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Abstract

The notion of lineally convex domains in the finite-dimensional complex space and
some of their properties are generalized to the finite-dimensional space Cℓmp,q, m ≥ 2,
that is the Cartesian product of m universal Clifford algebras Cℓp,q over the field of
the real numbers. Namely, the separate necessary and sufficient conditions of the local
(Cℓp,q, d1d2 . . . dm)-lineal convexity of domains with smooth boundary are obtained for any
collection d1d2 . . . dm, where dj ∈ {L,R}, j = 1,m. These conditions are a generalization of
the well-known conditions of the local lineal convexity of a domain with smooth boundary,
obtained by B. Zinoviev.
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1 Introduction

The notion of lineal convexity that is studied in the theory of functions of many
complex variables was coined in 1935 by Heinrich Behnke and Ernst F. Peschl [1],
but it has been actively used only since the 60s due to the works of André Martineau
[2], [3] and Lev A. Aizenberg [4], [5] who considered the algebra of complex numbers
C over the field of real numbers R, and defined a lineally convex set in the finite-
dimensional complex space Cn, n ⩾ 2, independently in slightly different ways.

Consider a complex hyperplane

ΠC(w) :=

z = (z1, . . . ,zn) ∈ Cn :

n∑
j=1

cj (zj−wj) = 0, (c1, . . . , cn) ∈ Cn \ {0}

 .

Definition 1.1. (A. Martineau [2]) A set E ⊂ Cn is said to be lineally convex
in the sense of Martineau if its complement is a union of complex hyperplanes.



The lineal convexity of a set E ⊂ Cn in the sense of Martineau is equivalent
to the condition that, for any point w = (w1,w2 . . . ,wn) ∈ Cn \ E, there exists a
complex hyperplane ΠC(w) not intersecting E.

Definition 1.2. (L. Aizenberg [4]) A domain D ⊂ Cn is said to be lineally convex
if, for every boundary point w = (w1,w2 . . . ,wn) ∈ ∂D, there exists a complex
hyperplane ΠC(w) not intersecting D.

A domain lineally convex in the sense of Martineau is obviously lineally convex by
Aizenberg. In [6] it is proved that there exist domains lineally convex by Aizenberg
and not lineally convex in the sense of Martineau. The notion of lineal convexity in
the sense of the Aizenberg definition is also known as weak lineal convexity [7],
[8].

Definition 1.3. ([1, 9, 10]) A domain D ⊂ Cn is said to be locally lineally convex
if, for every boundary point w = (w1,w2 . . . ,wn) ∈ ∂D, there exists a complex
hyperplane ΠC(w) passing through w but not intersecting D in some neighborhood
of the point w.

There is also another definition of local lineal convexity:

Definition 1.4. ([11]) An open set D ⊂ Cn is said to be locally lineally convex
in the sense of Kiselman if, for every point w ∈ Cn, there exists a neighborhood
U of w such that D ∩ U is lineally convex.

Local lineal convexity in the sense of Kiselman implies local lineal convexity for all
open sets. But there exists a bounded domain in C2 with Lipschitz boundary which
is locally lineally convex but not locally lineally convex in the sense of Kiselman (see
Example 4.4 in [11]).

H. Behnke and E. Peschl in [1] proved that global lineal convexity follows from
the local one for bounded domains with a smooth boundary in C2. For the case
of Cn this result was obtained in 1971 by Alexander P. Yuzhakov and Viachelsav
P. Krivokolesko [9]. In the work [1], the separate necessary and sufficient analytical
conditions of local lineal convexity of domains with smooth boundary in C2 were also
obtained. In 1971 B. S. Zinoviev got a generalization of Behnke-Peschl conditions
for the case Cn, n ⩾ 2, in terms of nonnegativity and positivity of the differential of
the second order of a real function defining a regular domain with smooth boundary,
respectively. Moreover, the sign of the differential is determined on the boundary of
the domain and on the vectors of a complex hyperplane tangent to the domain [10].
In 1998 Christer O. Kiselman managed to obtain the criterion of lineal convexity of
a bounded domain in the space Cn with boundary of the class C2 in terms of non-
negativity of the differential of the second order of the function defining the domain
[8]. In 2008 Lars Hörmander improved Kiselman’s result by loosening conditions
imposed on the boundary of the domain [12].

In 1980s, the theory of lineally convex sets begins to be generalized to the spaces
of hypercomplex numbers by Henzel A. Mkrtchyan and Yuri B. Zelinskii [13], [14].

Conditions similar to those of Zinoviev were obtained for the algebra of real
quaternions [15], the algebra of real generalized quaternions [16], and Clifford alge-
bras [17]. Moreover, all these papers consider hyperplanes with equations, where
constants are multiplied by the variables either only on the right or only on the left.



The present paper considers the space Cℓmp,q, m ≥ 2, that is the Cartesian product
of m universal Clifford algebras Cℓp,q over the field of the real numbers. The main
purpose of this paper is to obtain analytical conditions similar to those of Zinoviev
on the vectors of the hyperplanes in the space Cℓmp,q with all possible equations, where
in some terms the constants are multiplied by the variables on the right and in the
remaining terms on the left. In chapter 2 the real linear and quadratic forms are
presented in terms of the elements of Clifford algebra Cℓp,q and a generalization of the
complex formal partial derivatives to the algebra Cℓp,q is obtained. In chapter 3 the
notion of lineal convexity and the conditions of local lineal convexity are generalized
to the space Cℓmp,q.

2 Real linear and quadratic forms in Clifford
algebras

Consider the universal Clifford algebra Cℓp,q, p, q ∈ Z, p, q ≥ 0, p + q = n > 0
[18], which is associative over the field of the real numbers, with the identity, and
generated by the elements {sj}nj=1 satisfying the conditions

s2j =

{
1, j = 1, 2, . . . , p,

−1, j = p+ 1, . . . , p+ q;

sjsk + sksj = 0, j ̸= k.

(1)

The basis of Clifford algebra is constructed as follows. For every
α := {α1, α2 . . . , αk} ⊂ N , where N := {1, . . . , n} and

1 ≤ α1 < α2 < . . . < αk ≤ n,

we define
e∅ := 1, eα := sα1

sα2
. . . sαk

, eN := s1s2 . . . sn.

Then the set of all elements {eα : α ⊂ N} is the basis of Clifford algebra Cℓp,q and
dim Cℓp,q = 2n. Consider some properties of the basis elements. It is easy to see
that

e2α = ±1, α ⊂ N.

Indeed, e2∅ = 1. For the other α ⊂ N , using formulas (1), we obtain:

e2α = sα1
sα2

. . . sαk
sα1

sα2
. . . sαk

= (−1)
1
2k(k−1)sα1

sα1
sα2

sα2
. . . sαk

sαk
=

= (−1)
1
2k(k−1)+b,

where b is the number of multipliers sαp
, αp ∈ α, of the product sα1

sα2
. . . sαk

such that s2αp
= −1. Thus, each element eα has the inverse element

e−1
α =

eα
e2α

= ±eα. (2)



Let ♯α be the number of the elements of the set α. Then, considering (1),

sjeα = (−1)♯αeαsj , j /∈ α, (3)

sjeα = (−1)♯α−1eαsj , j ∈ α, (4)

for any sj , j = 1, n, and any α ⊂ N .
Let ♯αβ be the number of the elements of the set α ∩ β for any α, β ⊂ N . Then,

considering conditions (3), (4), we obtain:

eαeβ = (−1)♯α(♯β−♯αβ) · (−1)(♯α−1)♯αβeβeα = (−1)(♯α♯β−♯αβ)eβeα. (5)

For the convenience, we numerate the basis elements of Clifford algebra from 0
to 2n − 1 and represent each element a ∈ Cℓp,q as:

a =

2n−1∑
k=0

akek, (6)

where ak ∈ R and ek, k = 0, 2n − 1, are the elements of the basis, moreover, e0 = 1.
Consider the vector space

Cℓmp,q := Cℓp,q × Cℓp,q × . . .× Cℓp,q︸ ︷︷ ︸
m

with the elements z := (z1, z2, . . . ,zm) ∈ Cℓmp,q, where

zj :=

2n−1∑
k=0

xj
kek ∈ Cℓp,q, xj

k ∈ R, k = 0, 2n − 1, j = 1,m.

Let

∥z∥ =

√√√√ m∑
j=1

2n−1∑
k=0

∣∣∣xj
k

∣∣∣2
and U(w) = {z : ∥z −w∥ < δ}.

Consider the following 2n × 2n matrices defined recursively:

Γ1 =

(
1 1
1 −1

)
, Γ2 =

(
Γ1 Γ1

Γ1 −Γ1

)
, . . .

. . . ,Γn =

(
Γn−1 Γn−1

Γn−1 −Γn−1

)
=


1 1 . . 1 1
1 −1 . . 1 −1
...

...
. . .

...
...

1 1 . . (−1)n−1 (−1)n−1

1 −1 . . (−1)n−1 (−1)n

 .

(7)



Prove by the induction that

Γ−1
n =

1

2n
Γn. (8)

Γ1Γ1 =

(
1 1
1 −1

)(
1 1
1 −1

)
= 2

(
1 0
0 1

)
.

Consider the following property of the block matrices (see [19]):(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
=

(
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)
,

(9)
where Aij , Bij , i, j = 1, 2, are square matrices of the same order. Let En be the
2n × 2n unit matrix and Θn be the 2n × 2n matrix consisting of zeros. Then

Γ2Γ2 =

(
Γ1 Γ1

Γ1 −Γ1

)(
Γ1 Γ1

Γ1 −Γ1

)
=

(
2Γ1Γ1 Θ1

Θ1 2Γ1Γ1

)
=

=

(
22 E1 Θ1

Θ1 22 E1

)
= 22E2.

Suppose Γn−1Γn−1 = 2n−1En−1. Then, considering (9),

ΓnΓn =

(
Γn−1 Γn−1

Γn−1 −Γn−1

)(
Γn−1 Γn−1

Γn−1 −Γn−1

)
=

=

(
2Γn−1Γn−1 Θn−1

Θn−1 2Γn−1Γn−1

)
=

(
2n En−1 Θn−1

Θn−1 2n En−1

)
= 2nEn.

This immediately implies the formula (8).
Now consider the following matrices

Zj =


z0
j

z1
j

. . .

z2n−1
j

 , Xj =


xj
0e0

xj
1e1
. . .

xj
2n−1e2n−1

 , j = 1,m.

Let
Zj = ΓnX

j . (10)

Then

zl
j := γl0x

j
0e0 + γl1x

j
1e1 + · · ·+ γl(2n−1)x

j
2n−1e2n−1, l = 0, 2n − 1, j = 1,m,

where γlp, l, p = 0, 2n − 1, are the elements of Γn.
From now on, for any element a ∈ Cℓp,q, the elements al ∈ Cℓp,q, l = 0, 2n − 1,

with upper index l in bold are obtained from a by multiplying the elements of the lth
row of the matrix Γn by the respective summands akek in the basis decomposition
(6) of a.



We obtain from (10) and (8):

Xj =
1

2n
ΓnZj .

That is to say,

xj
l =

1

2n
e−1
l

2n−1∑
p=0

γlpz
p
j =

1

2n

(
2n−1∑
p=0

γlpz
p
j

)
e−1
l , j = 1,m, l = 0, 2n − 1. (11)

Consider a real linear form
m∑
j=1

2n−1∑
l=0

ajlx
j
l ,

where ajl ∈ R, ajl = const, j = 1,m, l = 0, 2n − 1. Substitute xj
l for their expressions

from (11) and group together the respective components with zp
j , j = 1,m , l =

0, 2n − 1 fixing j and p. Then we obtain

2n−1∑
l=0

ajlx
j
l =

1

2n

2n−1∑
l=0

ajl e
−1
l

2n−1∑
p=0

γlpz
p
j =

2n−1∑
p=0

(
1

2n

2n−1∑
l=0

γlpa
j
l e

−1
l

)
zp
j =

=

2n−1∑
p=0

ap
jz

p
j , j = 1,m,

or

2n−1∑
l=0

ajlx
j
l =

1

2n

2n−1∑
l=0

ajl

(
2n−1∑
p=0

γlpz
p
j

)
e−1
l =

2n−1∑
p=0

zp
j

1

2n

2n−1∑
l=0

γlpa
j
l e

−1
l =

=

2n−1∑
p=0

zp
j a

p
j , j = 1,m,

where

ap
j =

1

2n

2n−1∑
l=0

γlpa
j
l e

−1
l , j = 1,m, p = 0, 2n − 1. (12)

Then
m∑
j=1

2n−1∑
l=0

ajlx
j
l =

m∑
j=1

Aj ,

where

Aj =

2n−1∑
p=0

zp
j a

p
j =

2n−1∑
p=0

ap
jz

p
j , j = 1,m.



Let us rewrite the expression of ap
j in terms of indices i, q.

aq
i =

1

2n

2n−1∑
k=0

γkqa
i
ke

−1
k , i = 1,m, q = 0, 2n − 1.

Now we consider a real quadratic form

m∑
j,i=1

2n−1∑
l,k=0

ajilkx
j
lx

i
k, (13)

where ajilk ∈ R are the elements of a symmetric 2nm× 2nm matrix(
ajilk

)
, ajilk = aijkl, j, i = 1,m, k, l = 0, 2n − 1, (14)

presented as follows:

(
ajilk

)
=


a11 a12 . . a1m

a21 a22 . . a2m

...
...

. . .
...

am1 am2 . . amm

 ,

where

aji =


aji00 aji01 . . aji0(2n−1)

aji10 aji11 . . aji1(2n−1)

...
...

. . .
...

aji(2n−1)0 aji(2n−1)1 . . aji(2n−1)(2n−1)

 , i, j = 1,m.

Multiplying ap
j by aq

i and replacing the products ajl a
i
k with the elements ajilk of the

matrix (14) we get the following elements of the Clifford algebra:

apq
ji =

1

22n

2n−1∑
l,k=0

γlpγkqa
ji
lke

−1
l e−1

k , j, i = 1,m, p, q = 0, 2n − 1. (15)

Then

2n−1∑
l,k=0

ajilkx
j
lx

i
k =

m∑
j,i=1

2n−1∑
l,k=0

ajilk

(
e−1
l

1

2n

2n−1∑
p=0

γlpz
p
j

)
xi
k =

=

2n−1∑
l,k=0

ajilke
−1
l

1

2n

2n−1∑
p=0

γlpx
i
kz

p
j =

2n−1∑
l,k=0

ajilke
−1
l

1

2n

2n−1∑
p=0

γlp

(
e−1
k

1

2n

2n−1∑
q=0

γkqz
q
i

)
zp
j

=
1

22n

2n−1∑
p,q=0

2n−1∑
l,k=0

γlpγkqa
ji
lke

−1
l e−1

k zq
i z

p
j =

2n−1∑
p,q=0

apq
ji z

q
i z

p
j , i, j = 1,m.



Similary, substituting in turn xj
l , x

i
k in (13) for their different expressions from (11),

it can be obtained that

2n−1∑
l,k=0

ajilkx
j
lx

i
k =

2n−1∑
p,q=0

zp
j a

pq
ji z

q
i =

2n−1∑
p,q=0

zq
i z

p
j a

pq
ji , i, j = 1,m.

Thus, the real quadratic form (13) can be expressed in terms of the elements zp
j , zq

i ,
apq
ji as follows:

m∑
j,i=1

Aji, where Aji =

2n−1∑
p,q=0

apq
ji z

q
i z

p
j =

2n−1∑
p,q=0

zp
j a

pq
ji z

q
i =

2n−1∑
p,q=0

zq
i z

p
j a

pq
ji .

Moreover,

m∑
j,i=1

2n−1∑
p,q=0

apq
ji z

p
j z

q
i =

m∑
j,i=1

2n−1∑
p,q=0

zq
i a

pq
ji z

p
j =

m∑
j,i=1

2n−1∑
p,q=0

zp
j z

q
i a

pq
ji ̸=

m∑
j,i=1

2n−1∑
l,k=0

ajilkx
j
lx

i
k,

Indeed,

2n−1∑
p,q=0

apq
ji z

p
j z

q
i =

1

22n

2n−1∑
p,q=0

2n−1∑
l,k=0

γlpγkqa
ji
lke

−1
l e−1

k

2n−1∑
g=0

γpgx
j
geg

2n−1∑
h=0

γqhx
i
heh =

=
1

22n

2n−1∑
l,k=0

2n−1∑
g,h=0

ajilkx
j
gx

i
he

−1
l e−1

k egeh

2n−1∑
p,q=0

γlpγkqγpgγqh.

Considering the fact that

1

2n

2n−1∑
p=0

γlpγpg =

{
1, g = l,
0, g ̸= l,

1

2n

2n−1∑
q=0

γkqγqh =

{
1, h = k,
0, h ̸= k,

by (8), we obtain

2n−1∑
p,q=0

apq
ji z

p
j z

q
i =

2n−1∑
l,k=0

ajilkx
j
lx

i
ke

−1
l e−1

k elek.

Thus,
2n−1∑
p,q=0

apq
ji z

p
j z

q
i ̸=

2n−1∑
l,k=0

ajilkx
j
lx

i
k,

since there exist indices l, k such that elek ̸= ekel. Moreover, considering (2), (5),
e−1
l e−1

k = ±e−1
k e−1

l .
Similarly,

2n−1∑
p,q=0

zq
i a

pq
ji z

p
j =

2n−1∑
l,k=0

ajilkx
j
lx

i
keke

−1
l e−1

k el,



2n−1∑
p,q=0

zp
j z

q
i a

pq
ji =

2n−1∑
l,k=0

ajilkx
j
lx

i
keleke

−1
l e−1

k .

Let ρ(z) = ρ(z) : Rm2n → R, z ∈ Cℓmp,q, z ∈ Rm2n , have the continuous partial
derivatives of the first and the second order at a point w ∈ Rm2n . Then the function
ρ is twice continuously differentiable at the point w and its full differentials of the
first and the second order are defined as follows:

dρ(w) =

m∑
j=1

2n−1∑
l=0

∂ρ(w)

∂xj
l

dxj
l , d2ρ(w) =

m∑
j,i=1

2n−1∑
l,k=0

∂2ρ(w)

∂xi
k∂x

j
l

dxj
l dx

i
k.

Present dρ(w), d2ρ(w) in terms of the elements of Cℓp,q. Let

dzp
j :=

2n−1∑
l=0

γpldx
j
l el, j = 1,m, p = 0, 2n − 1.

Let ajl =
∂ρ(w)

∂xj
l

, ap
j =

∂ρ(w)

∂zp
j

in (12) and ajilk =
∂2ρ(w)

∂xj
l ∂x

i
k

, apq
ji =

∂2ρ(w)

∂zp
j ∂z

q
i

in (15),

w ∈ Cℓmp,q, p, q = 0, 2n − 1. Then

∂ρ(w)

∂zp
j

:=
1

2n

2n−1∑
l=0

γlp
∂ρ(w)

∂xj
l

e−1
l , j = 1,m, p = 0, 2n − 1, (16)

∂2ρ(w)

∂zp
j ∂z

q
i

:=
1

22n

2n−1∑
l,k=0

γlpγkq
∂2ρ(w)

∂xj
l ∂x

i
k

e−1
l e−1

k , j, i = 1,m, p, q = 0, 2n − 1.

And

dρ(w) =

m∑
j=1

Dj , whereDj =

2n−1∑
p=0

∂ρ(w)

∂zp
j

dzp
j =

2n−1∑
p=0

dzp
j

∂ρ(w)

∂zp
j

, (17)

d2ρ(w) =

m∑
j,i=1

Dji, (18)

where

Dji =

2n−1∑
q,p=0

∂2ρ(w)

∂zp
j ∂z

q
i

dzq
i dzp

j =

2n−1∑
q,p=0

dzp
j

∂2ρ(w)

∂zp
j ∂z

q
i

dzq
i =

2n−1∑
q,p=0

dzq
i dzp

j

∂2ρ(w)

∂zp
j ∂z

q
i

.

We may also consider the function ρ(z) as a real function of m2n variables of
Cℓp,q. Indeed, substitut xj

l , j = 1,m, l = 0, 2n − 1, for their values (11) in the
expression of the function ρ(z) = ρ(x1

0, x
1
1, . . . , x

m
2n−1), then

ρ(z) = ρ(x1
0(z

0
1 , z

1
1 . . . , z

2n−1
1 ), x1

1(z
0
1 , z

1
1 . . . , z

2n−1
1 ), . . . ,

xm
2n−1(z

0
m, z1

m . . . , z2n−1
m )) = ρ(z, z1, . . . ,z2n−1),

where zl = (zl
1, z

l
1, z

l
2 . . . z

l
m), l = 1, 2n − 1.



3 Generalized lineal convexity
Let w =

(
w1

0, w
1
1, . . . , w

m
2n−1

)
∈ Rm2n and w = (w1,w2, . . . ,wm) ∈ Cℓmp,q, where

wj =
2n−1∑
l=0

wj
l el, j = 1,m. And let sj =

2n−1∑
l=0

sjl el =
2n−1∑
l=0

(xj
l − wj

l )el = zj − wj ,

j = 1,m.
For a collection d1d2 . . . dm, where dj ∈ {R,L}, j = 1,m, consider a hyperplane

Πd1d2...dm

Cℓp,q (w) :=

s = (s1, s2, . . . , sm) ∈ Cℓmp,q :

m∑
j=1

Qj
dj

= 0,

Qj
R = sjcj , Qj

L = cjsj , (c1, c2, . . . , cm) ∈ Cℓmp,q \ {0}

}
, (19)

which is called d1d2 . . . dm-analytic.
We say that two collections d′1d

′
2 . . . d

′
m and d′′1d

′′
2 . . . d

′′
m, where d′j , d

′′
j ∈ {R,L},

j = 1,m, are different, if there exists at least one index k such that d′k ̸= d′′k . It is
not difficult to prove that the number of all collections d1d2 . . . dm equals 2m. Thus,
for a fixed point w ∈ Cℓmp,q and a fixed constant (c1, c2, . . . , cm) ∈ Cℓmp,q \ {0}, there
exist 2m different hyperplanes Πd1d2...dm

Cℓp,q (w) in general case.
A d1d2 . . . dm-analytic hyperplane Πd1d2...dm

Cℓp,q (w) (19) is called (locally) support-
ing for a domain Ω ⊂ Cℓmp,q at a point w ∈ ∂Ω if it does not intersect Ω (in some
neighborhood of the point w).

Definition 3.1. A domain Ω ⊂ Cℓmp,q is said to be (locally) (Cℓp,q, d1d2 . . . dm)-
lineally convex if it has a (locally) supporting, d1d2 . . . dm-analytic hyperplane
Πd1d2...dm

Cℓp,q (w) at every point w ∈ ∂Ω.

It is obvious that the notion of (C, d1d2 . . . dm)-lineal convexity is equivalent to
the notion of lineal convexity in Definition 1.2 for any collection d1d2 . . . dm.

We say that a hyperplane Πd1d2...dm

Cℓp,q (w) lies in a real hyperplane

ΠRm2n (w) :=

{(
s10, s

1
1, . . . , s

n
(2n−1)

)
∈ Rm2n :

m∑
j=1

2n−1∑
l=0

ajl s
j
l = 0,

(
a10, a

1
1, . . . , a

n
(2n−1)

)
∈ Rm2n \ {0}

}
(20)

if any vector s satisfying the equation of the hyperplane (19) satisfies the equation
of the hyperplane (20).

Lemma 3.2. For any real hyperplane ΠRm2n (w) and any collection d1d2 . . . dm, the
hyperplane Πd1d2...dm

Cℓp,q (w) (19) with coefficients cj = a0
j (12) lies in ΠRm2n (w).

Proof. Note that γl0 = 1, l = 0, 2n − 1 (see (7)). Substitute the constants cj in (19)

for the values of a0
j (12) and, after multiplying by sj =

2n−1∑
p=0

sjpep, group together



the terms with each basis element ek, k = 0, 2n − 1, separately. Set the grouped
expressions to zero. We obtain that the equation in (19) is equivalent to the system
of 2n real equations defining real hyperplanes in the m2n-dimensional real space.
Moreover, the equation obtained after grouping terms with the real unit e0 defines
the real hyperplane ΠRm2n (w). The lemma is proved.

Lemma 3.3. Any convex domain in Rm2n is (Cℓp,q, d1d2 . . . dm)-lineally convex in
Cℓmp,q for any collection d1d2 . . . dm.

Proof. Since a domain is convex, through its any boundary point w, there passes a
real hyperplane ΠRm2n (w) (20) not intersecting the domain (see [20]). Then, for any
collection d1d2 . . . dm, the hyperplane Πd1d2...dm

Cℓp,q (w) (19), where cj = a0
j , j = 1,m

(12), does not intersect the domain by Lemma 3.2. The lemma is proved.

The converse statement is not always true, which shows the following example.
Consider a domain D = D1 × Cℓm−1

p,q ⊂ Cℓmp,q, where D1 ⊂ Cℓ1p,q is a non-convex
domain. The domain D is obviously non-convex. But it is (Cℓp,q, d1d2 . . . dm)-
lineally convex for any collection d1d2 . . . dm, since any boundary point
w = (w1,w2, . . . ,wm) ∈ ∂D is such that w1 ∈ ∂D1, wk ∈ Cℓp,q, k = 2,m, and a
hyperplane with equation s1 = z1−w1 = 0 is d1d2 . . . dm-analytic for any collection
d1d2 . . . dm and supporting for D at w.

Now consider a domain

Ω = {z ∈ Cℓmp,q : ρ(z) = ρ(z, z1, . . . ,z2n−1) < 0} (21)

with the boundary ∂Ω = {z ∈ Cℓmp,q : ρ(z) = 0}, where the function ρ : Cℓmp,q → R
is twice continuously differentiable in a neighborhood of ∂Ω with respect to its real
variables and such that gradρ ̸= 0 everywhere on ∂Ω. Such a domain is called
regular.

A d1d2 . . . dm-analytic hyperplane Πd1d2...dm

Cℓp,q (w), w ∈ ∂Ω, lying in the real hy-
perplane

TRm2n (w) :=

(s10, s11, . . . , sn(2n−1)

)
∈ Rm2n :

m∑
j=1

2n−1∑
l=0

∂ρ(w)

∂xj
l

sjl = 0

 (22)

is called tangent to Ω at the point w. Then, by Lemma 3.2 and considering (16),

where
∂ρ(w)

∂z0
j

=
∂ρ(w)

∂zj
, a d1d2 . . . dm-analytic hyperplane

T d1d2...dm

Cℓp,q (w) :=

(s1, s2, . . . , sm) ∈ Cℓmp,q :

m∑
j=1

Qj
dj

= 0, Qj
R = sj

∂ρ(w)

∂zj
, Qj

L =
∂ρ(w)

∂zj
sj





is tangent for any collection d1d2 . . . dm. If a regular domain Ω ⊂ Cℓmp,q is (locally)
(Cℓp,q, d1d2 . . . dm)-lineally convex for a fixed collection d1d2 . . . dm, then the tangent
hyperplane T d1d2...dm

Cℓp,q (w) is the unique d1d2 . . . dm-analytic hyperplane (locally) sup-
porting for Ω at any boundary point w by smoothness of ∂Ω and considering the
fact that

TRm2n (w) ≡

(s1, s2, . . . , sm) ∈ Cℓmp,q :

m∑
j=1

Dj = 0, Dj =

2n−1∑
p=0

∂ρ(w)

∂zp
j

spj =

2n−1∑
p=0

dspj
∂ρ(w)

∂zp
j


by (17).

Theorem 3.4. If a regular domain Ω ⊂ Cℓmp,q is locally (Cℓp,q, d1d2 . . . dm)-lineally
convex for a fixed collection d1d2 . . . dm, where dj ∈ {R,L}, j = 1,m, then, for w

and any vector s ∈ T d1d2...dm

Cℓp,q (w), ∥s∥ = 1, the following inequality is true

m∑
i,j=1

Dij ⩾ 0, (23)

where

Dij =

2n−1∑
k,l=0

∂2ρ(w)

∂zl
j∂z

k
i

ski s
l
j =

2n−1∑
k,l=0

slj
∂2ρ(w)

∂zl
j∂z

k
i

ski =

2n−1∑
k,l=0

ski s
l
j

∂2ρ(w)

∂zl
j∂z

k
i

.

If, for any point w ∈ ∂Ω and any vector s ∈ T d1d2...dm

Cℓp,q (w), ∥s∥ = 1,

m∑
i,j=1

Dij > 0, (24)

then a regular domain Ω ⊂ Cℓmp,q is locally (Cℓp,q, d1d2 . . . dm)-lineally convex.

Proof. The main idea of the proof of the theorem is similar to the one in the proof
of Zinoviev Theorem.

Sufficiency. Consider the function ρ(z) in (21) as the real function of m2n real
variables and write its Taylor series in the neighborhood U(w) of every point w ∈ ∂Ω:

ρ(z) = ρ(w) +

m∑
j=1

2n−1∑
l=0

∂ρ(w)

∂xj
l

(xj
l − wj

l )+

+
1

2

m∑
i,j=1

2n−1∑
k,l=0

∂2ρ(w)

∂xi
k∂x

j
l

(xi
k − wi

k)(x
j
l − wj

l ) + o(∥z −w∥2), z → w. (25)



Notice that ρ(w) = 0 at any boundary point w. Since s ∈ T d1d2...dm

Cℓp,q (w), therefore
s ∈ TRm2n (w) (22) and the second summand in (25) also vanishes. Then, considering
condition (18), we obtain:

ρ(z) =
1

2

 m∑
i,j=1

Dij

 ∥z −w∥2 + o(∥z −w∥2), z → w, (26)

where

Dij =

2n−1∑
k,l=0

∂2ρ(w)

∂zl
j∂z

k
i

(zk
i −wk

i )(z
l
j −wl

j)

∥z −w∥2
=

=

2n−1∑
k,l=0

(zk
i −wk

i )

∥z −w∥
∂2ρ(w)

∂zk
i ∂z

l
j

(zl
j −wl

j)

∥z −w∥
=

2n−1∑
k,l=0

(zk
i −wk

i )(z
l
j −wl

j)

∥z −w∥2
∂2ρ(w)

∂zl
j∂z

k
i

,

for any point z ∈ U(w) ∩ T d1d2...dm

Cℓp,q (w).
Thus, ρ(z) ⩾ 0 for any point z ∈ U(w)∩T d1d2...dm

Cℓp,q (w) and any point w ∈ ∂Ω by
(24) and (26), which means local (Cℓp,q, d1d2 . . . dm)-lineal convexity of the domain
Ω.

Necessity. Let a regular domain Ω be locally (Cℓp,q, d1d2 . . . dm)-lineally convex
and for a point w̃ = (w̃1, w̃2, . . . , w̃n) ∈ ∂Ω and for a vector t = (t1, t2, . . . , tn) ∈
T d1d2...dm

Cℓp,q (w̃) the following inequality is true

m∑
i,j=1

Dij < 0, (27)

where

Dij =

2n−1∑
k,l=0

∂2ρ(w̃)

∂zl
j∂z

k
i

tki t
l
j =

2n−1∑
k,l=0

tlj
∂2ρ(w̃)

∂zl
j∂z

k
i

tki =

2n−1∑
k,l=0

tki t
l
j

∂2ρ(w̃)

∂zl
j∂z

k
i

.

On the other hand, for the points z ∈ U(w̃) ∩ T d1d2...dm

Cℓp,q (w̃) the expansion (26) is
valid. Thus, for the points z̃ = (z̃1, z̃2, . . . , z̃n) ∈ U(w̃)∩T d1d2...dm

Cℓp,q (w̃) corresponding
to the tangent vector t, where correspondence is defined by the relation ti = (z̃i −
w̃i)/∥z̃ − w̃∥, i = 1,m, the inequality ρ(z̃) < 0 is true by (27), which contradicts
the fact that the hyperplane T d1d2...dm

Cℓp,q (w̃) is locally supporting for Ω at w̃.
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O wypukłości liniowej uogólnionej do algebr Clifforda

S t r e s z c z e n i e
Pojȩcie obszarów liniowo osia̧galnych z zewna̧trz w skończenie wymiarowej przes-

trzeni zespolonej i niektóre ich własności sa̧ uogólniane na skończenie wymiarowa̧
przestrzeń Cℓmp,q, m ≥ 2, bȩda̧ca̧ iloczynem kartezjańskim m uniwersalnych algebr
Clifforda Cℓp,q nad ciałem liczb rzeczywistych. Mianowicie, dla dowolnego cia̧gu
d1d2 . . . dm uzyskano warunki konieczne i wystarczaja̧ce lokalnej (Cℓp,q, d1d2 . . . dm)-
liniowej osia̧galności z zewna̧trz obszarów o gładkim brzegu, gdzie dj ∈ {L,R},
j = 1,m. Warunki te sa̧ uogólnieniem dobrze znanych warunków lokalnej liniowej
osia̧galności z zewna̧trz obszaru o gładkim brzegu, uzyskanych przez B. Zinowiewa.

Słowa kluczowe: Zbiór wypukły, zbiór liniowo osia̧galny z zewna̧trz, zbiór (Cℓp,q, d1d2
. . . dm)-liniowo osia̧galny z zewna̧trz, algebra Clifforda, forma liniowa, forma kwadra-
towa, forma różniczkowa, pochodna formalna.

https://www.youtube.com/watch?v=c9sW_1MZ1To
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