p} & \text { if } \quad q<\frac{2-p-s}{p-1} \\ \frac{p q+s-1}{p} & \text { if } q \geq \frac{2-p-s}{p-1}\end{cases}
$$

Theorem 4.8. Let $1<p<\infty, \frac{1}{2}<s<1, \frac{s-p}{p}<q<\frac{1-p+s}{p-1}$ and $a<\beta<b$, with a, b and $\beta=\frac{p q-s}{p}$ as in the Lemma 4.6. Then

$$
P_{\beta}: L^{p}\left(\mathbb{D}, d A_{q}\right) \mapsto{ }_{s} \mathcal{A}_{q}^{p}
$$

is a bounded operator. Moreover

$$
I(a) \preceq C\left(1-|a|^{2}\right)^{s}\|f\|_{p, q}^{p} .
$$

Proof. The proof is similar to the made in the Theorem 4.6.
Again, we can describe explicitly the intervals (a, b) of the previous theorem.
Proposition 4.4. Let $1<p<\infty, \frac{1}{2}<s<1, \frac{s-p}{p}<q<\frac{1-p+s}{p-1}$ and a, b, β as in Lemma 4.6. Then
i. $(a, b)=\left(-1, \frac{q+1-p}{p}\right)$ if and only if $\frac{s-p}{p}<q<\frac{2-p-s}{p-1}$.
ii. $(a, b)=\left(-1, \frac{p q+s-1}{p}\right)$ if and only if
ii.1 $1<p<\frac{s}{2 s-1}$ and $\frac{2-p-s}{p-1}<q<\frac{1-p+s}{p-1}$ or
ii.2 $\frac{s}{2 s-1}<p<\infty$ and $\frac{s-p}{p}<q<\frac{1-p+s}{p-1}$.
iii. $(a, b)=\left(\frac{q(p-1)-2}{p}, \frac{q+1-p}{p}\right)=\emptyset$
iv. $(a, b)=\left(\frac{q(p-1)-2}{p}, \frac{p q+s-1}{p}\right)=\emptyset$.

Acknowledgment

We devote this article to the professor Dr. Hab. Julian Lawrynowicz.

References

[1] R. Aulaskari, and P. Lappan Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal Complex Analysis and its Applications, Pitman Research Notes in Mathematics 305, Longman Scientific and Technical, Harlow (1994), 136-146.
[2] R. Aulaskari, J. Xiao, and R. Zhao On subspaces and subsets of BMOA and UBC, Analysis 15 (1995), 101-102.
[3] L. L. J. Carmona, L. F. R. Ocampo, L. M. T. Sánchez (2014) Weighted Bergman Spaces. In: S. Bernstein, U. Kähler, I. Sabadini, F. Sommen (eds) Hypercomplex Analysis: New Perspectives and Applications. Trends in Mathematics. Birkhuser, 89-110.
[4] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Springer, New York, 2000.
[5] M. Ortega and J. Fabrega, Pointwise Multipliers and Corona type Theorem, Ann. Inst. Fourier, Grenoble, Tomo 46, No. 1 (1996). 111-137.
[6] J. M. Ortega and J. Fábrega, Corona Type Decomposition in some Besov spaces, Math. Scand. 78 (1996), 93-111.
[7] J. Pérez Hernández, L. F. Reséndis Ocampo, and L. M. Tovar Sánchez Some hyperbolic classes of analytic functions in the unit disk, Bol. Soc. Mat. Mex. (2015) 21:171. doi:10.1007/s40590-015-0062-x
[8] R. Zhao, On a general family of function spaces. Ann. Acad. Sci. Fenn. Math. Diss. 105 (1996a).

Luis Javier Carmona Lomeli
Universidad Autónoma Metropolitana, Unidad Iztapalapa
C.B.I.

Email: carmona_406@hotmail.com
Lino Feliciano Reséndis Ocampo
Universidad Autónoma Metropolitana, Unidad Azcapotzalco
C.B.I.

Apartado Postal 16-306 C.P. 02200 México 16
D.F. Area de Análisis Matemático y sus Aplicaciones.

Email: lfro@correo.azc.uam.mx

Presented by Adam Paszkiewicz at the Session of the Mathematical-Physical Commission of the Łódź Society of Sciences and Arts on October 29, 2019.

WAŻONE PRZESTRZENIE BERGMANA I PROJEKCJE BERGMANA

Streszczenie

Wiadomo, że gdy $-1<q, \beta<\infty$, projekcja Bergmana P_{β} jest ograniczonym operatorem działajạcym z przestrzeni $L^{p}\left(\mathbb{D}, d A_{q}\right)$ na przestrzeń Bergmana \mathcal{A}_{q}^{p} wtedy i tylko wtedy, gdy $q+1<(\beta+1) p$. W pracy badany jest operator Bergmana P_{β} z przestrzeni $L^{p}\left(\mathbb{D}, d A_{q}\right) \mathrm{w}$ przestrzeń Bergmana z wagạ ${ }_{s} \mathcal{A}_{q}^{p}$ i jest udowodnione, że P_{β} jest ograniczonym operatorem dla pewnych wartości β, p, q oraz s, a w szczególności spełnia warunek $q+1 \geq(\beta+1) p$. Tak wiȩc praca dotyczy klas funkcji na kole jednostkowym, stanowia̧cych przestrzenie Banacha przy odpowiednich normach zadanych całkami, z pewnych potȩg modułu z odpowiednimi gȩstościami. Projekcje Bergmana to pewne uogólnienia transformaty Möbiusa na takich przestrzeniach.

Stowa kluczowe: przetrzeń Banacha, przestrzeń Bergmana \mathcal{A}_{q}^{p}, przestrzeń ważona

