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Summary

In this paper the new thermal model called Dual-Phase-Lag model has been inves-

tigated. This method is reasonable for nanometric structures which are more and more

popular nowadays. However, during its numerical implementation, some problems can oc-

cur. Moreover, the simulation process can take a long period of time. Thus, it is needed

to find some approximation scheme of the Dual-Phase-Lag model, which provides highly

accurate results and simultaneously reduces time of simulation. Due to these reasons, in-

vestigation presented in this paper focuses on the determination of the approximation of

the Dual-Phase-Lag model based on the Grünwald-Letnikov derivative definition. Moreover,

this approximation takes into consideration the time and space derivative at the same time.
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approximation, Fourier-Kirchhoff modification, fractional order time derivative

1. Introduction

The continuous development of the technology and growth of customers demands

and needs led to production totally new and modern electronic appliances. More-

over, new type of technical areas such as artificial intelligence, machine learning,

deep learning or imagine recognition require more computational power and more

efficient electronic structures. Many modern appliances offer different functions in

one equipment. Simultaneously, the size of created devices is getting smaller and

smaller. These reasons and requirements cause meaningful growth of devices’ oper-

ation frequencies. It causes significant heat density generation inside the electronic

structures what can lead to occurrence of thermal problems. The problems related

to proper operation of the device can appear and, consequently, damages or mal-
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functions may take a place. Moreover, new designs of integrated circuit is needed

and currently significantly bigger number of transistors is implemented inside these

structures than in the past. Taking into account the small size, the big number of

electronic component near each other, higher generation of the heat and increase of

operation frequencies, it can occur that new phenomena can be observed. Thus, it

is crucial to proper plan of modern electronic devices. One of the very important

aspect during the designing and arrangement of electronic component processes is

determination of the expected temperature distribution. It will allow avoiding the

thermal malfunctions and increase the efficiency of devices operation. Due to these

facts, new thermal solutions are needed.

The thermal methodology considered in this paper is called Dual-Phase-Lag

(DPL). This thermal model was described and postulated by Tzou in 1995 [1]. The

model contains two parameters related to the time lags, the heat flux and the tem-

perature time lags. As it was described in [2], this approach is relevant for nanometric

structures. Its mathematical form can be expressed by the following equation:





cv
∂T (x,y,t)

∂t = −q (x, y, t)

q (x, y, t) + τq
∂q(x,y,t)

∂t = −k∇T (x, y, t)− kτT ∂∇T (x,y,t)
∂t

(1)

Moreover, as it was described in [3], the DPL model is a modification of the clas-

sical Fourier-Kirchhoff (FK) approach. Furthermore, the application of DPL model

is relevant in the case of hyperbolic as well as parabolic cases. It causes that DPL

model can have wide range of application. However, the form of DPL heat model

is complex than the FK one, thus during its numerical application some difficulties

can occur. First of all, the direct numerical implementation of DPL model produces

huge computational complexity. Secondly, when the analyzed structure is charac-

terized by a big number of different components, the bigger number of discretiza-

tion nodes in simulation process is needed. It causes the increase of simulation time

and demands more computational power. Taking into account these disadvantages,

some approximation of the full DPL model, which will produce very accurate results

and simultaneously the time of computation will be acceptable, is required. Thus,

in this paper the determination of the approximation of DPL model is considered.

This approximation is based on the definition of the Grünwald-Letnikov derivative.

Moreover, the Grünwald-Letnikov definition has been applied to the time and space

derivative of the temperature at the same time.

2. Grünwald-Letnikov Implementation

The form of the Grünwald-Letnikov fractional derivative can be described by the

following formula [4]:
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Dα
0,vu(v) =

m−1∑

k=0

u(k)(0)v−α+k

Γ(−α+ k + 1)
+

1

m− α

∫ v

0

(v − τ)m−α−1u(m)(τ)dτ (2)

However, in order to use the Finite Difference Method to obtain the numerical

solution of the temperature distribution in modern electronic structures, the following

form of Grünwald-Letnikov derivatives for time and space order derivative have been

delivered. Their mathematical forms present as follows:

Dαt
0,tu(t)GL = lim

∆t→0

1

∆tαt

N∑

k=0

(−1)k
(
αt
k

)
u(t− k∆t) (3)

Dαx
0,xu(x)GL = lim

∆x→0

1

∆xαx

N∑

k=0

(−1)k
(
αx
k

)
u(x− k∆t+

αx∆x

2
) (4)

Moreover, other simplicity has been applied. The binomial coefficient visible in

equations above, has been replaced by its generalized form prepared for non-integer

aguments using the special Γ function. The definition of the Grünwald-Letnikov

derivatives has been applied to the following form of the FK equation:

cv
∂T (x, t)

∂t
= k∆T (x, t) (5)

using the following discrete forms to approximate the temperature time derivative

and the Laplace operator of the temperature according to two below formulas, re-

spectively:

∂T (x, t)

∂t
=

1

∆tαt

round(αt,0)∑

k=0

(−1)k
Γ(αt + 1)

Γ(k + 1)Γ(αt − k + 1)
T (x, t− k∆t) (6)

∆T (x, t) =
1

∆xαx

round(αx,0)∑

k=0

(−1)k
Γ(αx + 1)

Γ(k + 1)Γ(αx − k + 1)
T (x−k∆x+

αx∆x

2
, t) (7)

Presented formulas have been employed to change the classical FK approach and to

obtain the approximation scheme of the DPL model. Such modified FK model has

been called by the Authors as space and time GL FK model.

All considerations presented in this paper has been tested using the two-dimensio-

nal square slab. Each dimension of this structure has 5 nm of length. Furthermore,

the assumption that the heat flux was located in one of the corners of this slab has

been made. Mentioned heat flux has been generated outside the structure. Moreover,

on the edges neighbouring with the heated corner, the adiabatic boundary conditions

have been imposed. On the other ones, the zero boundary conditions have been used.

The investigated structure has been discretized in order to use the Finite Difference
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Method to obtain the temperature distribution inside the the slab. The visualization

of mentioned structure and the scheme of the structure nodes’ numbering can be

found in [5].

3. Simulations

The simulations focus on temperature distribution determination inside investigated

nanosized electronic structure. The first analysis was related to the determination of

proper values of the orders of derivatives for both the space and time variables. During

the consideration, different values of the space as well as the time orders of derivatives

have been tested using the space and time GL FK formula. Figures 1 - 3 present

analyses related to the change of the value of the order of temperature time derivative

and fixed value of the space one. In these figures, the order of the space temperature

derivative was less than 2. Moreover, in all figures the FK results, marked by dark

solid line, have been added to make the comparison and interpretation easier.

Fig. 1. Comparison of normalized temperature rises in heating node for temperature space
derivative order equal to 1.55 and different orders of temperature time derivative

Figure 1 presents results obtained for space order αx equal to 1.55 and the value

of the time order derivative changes up to 1.45. As it is visible, obtained results

strongly fluctuate. It can be suspected that considered cases are characterized by big

numerical errors and do not provide proper results. Moreover negative values mean

that the results are underestimated.

Figure 2 demonstrates the character of change of the temperature rises in the case
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when the space derivative order is equal to 1.75 and the order of the time derivative

is changing similarly to the previous analyses. As it is shown, results seem to be more

reliable than in the previous case. Two cases marked by pink and blue dashed lines

are visible on the left side of the FK outputs. However, the character of obtained

temperature rise in relation to analyzed parameter values is very similar.

Fig. 2. Comparison of normalized temperature rises in heating node for temperature space
derivative order equal to 1.75 and different orders of temperature time derivative

Figure 3 shows the dependence of the temperature rise in the case when space

derivative order is equal to 1.95 and the time derivative order has the same values like

in the previous cases. As it is observed, the character of change is also vary similar

in all investigated cases. Two cases appear on the left side of the FK model while

the remaining ones are visible on the right side. However, it can be observed that in

the case of space derivative order closer to 2 the obtained results are located closer

to the FK results. Thus, if the space derivative order value is closer to 2, the space

and time GL FK model is less shifted in comparison to the original FK approach.

Moreover, it occurred that for space derivative order approximately equal to 2 and

for time derivative order equal to 1, the produced results are very similar to the FK

model.

Next, analysis presented in Figure 4 focuses on the determination of the temper-

ature rises for space and time GL FK model in the case when the space derivative

order is equal to 2 and the time derivative order is changing. As it is demonstrated,

for temperature time derivative smaller than 1 obtained results are placed on the left

side of the FK model curve. Thus, they can be omitted in further analyses due to
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Fig. 3. Comparison of normalized temperature rises in heating node for temperature space
derivative order equal to 1.95 and different orders of temperature time derivative

Fig. 4. Comparison of normalized temperature rises in heating node for temperature space
derivative order equal to 2.00 and different orders of temperature time derivative

the fact that DPL model results are shifted to the right in relation to the FK one.

As it can be observed, for the space derivative order equal to 2 and time derivative

order equal to 1, the character of change of the temperature rises is exactly the same
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as in the case of the FK model. Furthermore, for higher value of the time derivative

order, the bigger shift is observed.

On the other hand, results presented in Figures 5 - 7 have been obtained for

the temperature space derivative order value higher than 2. As it is visible, in all

demonstrated cases obtained results are characterized by significant errors. In Figure

5 the character of temperature rise change differs for different cases, while in Figure

6 and Figure 7 this dependence is not clearly visible and the steady state is char-

acterized by the zero temperature rise, what, of course, is erroneous result. Thus,

in further analyses, cases presented in Figures 5 - 7, i.e. values of the temperature

space derivative order greater than 2, will not be investigated. Moreover, in order to

obtain the DPL approximation using the space and time GL FK model, the cases of

temperature time derivative order is smaller than 1, also will not be taken into con-

sideration. Therefore, the investigations are based on results obtained for the space

derivative order values from the interval [1.56; 2.00] and for the time derivative order

values belonging to the interval [1.00; 1.49].

Fig. 5. Comparison of normalized temperature rises in heating node for temperature space
derivative order equal to 2.05 and different orders of temperature time derivative

However, when the value of the temperature time derivative is greater than 1, the

temperature rise has a specific character. Firstly, it behaves similarly to the classical

temperature rise, however after reaching the maximal normalized temperature rise

value, it decreases to the certain level. Moreover, this decrease is directly proportional

to the increase of the value of order αt. It means that the bigger value of αt, the

bigger decrease of the temperature rise after reaching the maximal point. Thus, the

compensation of the temperature rise is needed. It has been carried out by replacing



104 T. Raszkowski, A. Raszkowska, and M. Zubert

the decreased temperature rise values after reaching the maximal value by this max-

imum temperature rise value. After implementing the compensation procedure, the

model has been called by the Authors as modified space and time GL FK model.

Fig. 6. Comparison of normalized temperature rises in heating node for temperature space
derivative order equal to 2.25 and different orders of temperature time derivative

Fig. 7. Comparison of normalized temperature rises in heating node for temperature space
derivative order equal to 2.45 and different orders of temperature time derivative
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Figures 8 - 10 show the character of change of the temperature rise in the case

when both space and time temperature derivative orders are from mentioned inter-

vals. Figure 8 demonstrates temperature rises when the value of the space derivative

order is constant, equal to 1.56, and value of the time derivative order is changing

from 1.00 to 1.49.

Fig. 8. Comparison of normalized temperature rises in heating node obtained using modified
space and time GL FK models for temperature space derivative order equal to 1.56 and
different orders of temperature time derivative

On the other hand, Figure 9 and Figure 10 present results obtained for different

values of the time derivative order, while the value of the order of space derivative is

equal to 1.75 and 2.00, respectively. As it is shown, all determined curves are observed

on right side of the FK model. Moreover, character of these lines is very similar and

visible shift is noticed. Furthermore, it can be concluded that for bigger value of the

space derivative oder, the obtained results appear closer to the FK model output.

On the contrary, for higher value of the time derivative order, the determined results

are located further from the FK curve.

Based on the previous results, it is known that the behaviour of the temperature

rises in heating nodes are similar for FK, DPL and modified space and time GL FK

models. Thus, it is also worth analyzing the behaviours of temperature distributions

in the entire structure. The comparison of temperature rise in the steady state ob-

tained in the case of FK and modified space and time GL FK models have been

presented in Figures 11 - 12.

As it is visible, for the steady state the temperature distributions, derived by
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Fig. 9. Comparison of normalized temperature rises in heating node obtained using modified
space and time GL FK models for temperature space derivative order equal to 1.75 and
different orders of temperature time derivative

Fig. 10. Comparison of normalized temperature rises in heating node obtained using mod-
ified space and time GL FK models for temperature space derivative order equal to 2.00
and different orders of temperature time derivative
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Fig. 11. Comparison of normalized steady state temperature rises in entire structure for
FK and modified space and time GL FK models in the case of αx = 2 and αt = 1

Fig. 12. Comparison of normalized steady state temperature rises in entire structure for
modified space and time GL FK models for chosen values of αx and αt parameters

the FK model and modified space and time GL FK one for αx and αt, are exactly

the same, what confirms the previous observations. Of course, it is correct from the

physical point of view, because for modified space and time GL FK model reduces

to the classical FK one for αx and αt. However, the steady state temperature rise in

entire structure is different for other pairs of αx and αt, what is presented in Figure

12. It means that the modified space and time GL FK model can be used for the

heating nodes and it should not be applied in the case of the remaining part of the
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structure.

Therefore, it can be stated that making some changes of the values of αx and αt
parameters, the DPL model for certain pair of τq and τT can be approximated in the

heating node. To prove this statement, the fitting procedure of modified space and

time GL FK curves to the DPL ones has been carried out. The fitting results are

demonstrated in 13. As it can be seen, dark lines present the DPL approaches for

chosen pairs of τq and τT parameters, while the colorful lines present the respective

modified space and time GL FK outputs. It is clearly visible that the approximation

of the DPL model using the modified space and time GL FK one is possible in the

heating node. Moreover, the accuracy of this fitting is at very high level.

Fig. 13. Comparison of temperature rise in heating node for DPL model for chosen τq and
τt parameters and fitted modified space and time GL FK model for found αx and αt values

Then, the equations presented the dependence between the space and time deriva-

tive orders and τq and τT parameters have been determined and presented below.

αx = ax · τ bxT + cx (8)

αt = at · τ btT + ct (9)

where:

ax = −2.214E65 · τ3.3565
q (10)

bx = 2.854 · τq0.05437 (11)
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cx = −3.18E5 · τ0.3671
q + 1.977 (12)

The coefficient of determination of parameters fitting of ax coefficient, represented

by formula 10, is equal to 0.7069, while for the bx and cx coefficients, represented by

equations 11 and 12, the coefficient of determination is equal to 0.7947 and 0.8586,

respectively, what confirms relatively good fitting.

On the other hand, model parameters of αt value can be derived as follows:

at = −1.424E10 · τ0.4223
q + 1540 (13)

bt = −6.941E5 · τq0.4223 + 0.3216 (14)

ct = −1.301E5τ0.4213
q + 1.02 (15)

Coefficient of determination values are equal to 0.8567, 0.7299 and 0.7336 for at, bt
and ct expressions, respectively.

The above formulas allow obtaining very good approximation of the DPL model

for the entire period of the thermal analysis in the heating. It is also known that it

is not possible to approximate the DPL model by the modified space and time GL

FK one in the entire structure in the steady state. Thus, it is also worth analyzing

the transient analysis of temperature rises obtained using the modified space and

time GL FK model. The comparison of the temperature distributions obtained in

the entire structure for DPL and respective modified space and time GL FK model,

which parameters αx and αt have been calculated according to formulas 8 - 15, are

presented in Figures 14 - 16.

Fig. 14. Comparison of temperature distributions in entire structure in the case of modified
space and time GL FK and DPL models in initial part of the thermal simulations
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Fig. 15. Comparison of temperature distributions in entire structure in the case of modified
space and time GL FK and DPL models in the middle part of DPL temperature rise

Fig. 16. Comparison of temperature distributions in entire structure in the case of modified
space and time GL FK and DPL models in final part of the thermal simulations
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As it is clearly visible, the temperature distributions for both DPL and its re-

spective modified space and time GL FK model coincide only in the heating node

while for the remaining part of the structure obtained temperature distributions do

not agree. Thus, the effective usage of the approximation of the DPL model by the

modified space and time GL FK model is possible only for the heating node.

4. Conclusions

This paper includes considerations related to the determination of the approxima-

tion scheme of Dual-Phase-Lag model. The approximation method uses the Fourier-

Kirchhoff model but the temperature time derivative as well as the space Laplace

operator of the temperature function if the FK formula have been replaced by their

fractional derivative equivalents based on the Grünwald-Letnikov definition.

In order to obtain the answer if such approximation is possible, the comparison

of temperature distributions in investigated rectangular slab, obtained for both the

classical Fourier-Kirchhoff and modified space and time GL FK models, has been

prepared. Firstly, the analyses focus on the determination of proper order values of

the space and time derivatives. Due to this fact, different values of these parameters

have been tested. Primarily, the value of the space derivative order was smaller than

2. Then, investigation was based on the case when the space derivative order was

equal to 2. Next, the space parameter was established as higher than 2. In all cases

the value of the time order derivative has been changed. It occurred that the most

reliable results have been obtained for space derivative order from interval [1.56; 2.00]

and for value of the time derivative order belonging to the interval [1.00; 1.49].

Moreover, it was also occurred that for time derivatives order greater than 1,

the compensation of the temperature rise is needed due to observed decreases under

the maximal temperature in the final part of the thermal analyses. After proposed

compensation, the obtained temperature rises have the similar characters to the FK

and DPL ones. Then, two series of simulations have been prepared. The first one

was related to DPL temperature distributions for different pairs of the heat flux

and the temperature time lag values. The second one contained the temperature

distributions obtained using the modified space and time GL FK model for different

values of space and time derivative orders. Received outputs have been compared

and for each pair of DPL time lags the respective pair of space and time derivative

orders have been found.

Then, the formulas combining the space as well as time derivative orders and the

heat flux and temperature time lag values have been determined, what confirmed

the possibility of the approximation of DPL model by the modified space and time

GL FK one in the heating node. The accuracy of determined approximation scheme

is at very high level, what is confirmed by the relatively high value of the coefficient
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of determination and relatively small values of sum of squared errors and the root-

mean-square error.

Furthermore, as it was shown, the approximation of the DPL model using the

modified space and time GL FK model is possible only in the case of the heating

node. The remaining part of the structure has to be estimated using other techniques.
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WP LYW ZASTOSOWANIA DEFINICJI POCHODNEJ

TEMPERATURY GRÜNWALDA-LETNIKOVA W CZASIE

I W PRZESTRZENI NA ROZK LAD CIEP LA

S t r e s z c z e n i e
W pracy wykorzystano nowy model termiczny o nazwie Dual-Phase-Lag. Model ten jest

odpowiedni dla struktur nanometrycznych, które obecnie sa̧ coraz bardziej. Jednakże, pod-
czas numerycznej impementacji tego modelu moga̧ pojawić siȩ pewne problemy numeryczne,
zaś czas symulacji może być znacznie wyd lużony w stosunku do zastosowania klasycznego
modelu przep lywu ciep la Fouriera-Kirchhoffa. Z tego powodu, rozważania przedstawione w
pracy dotycza̧ wyznaczenia schematu aproksymacyjnego modelu Dual-Phase-Lag opartego
na zastosowaniu definicji pochodnej temperatury Grünvalda-Letnikowa, jednocześnie w cza-
sie i w przestrzeni.

S lowa kluczowe: model Dual-Phase-Lag, pochodna temperatury Grünvalda-Letnikova,

aproksymacja rozk ladu ciep la, modyfikacja modelu Fouriera-Kirchhoffa, nieca lkowity rza̧d

pochodnej temperatury w czasie i przestrzeni


