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Abstract

The notion of lineally convex domains in the finite-dimensional complex space and
some of their properties are generalized to the finite-dimensional space Cfp,, m > 2,
that is the Cartesian product of m universal Clifford algebras C¢,, over the field of
the real numbers. Namely, the separate necessary and sufficient conditions of the local
(Clp,q,d1dz . .. dm)-lineal convexity of domains with smooth boundary are obtained for any
collection d1ds . . . dm, where d; € {L, R}, j = 1,m. These conditions are a generalization of
the well-known conditions of the local lineal convexity of a domain with smooth boundary,

obtained by B. Zinoviev.

Keywords and phrases: Convex set, lineally convex set, (Clp.q,d1ds ... dm)-lineally convex
set, Clifford algebra, linear form, quadratic form, differential form, formal derivative.
Subject classification: 32F99, 52A30

1 Introduction

The notion of lineal convexity that is studied in the theory of functions of many

complex variables was coined in 1935 by Heinrich Behnke and Ernst F. Peschl [I],

but it has been actively used only since the 60s due to the works of André Martineau

[2], [B] and Lev A. Aizenberg [4], [5] who considered the algebra of complex numbers

C over the field of real numbers R, and defined a lineally convex set in the finite-

dimensional complex space C™, n > 2, independently in slightly different ways.
Consider a complex hyperplane

Me(w) =1 2= (21,...,20) €C": Y _¢; (zj—w;) =0,(cy,...,¢,) € C"\ {0}

Definition 1.1. (A. Martineau [2]) A set E C C" is said to be lineally convex
in the sense of Martineau if its complement is a union of complex hyperplanes.



The lineal convexity of a set £ C C™ in the sense of Martineau is equivalent
to the condition that, for any point w = (wy,ws ..., w,) € C"\ E, there exists a
complex hyperplane II¢(w) not intersecting E.

Definition 1.2. (L. Aizenberg [4]) A domain D C C™ is said to be lineally conver
if, for every boundary point w = (wy,ws...,w,) € 0D, there exists a complex
hyperplane Ic(w) not intersecting D.

A domain lineally convex in the sense of Martineau is obviously lineally convex by

Aizenberg. In [0] it is proved that there exist domains lineally convex by Aizenberg
and not lineally convex in the sense of Martineau. The notion of lineal convexity in
the sense of the Aizenberg definition is also known as weak lineal convexity [1],
I8].
Definition 1.3. ([1LOL10]) A domain D C C™ is said to be locally lineally conver
if, for every boundary point w = (wy,ws...,w,) € ID, there exists a complex
hyperplane T (w) passing through w but not intersecting D in some neighborhood
of the point w.

There is also another definition of local lineal convexity:

Definition 1.4. ([II]) An open set D C C™ is said to be locally lineally convex
in the sense of Kiselman if, for every point w € C™, there exists a neighborhood
U of w such that D NU 1is lineally convez.

Local lineal convexity in the sense of Kiselman implies local lineal convexity for all
open sets. But there exists a bounded domain in C? with Lipschitz boundary which
is locally lineally convex but not locally lineally convex in the sense of Kiselman (see
Example 4.4 in [11]).

H. Behnke and E. Peschl in [I] proved that global lineal convexity follows from
the local one for bounded domains with a smooth boundary in C2. For the case
of C™ this result was obtained in 1971 by Alexander P. Yuzhakov and Viachelsav
P. Krivokolesko [9]. In the work [I], the separate necessary and sufficient analytical
conditions of local lineal convexity of domains with smooth boundary in C? were also
obtained. In 1971 B. S. Zinoviev got a generalization of Behnke-Peschl conditions
for the case C™, n > 2, in terms of nonnegativity and positivity of the differential of
the second order of a real function defining a regular domain with smooth boundary,
respectively. Moreover, the sign of the differential is determined on the boundary of
the domain and on the vectors of a complex hyperplane tangent to the domain [I0].
In 1998 Christer O. Kiselman managed to obtain the criterion of lineal convexity of
a bounded domain in the space C" with boundary of the class C? in terms of non-
negativity of the differential of the second order of the function defining the domain
[8]. In 2008 Lars Hormander improved Kiselman’s result by loosening conditions
imposed on the boundary of the domain [12].

In 1980s, the theory of lineally convex sets begins to be generalized to the spaces
of hypercomplex numbers by Henzel A. Mkrtchyan and Yuri B. Zelinskii [I3], [14].

Conditions similar to those of Zinoviev were obtained for the algebra of real
quaternions [I5], the algebra of real generalized quaternions [I6], and Clifford alge-
bras [I7]. Moreover, all these papers consider hyperplanes with equations, where
constants are multiplied by the variables either only on the right or only on the left.



m

The present paper considers the space C{}',, m > 2, that is the Cartesian product
of m universal Clifford algebras C¢, ; over the field of the real numbers. The main
purpose of this paper is to obtain analytical conditions similar to those of Zinoviev
on the vectors of the hyperplanes in the space C£}', with all possible equations, where
in some terms the constants are multiplied by the variables on the right and in the
remaining terms on the left. In chapter 2 the real linear and quadratic forms are
presented in terms of the elements of Clifford algebra C/,, ; and a generalization of the
complex formal partial derivatives to the algebra C¢, , is obtained. In chapter 3 the
notion of lineal convexity and the conditions of local lineal convexity are generalized
to the space CL}},.

2 Real linear and quadratic forms in Clifford
algebras

Consider the universal Clifford algebra Cl, 4, p,q € Z, p,g > 0, p+qg=n >0
[18], which is associative over the field of the real numbers, with the identity, and
generated by the elements {s;}7_; satisfying the conditions

S _{ 17 j:1)27"')p7
! -, jg=p+1....p+q (1)
5j8E + sps; = 0, j#k.

The basis of Clifford algebra is constructed as follows. For every
a:={a1,ay...,ar} C N, where N :={1,...,n} and

1< <ar<...<ap<n,

we define

ep =1, eq := Sq,5qy - - Say, EN = S152...5p.

Then the set of all elements {e, : @ C N} is the basis of Clifford algebra C/,, , and
dimCfl, , = 2". Consider some properties of the basis elements. It is easy to see
that

e2 =+1, o CN.

e

Indeed, e% = 1. For the other e C N, using formulas l| we obtain:

2 _ _ 1k(k—1 _
€; = SoySas - - - SaySarSas - - - Sa, = (—1)2 ( )5a15a15a25a2 e SapSap =

_ (_1)%k’(k—1)+b

where b is the number of multipliers s,,, o € «, of the product sq, sa, - - - Sy
such that sip = —1. Thus, each element e, has the inverse element

el =22 = te,. 2)

2
€a



Let fa be the number of the elements of the set a. Then, considering ,

sjea = (—1)*eqs;, j¢a, (3)

Sj€q = (—1)ﬁa_1easj, j € a, (4)
for any sj, j =1,n, and any o C N.
Let faf be the number of the elements of the set a N 5 for any o, 8 C N. Then,
considering conditions , , we obtain:
eatp = (—1)faltB—tab) (_qylla—liaBe o — (_1)(adb—taBe e (5)

For the convenience, we numerate the basis elements of Clifford algebra from 0
to 2" — 1 and represent each element a € C¢, ; as:

2" —1
a= Y aer, (6)
k=0

where a; € R and ey, k = 0,2™ — 1, are the elements of the basis, moreover, eg = 1.

Consider the vector space

Cly = Cly g X Cly g X ... X Clyp g

m
with the elements z := (21, 22, ..., 2m) € Cf},, where
21 ‘
zj = Z zje, €Clypy, . €R, k=0,2"—-1, j=1,m.
k=0
Let
m 2n—1 2
_ J
EENPIDIN A
j=1 k=0

and U(w) = {z: ||z — w| < d}.

Consider the following 2™ x 2™ matrices defined recursively:

(11 (T, Ty
rl_(l _1>,F2_<F1 _n),...

1 1 1 1
1 -1 1 -1 (7)
Fn—l Fn—l _
7Fn N (Fnl _Fn1> B
1 (1)t (-1



Prove by the induction that
1
r'=_—T,.

=) (0 )=2(e b))

Consider the following property of the block matrices (see [19]):

Ay Ap B B _ A1 B+ A12Ba1 AnBio + A Boo
Ay Az Ba1 B A21B11 + A2a B A21Bia + A2z Boo

(9)

where A;;, B;j, 1,j = 1,2, are square matrices of the same order. Let E, be the
2™ x 2™ unit matrix and ©,, be the 2™ x 2™ matrix consisting of zeros. Then

Ty — Iy Iy Iy Iy o 211 (Ch o
S N A r, -r, ) 0, oI, )
([ 2°E; & 52
( 0, 22E1>2E2'
Suppose I'y,_1T',,_1 = 2" "' E,,_;. Then, considering @,

I—‘n—l 11n—1 Fn—l Fn—l
FnFn = =
( Fn—l _Fn—l ) ( Fn—l _Fn—l )
_ 2Fn,—1Fn,—1 @n—l _ an En—l @n—l — "R
o @nfl 21171711_‘7171 o @nfl 2n Enfl o "

This immediately implies the formula .
Now consider the following matrices

z? méeo
zi ; :Ujel .
Zj = J s Xj == 1 ) J = 13m'
il ;
Z; Ton_q€2n—1
Let _
Z; =T, X’. (10)

Then

z;- = ’yloxéeo + 71117{61 + -4 'yl(p_l)xénflegn_l, [=0,2"—-1, j=1,m,

where v;p, I,p = 0,2" — 1, are the elements of I',,.

From now on, for any element a € Cf,, 4, the elements a' € Cl,,, | = 0,2" — 1,
with upper index [ in bold are obtained from a by multiplying the elements of the [th
row of the matrix I';, by the respective summands arey in the basis decomposition

@ofa.



We obtain from and :

X = irnzj.
2n

That is to say,

2" —1 2" —1

; 1 _ 1 -1

ol =gl D %pz;?:z,L(Z wpzf>6z Lj=Tm, 1=027—1 (11
p=0 p=0

Consider a real linear form
om 1

m
J .0
E, apxy,

=1 1=C

o

where a/ € R, a{ = const, j = 1,m, [ =0,2" — 1. Substitute x{ for their expressions
from and group together the respective components with zf , 7 =1m, Il =
0,27 — 1 fixing 5 and p. Then we obtain

2m—1 = 2m—1 "1 /g 2
E:jj_ }:J’AE: p_E: E: J,—1 P _
a; Ty = 27 a; € ’Ylpzj = 27 YipQ; €; Zj =
=0 =0 p=0 p=0 =0
2n—1
_ J 3
= E a;z;, j=1m,
p=0
or
2m—1 2m—1 2m—1 2m—1 2" —1
alx] = ! al 2Ple ! = zpi ae
1T = on ] VipZ; = i on Yip@i € =
=0 =0 p=0 p=0 =0
2n—1
_ PP
- Z Zja], j - lama
p=0
where
1 2n—1
b= leyt, j=1 =0,2"—1 12
a]—27 Tpa; €, , J=1,m, p=1U, - ( )
1=0
Then
m 2" —1 m
i
E , Ty = E :Aw
j=1 1=0 j=1
where
21 21
, PP _ PP ;o _
A; E z;a; = g a;jz;, j=1m



Let us rewrite the expression of a? in terms of indices 1, g.

2m 1
1 A
al = o Z Yrqaker ', i=1,m, ¢=0,2" — 1
k=0

Now we consider a real quadratic form
m 2"—1
Z Z alkxl xh, (13)

Fyi=11,k=0

where af, € R are the elements of a symmetric 2"m x 2"m matrix

(aft), ol =ajl gii=Tom, k1=027—1, (14)

presented as follows:

a1 g2 gim
g a?' a?? ..
Ji\ _
(afe) = ’
aml am2 . a™mm
where ) .
ji ji
ado ady .. “0( 1)
ji ji ji
ji aio an - @1(an—1)
al’ = , L,j=1m
ji ji ji
Ton_1y0 Haon—1)1 -+ Fan_1)@2n-

Multiplying a? by a! and replacing the products a{ at with the elements a{,i of the
matrix we get the following elements of the Clifford algebra:

2m—1
1 ..
Pq 2 : Jv_—1_-1 . . —
a’ji - 2?,” le"ykqalkel ek s = lama p7q*072n - L (15)
1,k=0
Then
m 2"—1 1 o1
alladpt = all et — 2P| 2t =
kL1 ve = Ik I 9n YipZ; k=
1,k=0 ji:llk:o p=0
21 21
aller z z aller 1 1 e_1i z1] 2P
= k€1 2n 'Ylp k 1k l on Yip | €k on VkqZ; j
1,k=0 1,k=0 p=0 q=0
n_12m-1

-1 _-1 pq q p Coe
22n E E 'ylpvkqalkel e, z E 1,7 =1,m.

p,q=01,k=0



Similary, substituting in turn x{ , 2} in for their different expressions from 7
it can be obtained that

_ P pq 20 = a’?l ii=1m
E alkxl xk = E z; g z] a;, 1,j=1m.
1,k=0 p,q=0 p,q=0

Thus, the real quadratic form 1} can be expressed in terms of the elements zf , 27,
a’ as follows:

m 2" —1
. pq q p P pq q q.p,pq
E Aj;,  where g a; g z; g z;zjag;.
Jri=1 p,q=0 p,q=0 p,q=0
Moreover,
m 2"-—1 m 2"-—1 m 2"-—1 m 2"—1
DD didEl= ) > Aafl =0 Y ARl S ) sl
J,i=1p,q=0 J,i=1p,q=0 J,i=1p,q=0 Jyi=11,k=0
Indeed,
2" —12"—1
pq p q
E a; 22n E E le7kqalkel ek E:Vpgx €y E 'th:cheh—
P,q=0 p,q=01,k=0
2n—1 271 2" 1
7 —-1_-1
22n E E a x xhel € €gen E : VipVkqVpgVah-
1,k=0 g,h=0 p,q=0

Considering the fact that
2" 1 2" 1
1 1, g=1, 1 1, h=k,
o Z VipVYpg = { on Z YkqVqh = {
2 0, g#L 2 2 0, h#k,
by , we obtain

§ P(I P q E -1
a alkxlxkel 6k € €.

p,q=0 1,k=0

Thus

)

2" 1
E afl 2Pzl # E alixlal,

p,q=0 1,k=0

since there ex1st mdlces I,k such that e;e, # ere;. Moreover, considering (2)), (5),
~1g
e .k :i:ek el
Similarly,
2n 1

q pq P -1
E Z; g alkxlxkekel ek el,

p,q=0 1,k=0



2" —1

D q pq -1
E z; E alkxlxkelekel ek.

P,q=0 1,k=0
Let p(z) = p(z) : R™*" 5 R, z € Clyys 2z € R™2" | have the continuous partial

derivatives of the first and the second order at a point w € R”2". Then the function
p is twice continuously differentiable at the point w and its full differentials of the
first and the second order are defined as follows:

m 2"—1 ap(w)
dp(w) = Z Z Py dxi, 7zt
j=1 1=0 l Ji=11k= O
Present dp(w), d?p(w) in terms of the elements of Cl, ,. Let
2" 1
dz¥ = Z Ypdzle;, j=T,m, p=0,2" —1
1=0

. _ Op(w) dp(w) . 9*p(w) 9*p(w) .
Let o] = ———, @/ = 5 in (12)) and alk = — a’l = ——5 in (15),
ox] 0z; 200z

8mgax§c’ 0
w e Cl, p,g=0,2"—1. Then

2" 1
Oplw .,LZ Ip(w) =T =0,27 -1 (16)
p . on 7.7_ ,ym, p=1V, -
=0

O plw) @) g1gt T gy
3Zp6z : 22n Z”Ylp’qu 8 ekl’ j,i=1,m, p,g=0,2" — 1.

1,k=0
And
z — Opw) S p Op(w)
dp(w) = ZDj’ where D; = 557 dz} = Z dz} 557 (17)
=1 p=0 J p=0 J
m
d2p('w) = Z Djs, (18)
ji=1
where

9% p(w) p(w)
Zz fqdziqdz Zdjazpaz 2l = Zdzqdzjapaz

v q,p=0 4,p=0

We may also consider the function p(z) as a real function of m2" varlables of
Clpq. Indeed, substitut 7, j = 1,m, | = 0,2" — 1, for their values in the

expression of the function p(z) = p(a;o,xl, ...,xhh_q), then
n__ n__
p(z) = plag(2?, 2t .. 27 H)ai(zl 2z ),
xg'}‘fl(z?;mzr]ﬁ ey Z?nn_l)) = p(Z, Zl7 ey ZZ"—I)’

where 2! = (2}, 28,28 ... 2L ) 1=T1,2" - 1.



3 Generalized lineal convexity

Let w = (wh,wi,...,whh_;) € R™" and w = (wy, wa,...,wy) € CF,, where
mo1 1 o1 ,
_ Jo, i — o Jo, — I _ e — 2. — w.
= > wle, j=1,m. Andlet s; = > sieg = Y (v —w])e, = z; —wj,
=0 =0 1=0
j=1m.

For a collection dyds . . . dy,, where d; € {R, L}, j = 1,m, consider a hyperplane
ng:id‘m(w) = s = (31,82,..., ecgm ZQ

Q% = sjci, Q) =c;s;, (c1,¢a,....Cm) € Cﬁ;’fq\{O}}, (19)

which is called dyds ... d,,-analytic.

We say that two collections djdj...d,, and d{dy ...d,,, where d},d] € {R, L},
j = 1,m, are different, if there exists at least one index k such that dj, # d}. It is
not difficult to prove that the number of all collections dyds ... d,, equals 2™, Thus,

for a fixed point w € C¢}!, and a fixed constant (c1, ¢a, ..., ¢n) € COl, \ {0}, there
exist 2™ different hyperplanes Hg;jz’”dm (w) in general case.

A dyds . ..d,,-analytic hyperplane Hgléf? m( is called (locally) support-
tng for a domain 2 C C{}', at a point w € 69 1f it does not intersect  (in some
neighborhood of the point w).

Definition 3.1. A domain Q C C{}', is said to be (locally) (Cly 4, didy .. .dny)-
lineally convex if it has a (locally) supporting, dids...dn-analytic hyperplane
Hdlqu ‘A (w) at every point w € 9.

It is obvious that the notion of (C,d1ds...d,)-lineal convexity is equivalent to
the notion of lineal convexity in Deﬁmtlon - for any collection dids . .. dy,.
We say that a hyperplane Hd1d2 m(w) lies in a real hyperplane

j=1 1=

m 2"—-1 . .
Hgmen (w) 1= {(sé,s%, . .75?2”_1)) eER™" Y 3 als] =0,
0

(aboab. oy ) € RPN {0}} (20)

if any vector s satisfying the equation of the hyperplane satisfies the equation
of the hyperplane .

Lemma 3.2. For any real hyperplane Tgman (w) and any collection dids . .. dy,, the
hyperplane Hg;if"q‘“dm (w) with coefficients c; = a) lies in Mgmeon (w).

Proof. Note that 0 = 1,1 =10,2" — 1 (see (7). Substitute the constants ¢; in
2" —1

for the values of ag (12) and, after multiplying by s; = Zo s7ep, group together
p=



the terms with each basis element ex, k = 0,2™ — 1, separately. Set the grouped
expressions to zero. We obtain that the equation in is equivalent to the system
of 2™ real equations defining real hyperplanes in the m2"-dimensional real space.
Moreover, the equation obtained after grouping terms with the real unit ey defines
the real hyperplane Igman (w). The lemma is proved. O

Lemma 3.3. Any convex domain in R™?" is (Clyq,didy ... dy)-lineally convez in
C'fgfq for any collection dyds . .. d,,.

Proof. Since a domain is convex, through its any boundary point w, there passes a
real hyperplane Hngw (w) (20) not intersecting the domain (see [20]). Then, for any
collection dyds . ..d,,, the hyperplane HC; 2:dm () , where ¢; = ag, ji=1m
., does not intersect the domain by Lemma The lemma is proved. O

The converse statement is not always true, which shows the following example.
Consider a domain D = Dy x C£'-! € CL ., where Dy C C{,, , is a non-convex
domain. The domain D is obviously non-convex. But it is (Clp, 4, dida ... dm)-
lineally convex for any collection dyds .. .d,,, since any boundary point
w = (Wi, ws, ..., wy,) € D is such that wy € dD1, wi € Cly 4, k = 2,m, and a
hyperplane with equation s; = z; —w; = 0 is dyds . . . d,,-analytic for any collection
dids .. .d,, and supporting for D at w.

Now consider a domain

Q={zecq, :pz)=p(z2",.. L2 Y <0} (21)

with the boundary 02 = {z € C{}’, : p(z) = 0}, where the function p : C£;', — R
is twice continuously dlﬁerentlable 1n a neighborhood of 992 with respect to 1ts real
variables and such that gradp # 0 everywhere on 9. Such a domain is called
regular.

A dids . ..dp-analytic hyperplane Hg;fzq“'d’" (w), w € 99, lying in the real hy-
perplane '

m271 (w

T () 1= 4 (s, sds s spn_y) €R7 23030 2 et (22)
l

=1 [=0

is called tangent to Q at the point w. Then, by Lemma [3.2] and considering (16)),
where Op(w) = 5‘p(w)’ a dids .

8z§-) 0z

.. dpy-analytic hyperplane

le d2~~d7n(

Clp.q ’U)) = (317 82,..., S”L) € ngfq :

>-Q), 0. @y - 55 Q) - s,
j=1 J



is tangent for any collection dyds . ..dy,. If a regular domain Q C C¢;, is (locally)
(Cly g, drds . .. dy)-lineally convex for a fixed collection dids . . . d,,, then the tangent
hyperplane Tg}ji'”d"” (w) is the unique dyds . . . d,,-analytic hyperplane (locally) sup-
porting for Q at any boundary point w by smoothness of 92 and considering the
fact that

T]Ran (UJ) = (817 §2,..., S’m) € Ce;r:q :
. on_q 2" 1
Ip(w) , » Op()
> D;j=0, D; = 922 %1 = 2 45, 075
j=1 p=0 ’ =0 ’

by .

Theorem 3.4. If a reqular domain Q2 C C}, is locally (Clyq,drds . .. dy,)-lineally
convez for a fized collection dids...dy,, where d; € {R,L}, j = 1,m, then, for w
and any vector s € Tcdgji'“dm (w), ||s]| = 1, the following inequality is true

ij=1
where
on 2" —1 —1
02 02 0
Dy= 3 T g S T S kst D00
ki—o Y%i0%i }1=0 f et k,1=0 J

If, for any point w € 02 and any vector s € Tcdeljz“‘dm (w), ||s|| =1,

Z Dij > 0, (24)

i,j=1
then a regular domain Q C CL}', is locally (Cly 4, didy ... dy)-lineally conver.

Proof. The main idea of the proof of the theorem is similar to the one in the proof
of Zinoviev Theorem.

Sufficiency. Consider the function p(z) in as the real function of m2" real
variables and write its Taylor series in the neighborhood U (w) of every point w € 9€:

i op(w) , ; ;
plz) = plw) + 3 3 2 o — )+
j=1 1=0 9%
1 m 2"—1 azp(w) . . ) )
+- > —— (), —wp) (@] —w]) +o(|z —w[?), z—-w (25)
2 i,j=1k,I=0 Oz}, O



Notice that p(w) = 0 at any boundary point w. Since s € Tgl}:i"'d”‘ (w), therefore

s € Tgmen (w) and the second summand in also vanishes. Then, considering
condition , we obtain:

1 m
p(z) =35 > Dij | llz = wl® + o(l|z — w[|*), z— w, (26)
ij=1
where
Dby~ S Oolw) (& - wh)(z —w))
! s , 0z40zF |z —w]|?

_ = (zF - wh) Ppw) (2 —wh) B an_:l (zF — wk)(2L — wl) 52p(w)
= _ kAl _ = — 2 19k’
2 Tzl 0ot z—w| 2= [z-wl  0:00:

for any point z € U(w) N Tg;jz“'d’” (w).

Thus, p(z) > 0 for any point z € U(w) OTCdpfj”dm (w) and any point w € 092 by
and , which means local (Clp,q,d1ds . .. dy,)-lineal convexity of the domain
Q.

Necessity. Let a regular domain Q be locally (C¢p 4, d1ds . . . dy,)-lineally convex
and for a point w = (w1, ws, ..., w,) € I and for a vector t = (t1,t2,...,¢t,) €

Tgéfi“'dm (w) the following inequality is true

zm: Dij <0, (27)

ij—=1
where
222 p(w 0?p(w 0?p(w
D;; = tk:tl ") gl
J Rt 8z§8zk ke Z Jazlaz’“ ti Z k ]8z18z

On the other hand, for the points z € U(w) N Tcdl}jj”dm (w) the expansion is
valid. Thus, for the points 2 = (21, 23,...,2,) € U(ﬁ)ﬂTgI}jj“dm (w) corresponding
to the tangent vector t, where correspondence is defined by the relation ¢; = (z; —
w;)/||Z — w||, i = I, m, the inequality p(Z) < 0 is true by , which contradicts
the fact that the hyperplane T&}ji”'d’" (w) is locally supporting for  at w. O
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O wypuklosci liniowej uogolnionej do algebr Clifforda

Streszczenie

Pojecie obszaréw liniowo osiagalnych z zewnatrz w skoniczenie wymiarowej przes-
trzeni zespolonej i niektoére ich wlasnosci sa uogolniane na skoriczenie wymiarowa
przestrzen CL)' ., m > 2, bedacy iloczynem kartezjanskim m uniwersalnych algebr
Clifforda Cf,, nad cialem liczb rzeczywistych. Mianowicie, dla dowolnego ciagu
dids . .. dy, uzyskano warunki konieczne i wystarczajace lokalnej (C¥p 4, d1ds . .. dp)-
liniowej osiagalnosci z zewnatrz obszaréow o gltadkim brzegu, gdzie d; € {L, R},
7 = 1,m. Warunki te sa uogélnieniem dobrze znanych warunkéw lokalnej liniowej

osiggalnosci z zewnatrz obszaru o gtadkim brzegu, uzyskanych przez B. Zinowiewa.

Stowa kluczowe: Zbiér wypukty, zbior liniowo osiggalny z zewngtrz, zbior (C4), 4, d1da
... dy,)-liniowo osiggalny z zewnatrz, algebra Clifforda, forma liniowa, forma kwadra-
towa, forma rozniczkowa, pochodna formalna.
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