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Summary

A new approach generalizing the classical regression idea has been widely presented in

[5] and [6] in the environment of an arbitrary Hilbert space. The problem of transforming

this idea to a probability space is considered in the present paper.
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Introduction

In [5] and [6] the general problem of regression was discussed and solved. The authors

introduced the concept of the regression structures R := (A,B, δ;x, y), where:

I.1. A and B are nonempty sets;

I.2. x : Ω1 → A and y : Ω2 → B are functions defined on given nonempty sets Ω1

and Ω2; they can be interpreted as experimental data of the regression model.

Therefore we call them empirical data functions;

I.3. δ : (Ω1 → B) × (Ω2 → B) → R is a function which can be interpreted as a

deviation criterion of the theoretic functions from the empirical data.

For a given regression structure R we consider the family of functions F included

in the family A → B of all functions acting from A to B, i.e. F ⊂ (A → B). The

family F is said to be a theoretic functional model of the observed phenomena, i.e.,

F consists of all functions describing theoretically the considered phenomena. In the
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sequel we will restrict our considerations to the case where B = R or B = C and

F is a linear set with respect to the standard operations of adding and multiplying

functions, i.e.,

f + g, λ · f ∈ F for f, g ∈ F and λ ∈ B .

A natural question for a given regression structure R is the study and evaluation

the optimal functions of theoretic functional model F , which are, with respect to

the criterion δ, the best fitted to the empirical data, represented by the empirical

data functions x and y. To be more precise, we consider the extremal problem of

determining all functions f0 ∈ F , minimizing the functional

F 3 f → F (f) := δ(f ◦ x, y) ∈ R , (0.1)

i.e., all functions f0 ∈ F satisfying the following inequality

F (f) ≥ F (f0) for f ∈ F . (0.2)

The set of all f0 ∈ F satisfying the inequality (0.2) will be denoted by Reg(F ,R);

c.f. [6]. Each function f0 ∈ Reg(F ,R) is said to be the regression function in F with

respect to R. The problem of describing all regression functions in F with respect to

R, we call the regression problem for F with respect to R.

Given a nonempty set Ω and σ-field B of its subsets, we denote by L(Ω,B) the

family of all complex valued functions on Ω, measurable with respect to B. Further

on we denote by L(Ω,B) the linear space supported by the set L(Ω,B) and equipped

with the standard operations of adding and multiplying of functions, i.e., L(Ω,B) :=

(L(Ω,B),+, ·) .

For a given measure µ : B → [0,+∞) and p ≥ 1, let Lp(Ω,B, µ) stand for the

class of all functions f ∈ L(Ω,B) such that

(0.3)

We recall that for each p ≥ 1, the class Lp(Ω,B, µ) is a linear set in L(Ω,B) and

‖ · ‖p is a pseudo-norm in the linear space (Lp(Ω,B, µ),+, ·) satisfying the following

condition

‖f‖p = 0 ⇐⇒ µ({ω ∈ Ω: f(ω) 6= 0}) = 0 . (0.4)

Hence the structure

Lp(Ω,B, µ) := (Lp(Ω,B, µ),+, ·, ‖ · ‖p)
is a pseudo-Banach space, i.e., a complete pseudo-normed space.

1. Probabilistic regression structure

Following the general concept of regression structures, cf. [6, Definition 2.1 and Def-

inition 7.1], we introduce a special type of regression structures on the basis of prob-

ability theory.
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Definition 1.1. By a probabilistic regression structure we mean any regression struc-

ture P := (A,B, δ;x, y) determined by a probability space P = (Ω,A, P ), which

satisfies the following conditions:

II.1. A is nonempty set and B = R or B = C;

II.2. x : Ω→ A and y : Ω→ B;

II.3. the function δ : (Ω→ B)× (Ω→ B)→ R satisfies the equality

δ(u, v) =

∫

Ω

|u(ω)− v(ω)|2 dP (ω) , (1.1)

provided both the functions u and v are A-measurable, and δ(u, v) = +∞
otherwise.

Under the above conditions the regression problem for a probabilistic regression

structure P is the extremal problem of determining all functions f0 ∈ F minimizing

the functional F given – in the wake of (0.1) i (1.1) – by the following formula

F (f) = δ(f ◦ x, y) =

∫

Ω

|f ◦ x(ω)− y(ω)|2 dP (ω), f ∈ F . (1.2)

For a given probabilistic regression structure P we define

Ax := {V ∈ 2A : x−1(V ) ∈ A} (1.3)

and

Ax 3 V 7→ Px(V ) := P (x−1(V )) . (1.4)

It is clear that Ax is a σ-field on A and Px is a probability measure on Ax.

For the further discussion we quote the following fact, cf. [1], [2].

Theorem 1.2. For every measurable space (Ω,A, P ) and every function x : Ω →
A, the structure (A,Ax, Px) is also a measurable space. Moreover, for every Ax-

measurable function u : A→ B,

u ∈ L1(A,Ax, Px)⇐⇒ u ◦ x ∈ L1(Ω,A, P )

as well as ∫

Ω

u ◦ x(ω)dP (ω) =

∫

A

u(t)dPx(t), u ∈ L1(A,Ax, Px) . (1.5)

Remark 1.3. It is well known that the function

L2(A,Ax, Px)× L2(A,Ax, Px) 3 (u, v) 7→ 〈u|v〉 :=

∫

A

u(t) · v(t) dPx(t) (1.6)

is well defined and the following properties

〈λ1u+ λ2v|w〉 = λ1〈u|w〉+ λ2〈v|w〉 ;

〈u|v〉 = 〈v|u〉 ;

〈u|u〉 ≥ 0 ,

(1.7)
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hold for all λ1, λ2 ∈ B and u, v, w ∈ L2(A,Ax, Px). Moreover the functional

L2(A,Ax, Px) 3 u 7→ ‖u‖ :=
√
〈u|u〉 =

(∫

A

|u(t)|2dPx(t)

)1/2

(1.8)

has the following properties

‖λu‖ = |λ| · ‖u‖ and ‖u+ v‖ ≤ ‖u‖+ ‖v‖

as well as

‖u‖ = 0 ⇐⇒ Px({t ∈ A : u(t) 6= 0}) = 0

for all λ ∈ B and u, v ∈ L2(A,Ax, Px), cf. [9]. Therefore, ‖ · ‖ is a pseudo-norm on

the linear space (L2(A,Ax, Px),+, ·).
From the properties (1.7) the following Schwarz inequality

|〈u|v〉| ≤ ‖u‖ · ‖v‖ , u, v ∈ L2(A,Ax, Px) (1.9)

can be derived in the standard way, cf. [11].

Since the space L2(A,Ax, Px) is complete, cf. [1], we see that the structure H(P) :=

(L2(A,Ax, Px),+, ·, 〈·|·〉) is a pseudo-Hilbert space (complex if B = C or real if

B = R), i.e., the structure (L2(A,Ax, Px),+, ·, ‖ · ‖) is a pseudo-Banach space.

Similarly to (1.3) and (1.4) we see that

Ay := {V ∈ 2B : y−1(V ) ∈ A} (1.10)

is a σ-field on B and

Ay 3 V 7→ Py(V ) := P (y−1(V )) (1.11)

is a probabilistic measure on Ay.

Remark 1.4. Given u ∈ L2(A,Ax, Px) and g ∈ L2(B,Ay, Py) we see that |u|2 ∈
L1(A,Ax, Px) and |g|2 ∈ L1(B,Ay, Py). Since |u|2 ◦x = |u◦x|2 and |g|2 ◦y = |g ◦y|2,

we conclude from (1.3), (1.4), (1.10), (1.11) and Theorem 1.2 that u ◦ x, g ◦ y ∈
L2(Ω,A, P ) and

∫

Ω

|u ◦ x(ω)|2dP (ω) =

∫

A

|u(t)|2dPx(t), u ∈ L2(A,Ax, Px) .

Hence

Mg :=

(∫

Ω

|g ◦ y(ω)|2dP (ω)

)1/2

< +∞
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and applying the Schwarz inequality for Lebesgue integral we have∫

Ω

|u ◦ x(ω)·g ◦ y(ω)|dP (ω) (1.12)

≤
(∫

Ω

|u ◦ x(ω)|2dP (ω)

)1/2

·
(∫

Ω

|g ◦ y(ω)|2dP (ω)

)1/2

=Mg

(∫

A

|u(t)|2dPx(t)

)1/2

= Mg · ‖u‖ .

Therefore for every g ∈ L2(B,Ay, Py) the functional g∗ : L2(A,Ax, Px)→ B is well-

defined by the formula

L2(A,Ax, Px) 3 u→ g∗(u) :=

∫

Ω

u ◦ x(ω)g ◦ y(ω)dP (ω) . (1.13)

and by (1.12) we obtain

|g∗(u)| ≤Mg · ‖u‖ , u ∈ L2(A,Ax, Px) . (1.14)

Thus g∗ is a linear and bounded functional on (L2(A,Ax, Px),+, ·, ‖ · ‖) for every

g ∈ L2(B,Ay, Py).

2. The regression problem for the probabilistic regression
structures

Let P := (A,B, δ;x, y) be a probabilistic regression structure determined by a prob-

ability space P = (Ω,A, P ). Then for a given g : B → B,

Pg := (A,B, δ;x, g ◦ y)

is a probabilistic regression structure determined by P. We interpret the function g

as a scaling function of the data function y.

From now on we shall study the regression problem for F with respect to Pg,

where F is a linear functional model with standard operations of adding and multi-

plying functions.

The following result is a counterpart of [6, Lemma 3.1].

Theorem 2.1. If F 6= ∅ is a linear set in H(P) and g ∈ L2(B,Ay, Py), then for

every f ∈ F the following condition holds:

f ∈ Reg(F ,Pg)⇐⇒ 〈h|f〉 = g∗(h) , h ∈ F . (2.1)

Proof. Given g ∈ L2(B,Ay, Py) we define the functional

(A→ B) 3 f 7→ Fg(f) := δ(f ◦ x, g ◦ y).

From the property II.3 it follows that

Fg(f) =

∫

Ω

|f ◦ x(ω)− g ◦ y(ω)|2 dP (ω), f ∈ F . (2.2)
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Fix f, h ∈ F and λ ∈ B. Then by (2.2), we have

Fg(f + λh) =

∫

Ω

|(f + λh) ◦ x(ω)− g ◦ y(ω)|2 dP (ω)

=

∫

Ω

|f ◦ x(ω) + λh ◦ x(ω)− g ◦ y(ω)|2 dP (ω)

=

∫

Ω

(
|f ◦ x(ω)− g ◦ y(ω)|2 + 2Re

[
(f ◦ x(ω)− g ◦ y(ω))λh ◦ x(ω)

]

+ |λ|2|h ◦ x(ω)|2
)

dP (ω)

=

∫

Ω

|f ◦ x(ω)− g ◦ y(ω)|2 dP (ω)

+ 2

∫

Ω

Re
[
(f ◦ x(ω)− g ◦ y(ω))λh ◦ x(ω)

]
dP (ω)

+ |λ|2
∫

Ω

|h ◦ x(ω)|2 dP (ω) .

Hence, by (2.2), (1.8) and (1.5), we get

Fg(f + λh) = Fg(f) + |λ|2‖h‖2 + 2Re

∫

Ω

f ◦ x(ω)λh ◦ x(ω) dP (ω)

−2Re

∫

Ω

g ◦ y(ω)λh ◦ x(ω) dP (ω) .

From (1.6), (1.13) and (1.5) we conclude that

Fg(f + λh) = Fg(f) + |λ|2‖h‖2 + 2Re
[
λ
(
〈h|f〉 − g∗(h)

)]
.

Therefore, for λ ∈ B and f, h ∈ F , we have

Fg(f + λh)− Fg(f) = 2Re
[
λ
(
〈h|f〉 − g∗(h)

)]
+|λ|2‖h‖2 . (2.3)

Fix f ∈ F satisfying 〈h|f〉 = g∗(h), h ∈ F . Applying (2.3) with λ := 1 we obtain

Fg(f + h)− Fg(f) = ‖h‖2 ≥ 0

and so

Fg(f + h) ≥ Fg(f), h ∈ F ,

which means that f ∈ Reg(F ,Pg).

Conversely, assume now that f ∈ Reg(F ,Pg). Then from (2.3) we conclude that

2Re [λ(〈h|f〉 − g∗(h))] + |λ|2‖h‖2 ≥ 0 , h ∈ F , λ ∈ B . (2.4)

Replacing h by −h in (2.4) we get

−2Re [λ(〈h|f〉 − g∗(h))] + |λ|2‖h‖2 ≥ 0 . (2.5)
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Combining (2.4) and (2.5) we can see that

−1

2
|λ|2‖h‖2 ≤ Re [λ(〈h|f〉 − g∗(h))] ≤ 1

2
|λ|2‖h‖2 , h ∈ F , λ ∈ B .

Fixing h ∈ F , α ∈ R and assuming that λ = |λ|eiα we get

−1

2
|λ|‖h‖2 ≤ Re

[
eiα(〈h|f〉 − g∗(h))

]
≤ 1

2
|λ|‖h‖2 .

In the limiting case as |λ| → 0, the following equality holds

Re
[
eiα(〈h|f〉 − g∗(h))

]
= 0 , h ∈ F , α ∈ R .

Choosing α ∈ {0, π2 } we conclude that 〈h|f〉 − g∗(h) = 0 for h ∈ F , which completes

the proof. �
By the basic properties of a pseudo-norm we can see that the set

Θ := {h ∈ L2(A,Ax, Px) : ‖h‖ = 0}
is linear. We call it the null set of H(P). As a matter of fact Θ is the closed ball with

radius 0 and center at the zero function θ, defined by θ(t) := 0 for t ∈ A.

We may extend the standard operations of adding and multiplying functions by

a constant to any sets F1, F2 ⊂ (A→ B) as follows:

F1 + F2 :={f1 + f2 : f1 ∈ F1, f2 ∈ F2} ;

λ · F1 :={λf1 : f1 ∈ F1} , λ ∈ B ;

f + F1 :={f}+ F1 and F1 + f := F1 + {f} , f ∈ (A→ B) .

Corollary 2.2. If F 6= ∅ is a linear set in H(P) and g ∈ L2(B,Ay, Py), then

Reg(F ,Pg) = F ∩ Reg(Θ + F ,Pg) . (2.6)

If additionally F ⊂ Θ, then Reg(F ,Pg) = F .

Proof. Fix f, h ∈ L2(A,Ax, Px). If ‖h‖ = 0, then by the Schwarz inequality (1.9)

and (1.14) it follows that

|〈h|f〉| ≤ ‖h‖‖f‖ = 0 and |g∗(h)| ≤
(∫

Ω

|g ◦ y(ω)|2dP (ω)

)1/2

‖h‖ = 0 .

Hence

〈h|f〉 = 0 = g∗(h) , f ∈ L2(A,Ax, Px), h ∈ Θ . (2.7)

Assume that f ∈ Reg(F ,Pg) and h ∈ Θ + F are given. Then h = h0 + h1 for some

h0 ∈ Θ and h1 ∈ F . Applying now (2.7) and Theorem 2.1 we see that

〈h|f〉 = 〈h0|f〉+ 〈h1|f〉 = 0 + g∗(h1) = g∗(h0) + g∗(h1) = g∗(h), h ∈ Θ + F .

By definition, f ∈ F ⊂ Θ + F . From Theorem 2.1 it follows that f ∈ F ∩ Reg(Θ +

F ,Pg), and so

Reg(F ,Pg) ⊂ F ∩ Reg(Θ + F ,Pg) . (2.8)
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Conversely, assume now that f ∈ F ∩ Reg(Θ + F ,Pg) and h ∈ F are given. Since

h ∈ Θ + F , we conclude from Theorem 2.1, that

〈h|f〉 = g∗(h), h ∈ F .

Thus applying Theorem 2.1 once more, we get f ∈ Reg(F ,Pg), and so

F ∩ Reg(Θ ∩ F ,Pg) ⊂ Reg(F ,Pg) .

Combining this inclusion with the inclusion (2.8) we derive the equality (2.6). Since

Θ ⊂ L2(A,Ax, Px), the equalities in (2.7) hold for all f, h ∈ Θ. Then Theorem 2.1

yields Reg(Θ,Pg) ⊃ Θ, whereas the opposite inclusion is obvious.

Thus Reg(Θ,Pg) = Θ. If now F ⊂ Θ, then the equality (2.6) takes the form

Reg(F ,Pg) = F , which proves the theorem. �
By S⊥ we denote the orthogonal complement of S ⊂ L2(A,Ax, Px) in the space

H(P), i.e.,

S⊥ := {f ∈ L2(A,Ax, Px) : 〈h|f〉 = 0 for h ∈ S} .
Theorem 2.3. If F 6= ∅ is a closed and linear set in H(P) and g ∈ L2(B,Ay, Py),

then Reg(F ,Pg) 6= ∅ and Reg(F ,Pg) = Θ + f for each f ∈ Reg(F ,Pg). Moreover,

if F ⊂ S := (g∗)−1(0), then Reg(F ,Pg) = Θ. Otherwise (F ∩ S)⊥ ∩ F \Θ 6= ∅ and

Reg(F ,Pg) = Θ +
g∗(h)

‖h‖2 h , h ∈ (F ∩ S)⊥ ∩ F \Θ . (2.9)

Proof. Assume that Reg(F ,Pg) 6= ∅ and choose arbitrarily f ∈ Reg(F ,Pg) and

f ′ ∈ L2(A,Ax, Px). If f ′ ∈ Reg(F ,Pg) then, by Theorem 2.1,

〈h|f〉 = g∗(h), h ∈ F , (2.10)

and 〈h|f ′〉 = g∗(h) for h ∈ F . Hence, setting h := f − f ′ we conclude from (2.10)

that

‖h‖2 = 〈h|f − f ′〉 = 〈h|f〉 − 〈h|f ′〉 = g∗(h)− g∗(h) = 0 .

Thus f ′ ∈ Θ + f for f ′ ∈ Reg(F ,Pg), and so Reg(F ,Pg) ⊂ Θ + f . Conversely,

suppose that f ′ ∈ Θ + f . Then, by Schwarz inequality (1.9), we see that for every

h ∈ F ,

|〈h|f ′〉 − 〈h|f〉| = |〈h|f ′ − f〉| ≤ ‖h‖ · ‖f ′ − f‖ = 0 .

Hence, and by (2.10), we get 〈h|f ′〉 = 〈h|f〉 = g∗(h) for h ∈ F . Since F is closed and

linear in H(P), we see that Θ ⊂ F and so Θ + f ⊂ F . Applying Theorem 2.1 we

see that f ′ ∈ Reg(F ,Pg) for f ′ ∈ Θ + f , and so Θ + f ⊂ Reg(F ,Pg). This inclusion

together with the inverse one yields the equality Reg(F ,Pg) = Θ + f , provided

Reg(F ,Pg) 6= ∅, and so we obtain the following implication

Reg(F ,Pg) 6= ∅ ⇒ Reg(F ,Pg) = Θ + f . (2.11)

Assume now that F ⊂ S. Then

〈h|θ〉 = 0 = g∗(h), h ∈ F ,
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which shows, by Theorem 2.1, that θ ∈ Reg(F ,Pg). Hence and by (2.11) we see that

Reg(F ,Pg) = Θ + θ = Θ. It remains to consider the case where the inclusion F ⊂ S
does not hold. If so, then F ∩ S 6= F . By the assumption F is a closed set in H(P).

Since g ∈ L2(B,Ay, Py), g∗ is a continuous functional on H(P), and so S is also a

closed set in H(P). Therefore F ∩ S is a closed set in H(P), and consequently

Θ ⊂ F ∩ S 6= F . (2.12)

Hence F\(F∩S) 6= ∅. Since F∩S is closed in H(P), it follows that each h ∈ F\(F∩S)

has an orthogonal projection hS onto F ∩ S, i.e.,

hS ∈ F ∩ S and 〈h− hS |h′〉 = 0 , h′ ∈ F ∩ S . (2.13)

Hence h− hS ∈ (F ∩ S)⊥ ∩ F . If h− hS ∈ Θ, then from (2.12) and (2.13) it follows

that h = hS + (h − hS) ∈ F ∩ S + Θ = F ∩ S, which is impossible. Therefore

h− hS /∈ Θ, and so h− hS ∈ (F ∩ S)⊥ ∩ F \Θ. Thus (F ∩ S)⊥ ∩ F \Θ 6= ∅. Given

h ∈ (F ∩S)⊥ ∩F \Θ we see that ‖h‖ 6= 0, and so g∗(h) 6= 0. Hence, for each h′ ∈ F ,

h′S := h′− g∗(h′)
g∗(h)

h ∈ F ∩S and h′− h′S =
g∗(h′)
g∗(h)

h ∈ (F ∩S)⊥ ∩F . (2.14)

Since
g∗(h)

‖h‖2 h ∈ (F ∩ S)⊥ ∩ F ,

we conclude from (2.14) that

〈
h′
∣∣∣g
∗(h)

‖h‖2 h
〉

=
〈
h′ − h′S

∣∣∣g
∗(h)

‖h‖2 h
〉

=
〈g∗(h′)
g∗(h)

h
∣∣∣g
∗(h)

‖h‖2 h
〉

=
g∗(h′)
g∗(h)

(
g∗(h)

‖h‖2

)
〈h|h〉 = g∗(h′) , h′ ∈ F .

Applying now Theorem 2.1, we see that

f :=
g∗(h)

‖h‖2 h ∈ Reg(F ,Pg) , h ∈ (F ∩ S)⊥ ∩ F \Θ . (2.15)

Therefore Reg(F ,Pg) 6= ∅ and, combining (2.15) with (2.11), we derive the equality

(2.9) provided the inclusion F ⊂ S does not hold.

In both the cases Reg(F ,Pg) 6= ∅, which completes the proof. �

3. Calculating procedure of the regression functions

Write Zp,q := {n ∈ Z : p ≤ n ≤ q} and Zp := {n ∈ Z : p ≤ n} for p, q ∈ Z. In

particular N = Z1. Given a nonempty set S ⊂ L2(A,Ax, Px), we denote by lin(S)

the set of all linear combinations
∑n
k=1 λkvk where n ∈ N, Z1,n 3 k 7→ λk ∈ B and

Z1,n 3 k 7→ vk ∈ S. It is easy to check that lin(S) is the smallest linear subset of

L2(A,Ax, Px) containing S.
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Assume that F is arbitrarily chosen linear and closed set in the space H(P) and

g ∈ L2(B,Ay, Py) is given. Then by Theorem 2.3 we conclude that Reg(F ,Pg) 6= ∅.
Moreover, Theorem 2.3 enables us to find regression functions in F with respect to

Pg provided we can determine the linear set (F ∩ S)⊥ ∩ F . This is rather difficult

task, in general. However in the case where the set F is finitely dimensional we can

effectively calculate all the regression functions in F with respect to Pg in terms of

a given base of this space. Obviously, this case is most essential from the practical

point of view and will be considered later on.

For every f, h ∈ L2(A,Ax, Px), we will write f ⊥ h if 〈f |h〉 = 0. Given p, q ∈
Z, p ≤ q, and a sequence Zp,q 3 k 7→ Fk of nonempty sets in the space H(P), we

write
∑q
k=p Fk for the set of all

∑q
k=p fk where Zp,q 3 k 7→ fk ∈ Fk. Obviously,∑2

k=1 Fk = F1 + F2.

Theorem 3.1. Given p ∈ N let Z1,p 3 k 7→ hk ∈ L2(A,Ax, Px) \Θ be an orthogonal

sequence in H(P), i.e.,

hk ⊥ hj , k, j ∈ Z1,p , k 6= j . (3.1)

If g ∈ L2(B,Ay, Py), then

Reg(F ,Pg) =

{
p∑

k=1

g∗(hk)

‖hk‖2
hk

}
, (3.2)

where

F := lin({hk : k ∈ Z1,p}) . (3.3)

Proof. Fix p ∈ N and a sequence Z1,p 3 k 7→ hk ∈ L2(A,Ax, Px) \ Θ satisfying the

assumptions. From (3.3) and (3.1) it follows that F0 := Θ+F is a closed set in H(P).

Therefore Reg(F0,Pg) 6= ∅ by the assumption g ∈ L2(B,Ay, Py) and Theorem 2.3.

If g∗(hk) = 0 for k ∈ Z1,p, then by (3.3), F0 ⊂ S := (g∗)−1(0). From Theorem

2.3 it follows that Reg(F0,Pg) = Θ. Hence, and by Corollary 2.2, we conclude that

Reg(F ,Pg) = Θ ∩ F . Fix h ∈ F ∩ Θ. By (3.3) there exists a sequence Z1,p 3 k 7→
λk ∈ B such that h =

∑p
k=1 λkhk. From (3.1) it follows that

p∑

k=1

|λk|2‖hk‖2 = ‖h‖2 = 0.

By the assumption, ‖hk‖ > 0 for k ∈ Z1,p. Therefore λk = 0 for k ∈ Z1,p and so

h = θ. Consequently

F ∩Θ = {θ} . (3.4)

Thus Reg(F ,Pg) = {θ}, and so the equality (3.2) holds.

Assume, in contrary, that g∗(hk) 6= 0 for some k ∈ Z1,p. Then F0\S 6= ∅ and applying

again Theorem 2.3 we can see that (F0∩S)⊥∩F0 \Θ 6= ∅ as well as that the equality

(2.9) holds. Thus we have to find an element h ∈ F such that h ∈ (F0∩S)⊥∩F0 \Θ.
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Then by (3.3) there exists a sequence Z1,p 3 k 7→ λk ∈ B such that

h =

p∑

k=1

λk · hk . (3.5)

If p = 1, then h = λ1h1 and g∗(h1) 6= 0. Hence λ1 6= 0, and h1 ∈ F0 \Θ. Moreover,

for any f ∈ F0 ∩ S there exist λ ∈ B and f0 ∈ Θ such that f = f0 + λh1. Since

f ∈ S, we obtain

0 = g∗(f) = g∗(f0) + λg∗(h1) = λg∗(h1) ,

and so λ = 0. Therefore, f = f0 ∈ Θ, which gives 〈h1|f〉 = 0. Hence h1 ∈ (F0 ∩ S)⊥,

and we see that h = λ1h1 ∈ (F0 ∩ S)⊥ ∩ F0 \Θ. Then Theorem 2.3 leads to

Reg(F0,Pg) = Θ +
g∗(h)

‖h‖2 h = Θ +
g∗(h1)

‖h1‖2
h1 . (3.6)

It remains to consider the case where p > 1. Without lost of generality we may assume

now that g∗(h1) 6= 0. Since hk − g∗(hk)
g∗(h1)h1 ∈ S for k ∈ Z1,p and h ∈ (F0 ∩ S)⊥ ∩ F0

we have

h ⊥ hk −
g∗(hk)

g∗(h1)
h1, k ∈ Z1,p .

Combining this with (3.1) and (3.5) we see that for each j ∈ Z1,p,

0 =
〈
h
∣∣∣hj −

g∗(hj)
g∗(h1)

h1

〉
= 〈h|hj〉 −

〈
h
∣∣∣g
∗(hj)
g∗(h1)

h1

〉

=
〈 p∑

k=1

λk · hk
∣∣∣hj
〉
−
(
g∗(hj)
g∗(h1)

)〈 p∑

k=1

λk · hk
∣∣∣h1

〉

=

p∑

k=1

λk〈hk|hj〉 −
(
g∗(hj)
g∗(h1)

) p∑

k=1

λk〈hk|h1〉

=λj〈hj |hj〉 − λ1

(
g∗(hj)
g∗(h1)

)
〈h1|h1〉 = λj‖hj‖2 − λ1

(
g∗(hj)
g∗(h1)

)
‖h1‖2 .

Hence

λj =
λ1

‖hj‖2
(
g∗(hj)
g∗(h1)

)
‖h1‖2, j ∈ Z1,p .

This together with (3.5) leads to

h =

p∑

k=1

λk · hk =

p∑

k=1

λ1

‖hk‖2
(
g∗(hk)

g∗(h1)

)
‖h1‖2 · hk =

λ1

g∗(h1)
‖h1‖2

p∑

k=1

g∗(hk)

‖hk‖2
hk ,

whence λ1 6= 0. By (3.1) we see that

‖h‖2 =

∣∣∣∣∣
λ1

g∗(h1)
‖h1‖2

∣∣∣∣∣

2

·
∥∥∥∥∥

p∑

k=1

g∗(hk)

‖hk‖2
hk

∥∥∥∥∥

2

=
|λ1|2 · ‖h1‖4
|g∗(h1)|2 ·

p∑

k=1

|g∗(hk)|2
‖hk‖2

.
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Moreover,

g∗(h) =g∗

(
λ1

g∗(h1)
‖h1‖2 ·

p∑

k=1

g∗(hk)

‖hk‖2
hk

)

=
λ1‖h1‖2
g∗(h1)

·
p∑

k=1

g∗(hk)

‖hk‖2
· g∗(hk) =

λ1‖h1‖2
g∗(h1)

·
p∑

k=1

|g∗(hk)|2
‖hk‖2

.

Applying now (2.9) we obtain

Reg(F0,Pg) =Θ +
g∗(h)

‖h‖2 · h = Θ +

λ1‖h1‖2
g∗(h1)

·
p∑
k=1

|g∗(hk)|2
‖hk‖2

|λ1|2 · ‖h1‖4
|g∗(h1)|2 ·

p∑
k=1

|g∗(hk)|2
‖hk‖2

· h

=Θ +
g∗(h1)

λ1‖h1‖2
· λ1

g∗(h1)
· ‖h1‖2 ·

p∑

k=1

g∗(hk)

‖hk‖2
· hk

=Θ +

p∑

k=1

g∗(hk)

‖hk‖2
hk .

Hence, and by (3.6), we see that for each p ∈ N,

Reg(F0,Pg) = Θ + f, (3.7)

where, in view of (3.3),

f :=

p∑

k=1

g∗(hk)

‖hk‖2
hk ∈ lin({hk : k ∈ Z1,p}) = F . (3.8)

From Corollary 2.2, (3.7), (3.8) and (3.4) it follows that

Reg(F ,Pg) = F ∩ Reg(F0,Pg) = F ∩ (Θ + f) = (F ∩Θ) + f = {f} .

This yields the equality (3.2), which completes the proof. �

As far as applications are concerned we will study theoretic models F spanned

by sequences Z1,p 3 k 7→ hk which are not, in general, orthogonal in the space

H(P), because the pseudo-inner product 〈·|·〉 depends on the empirical data function

x : Ω → A and probability measure P . Therefore we can not apply Theorem 3.1

directly. However, in such a case we may orthogonalize those sequences. To this end

we may use the generalized Gram - Schmidt orthogonalization method, saying that,

h′1 := h1 and h′n := hn −
n−1∑

k=1

λ(hn, h
′
k) · h′k , n ∈ Z2,p , (3.9)
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where λ is defined by

L2(A,Ax, Px)× L2(A,Ax, Px) 3 (u, v) 7→ λ(u, v) :=





〈u|v〉
‖v‖2 if ‖v‖ > 0 ,

0 if ‖v‖ = 0 .
(3.10)

Corollary 3.2. Given p ∈ N and Z1,p 3 k 7→ hk ∈ L2(A,Ax, Px) let Z1,p 3 k 7→ h′k
be a sequence defined by (3.9). If g ∈ L2(B,Ay, Py) and

‖h′k‖ > 0 , k ∈ Z1,p , (3.11)

then

Reg(F ,Pg) =

{
p∑

k=1

g∗(h′k)

‖h′k‖2
h′k

}
, (3.12)

where F is given by (3.3).

Proof. Under the assumption we see that h′k ⊥ h′l for k, l ∈ Z1,p such that k 6= l.

From (3.3) and (3.9) it follows that lin({h′k : k ∈ Z1,p}) = F . Moreover, by (3.11),

h′k ∈ L2(A,Ax, Px) \ Θ for k ∈ Z1,p. Thus, applying Theorem 3.1 for the sequence

Z1,p 3 k 7→ hk, replaced by its orthogonal associate Z1,p 3 k 7→ h′k we derive the

equality (3.12), which is our claim. �
Remark 3.3. From [6, Lemma 5.2] it follows the condition (3.11) holds if and only

if a sequence Z1,p 3 k 7→ hk is linearly independent and F ∩Θ = {θ}. In particular,

the condition (3.11) holds provided a sequence Z1,p 3 k 7→ hk is linearly independent

and the functional is a norm in (L2(A,Ax, Px),+, ·).

4. Examples and complementary remarks

In this section we present examples and comments which illustrate our considerations

from the previous section. From now on we always assume that

P = (A,B, δ;x, y) is a given probabilistic regression structure determined by a prob-

ability space P = (Ω,A, P ) and g ∈ L2(B,Ay, Py) is arbitrarily fixed.

Example 4.1. Let us consider the case where the functional model F is spanned by

one arbitrarily fixed function h1 ∈ L2(A,Ax, Px) \ Θ, i.e., F = lin({h1}). Applying

Theorem 3.1 we can see that

Reg(F ,Pg) =

{
g∗(h1)

‖h1‖2
h1

}
. (4.1)

Using the expected value operator for the probability space P we conclude from the

formula (1.13) that

g∗(h1) =

∫

Ω

(h1 ◦ x(ω)) · g ◦ y(ω)dP (ω) = E[(h1 ◦ x) · g ◦ y] , (4.2)
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and from the formula (1.8) and Theorem 1.2 that

‖h1‖2 =

∫

A

|h1(t)|2dPx(t) =

∫

Ω

|h1 ◦ x(ω)|2dP (ω) = E[|h1 ◦ x|2] . (4.3)

Hence we can rewrite (4.1) in terms of the expected value as follows

Reg(F ,Pg) =

{
E[(h1 ◦ x)g ◦ y]

E[|h1 ◦ x|2]
· h1

}
. (4.4)

Given α ∈ Z0 suppose that A = B, g ∈ L2(B,Ay, Py) and h1 ∈ L2(A,Ax, Px) where

h1(t) := tα and g(t) := t for t ∈ B. Then

E[(h1 ◦ x)(g ◦ y)] = E[xα · y] and E[|h1 ◦ x|2] = E[|x|2α] ,

and so (4.4) implies

Reg(F ,P) =

{
A 3 t 7→ E[xα · y]

E[|x|2α]
· tα
}
, (4.5)

provided x is not equal 0 a.s. on Ω.

If x is a real random variable, then putting α := 1 in (4.5) we see that E[xy] can be

expressed by means of regression functions Reg(F ,P) and E[x2]. Putting α := 0 in

(4.5) we obtain

Reg(F ,P) = {A ∈ t 7→ E[y]} . (4.6)

Notice that the equality (4.6) is still valid even if A 6= B.

Example 4.2. Let us consider the case where the functional model F is spanned

by two arbitrarily fixed functions h1, h2 ∈ L2(A,Ax, Px), i.e., F = lin({h1, h2}).
Suppose that ‖h′1‖ > 0 and ‖h′2‖ > 0, where Z1,2 3 k 7→ h′k is a sequence defined by

(3.9). Applying Corollary 3.2 we can see that

Reg(F ,Pg) =

{
g∗(h′1)

‖h′1‖2
h′1 +

g∗(h′2)

‖h′2‖2
h′2

}
, (4.7)

where, according to (3.9),

h′1 := h1 and h′2 := h2 −
〈h2|h1〉
‖h1‖2

h1 . (4.8)

Hence h′2 ⊥ h1, and consequently

‖h′2‖2 =〈h′2|h′2〉 = 〈h′2|h2 −
〈h2|h1〉
‖h1‖2

h1〉 = 〈h′2|h2〉 (4.9)

=〈h2 −
〈h2|h1〉
‖h1‖2

h1|h2〉 = ‖h2‖2 −
|〈h2|h1〉|2
‖h1‖2

.

Setting

α2 :=
g∗(h2)‖h1‖2 − g∗(h1)〈h2|h1〉
‖h2‖2‖h1‖2 − |〈h2|h1〉|2

and α1 :=
g∗(h1)− 〈h2|h1〉α2

‖h1‖2
(4.10)
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we conclude from (4.7), (4.8) and (4.9) that

Reg(F ,Pg) = {α2h2 + α1h1} . (4.11)

We can calculate the coefficients α2 and α1 by means of the expected value operator

E for the probability space P using the following equalities

g∗(hk) = E[(hk ◦ x) · g ◦ y] and ‖hk‖2 = E[|hk ◦ x|2] , k ∈ Z1,2 (4.12)

as well as

〈h2|h1〉 =

∫

A

h2(t) · h1(t)dPx(t) = E[(h2 ◦ x)(h1 ◦ x)] . (4.13)

To prove them we appeal to the equalities (4.2), (4.3), (1.6) and Theorem 1.2.

In particular, suppose that A = B, g ∈ L2(B,Ay, Py) and h1, h2 ∈ L2(A,Ax, Px)

where g(t) := t, h1(t) := 1 and h2(t) := t for t ∈ B. Applying now the equalities

(4.12), (4.13) we can rewrite the formulas (4.10) as

α2 =
E[x · y]− E[x] · E[y]

E[|x|2]− (E[x])2
and α1 = E[y]− E[x] · α2 (4.14)

provided x is a not a constant a.s. on Ω. Therefore the coefficients α2 and α1 given

by (4.14) coincide with the classical linear regression coefficients in the case of real

random variables, cf. [3], [4].

Example 4.3. Let us consider the case where the functional model F is spanned by

three arbitrarily fixed functions h1, h2, h3 ∈ L2(A,Ax, Px), i.e., F = lin({h1, h2, h3}).
Suppose that ‖h′k‖ > 0 for k ∈ Z1,3, where Z1,3 3 k 7→ h′k is a sequence defined by

(3.9). Applying Corollary 3.2 we obtain

Reg(F ,Pg) =

{
3∑

k=1

g∗(h′k)

‖h′k‖2
h′k

}
, (4.15)

where, by (3.9), we have

h′1 =h1 ,

h′2 =h2 −
〈h2|h1〉
‖h1‖2

· h1 ,

h′3 =h3 + η · h2 −
〈h3|h1〉+ η · 〈h2|h1〉

‖h1‖2
· h1

and η :=
〈h3|h1〉〈h2|h1〉 − 〈h3|h2〉〈h1|h1〉
‖h2‖2‖h1‖2 − |〈h2|h1〉|2

.

In particular, suppose that x and y are independent real random variables with

normal distributions N(µ1, σ1) and N(µ2, σ2) respectively. Then, cf. [4],

E[(x− µ1)2s+1] = 0 and E[(x− µ1)2s] = (2s− 1)!! · σ2s
1 , s ∈ N . (4.16)

Setting A := R and B := R we see that h1, h2, h3 ∈ L2(A,Ax, Px) and g ∈
L2(B,Ay, Py), where g(t) := t, h1(t) := 1, h2(t) := t and h3(t) := t2 for t ∈ B.
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Using Theorem 1.2 we conclude from the formula (1.6) that

〈hn|hk〉 =

∫

R
hn(t)hk(t) dPx(t) =

∫

R
tn+k−2 dPx(t) (4.17)

=

∫

Ω

xn+k−2(ω) dP (ω) = E[xn+k−2] , n, k ∈ Z1,3 .

Combining (4.17) with (4.16) we calculate

〈h1|h1〉 = 1 , 〈h2|h1〉 = µ1 , 〈h3|h1〉 = µ2
1 + σ2

1 ,

〈h2|h2〉 = µ2
1 + σ2

1 , 〈h3|h2〉 = (µ2
1 + 3σ2

1)µ1 .

Hence η = −2µ1 and so

h′1 = h1 , h′2 = h2 − µ1h1 , h′3 = h3 − 2µ1h2 + (µ2
1 − σ2

1)h1 . (4.18)

Since x and y are independent, we conclude from the formula (1.13) that

g∗(hk) =

∫

Ω

hk ◦ x(ω) · g ◦ y(ω) dP (ω) =

∫

Ω

xk−1(ω) · y(ω) dP (ω)

= E[xk−1 · y] = E[xk−1] · E[y] , k ∈ Z1,3 .

This together with (4.18) yields

g∗(h′1) = E[y] = µ2 , g∗(h′2) = 0 , and g∗(h′3) = 0 .

Using now (4.15) we obtain

Reg(F ,P) = {R 3 t 7→ µ2} .
In particular for µ2 := 0 we get

Reg(F ,P) = {θ} .
Example 4.4. Assume that A = B. Let F be a functional model consisting of all

polynomials f with coefficients in B and degree degf ≤ p− 1, where p ∈ N. Setting

B 3 t 7→ hk(t) := tk−1 for k ∈ Z1,p we see that F = lin({hk : k ∈ Z1,p}). Suppose

that hk ∈ L2(A,Ax, Px) for k ∈ Z1,p and ‖h′k‖ > 0 for k ∈ Z1,p, where Z1,p 3 k 7→ h′k
is a sequence defined by (3.9). Applying Corollary 3.2 we get

Reg(F ,Pg) =

{
p∑

k=1

g∗(h′k)

‖h′k‖2
h′k

}
. (4.19)

According to the classical definition, cf., e.g. [3], [10], by a polynomial regression

of the random variable y with respect to the random variable x, we mean each

polynomial f0 ∈ F such that

E[|f ◦ x− y|2] ≥ E[|f0 ◦ x− y|2] , f ∈ F .

From (1.2) it follows that

F (f) = E[|f ◦ x− y|2] , f ∈ F .
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Therefore the class of all such f0 coincides with the class Reg(F ,P). Suppose that

g ∈ L2(B,Ay, Py), where g(t) := t for t ∈ B. Then Reg(F ,P) = Reg(F ,Pg) and by

(4.19) we see that there exists the unique polynomial regression f0 ∈ F of y with

respect to x and f0 can be determined by the following equality

f0 =

p∑

k=1

g∗(h′k)

‖h′k‖2
h′k .
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PROBABILISTYCZNE STRUKTURY REGRESJI

S t r e s z c z e n i e
Nowe podej́scie uogólniaja̧ce klasyczna̧ koncepcjȩ regresji jest szeroko prezentowane w

[5] i [6] na gruncie przestrzeni Hilberta. W niniejszym artykule wyniki tej pracy zosta ly
przeniesione na przestrzeń probabilistyczna̧, gdzie uogólnione zagadnienie regresji ma postać
rozwia̧zania problemu ekstremalnego, zdefiniowanego na przestrzeni probabilistycznej.

S lowa kluczowe: regresja nieliniowa, regresja wielomianowa, przestrzeń probabilistyczna,

funkcje regresji, struktura regresji


