B U L L E T I N

DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE ŁÓDŹ 2018

Dedicated to the memory of
Professor Yurii B. Zelinskii

Sergii Favorov and Natalia Girya

CONVERGENCE OF DIRICHLET SERIES

ON A FINITE-DIMENSIONAL SPACE

Summary

We consider conditions for convergence of Dirichlet series on a finite-dimensional space in Stepanov's metric. Also, we obtain some applications for Stepanov's and Besicovitch's almost periodic functions.

Keywords and phrases: Dirichlet series, exponents of a Dirichlet series, Fourier series, Stepanov's metric, Besicovitch's metric, almost periodic function

Consider a Dirichlet series $\sum_{k} a_{k} e^{\lambda_{k} z}, a_{k} \in \mathbb{C}, \lambda_{k} \in \mathbb{R}$. In the paper [4] and [5], V. Stepanov obtained the following result:

Theorem S. Suppose that $\sum_{k=-\infty}^{\infty}\left|a_{k}\right|^{2}<\infty$. If $\lambda_{k+1}-\lambda_{k}>\alpha>0, k \in \mathbb{Z}, \alpha$ does not depend on n, then the sums $S_{N}(x)=\sum_{k=-N}^{N} a_{k} e^{i \lambda_{k} x}$ form a Cauchy sequence with respect to the integral metric, namely

$$
\sup _{y \in \mathbb{R}}\left(\int_{y}^{y+1}\left|S_{M}-S_{N}\right|^{2} d x\right)^{\frac{1}{2}} \rightarrow 0 \quad M, N \rightarrow \infty
$$

The quantity

$$
D_{S_{l}^{p}}[f(x), g(x)]=\sup _{x \in \mathbb{R}}\left[\frac{1}{l} \int_{x}^{x+l}|f(y)-g(y)|^{p} d y\right]^{\frac{1}{p}}, \quad p \geq 1,
$$

is called Stepanov's distance of order $p(p \geq 1)$ associated with length $l(l>0)$. The corresponding metric is called Stepanov's one.

Here we assume that functions $f(x), g(x)$ are p th power integrable on each segment. Note that Stepanov's distances are equivalent for various $l>0$; the space of functions with finite Stepanov's norm $D_{S_{l}^{p}}[f(x), 0]$ is complete (see [4]).

In our paper we prove an analogue of Theorem S on the space \mathbb{R}^{d}. In onedimensional case our result is stronger than Theorem S.

We need some definitions and notations.
Let $B\left(x_{0}, r\right)$ be the open ball with center at the point $x_{0} \in \mathbb{R}^{d}$ and radius $r>0$, $\langle t, x\rangle$ be the scalar product on \mathbb{R}^{d}, and ω_{d} be the volume of a unit ball in \mathbb{R}^{d}.

Suppose that $f: \mathbb{R}^{d} \rightarrow \mathbb{C}, g: \mathbb{R}^{d} \rightarrow \mathbb{C}$ are measurable and L^{p}-integrable functions on each compact set.

Definition 1.

$$
D_{S_{l}^{p}}[f(x), g(x)]=\sup _{x \in \mathbb{R}^{d}}\left[\frac{1}{\omega_{d} l^{d}} \int_{B(x, l)}|f(y)-g(y)|^{p} d y\right]^{\frac{1}{p}}, \quad p \geq 1 .
$$

The metrics generating by these distances with different $l>0$ are equivalent and complete, therefore we will take $l=1$ and write $D_{S^{p}}$ instead of $D_{S_{1}^{p}}$. Such distance is called Stepanov's metric.

By $S H\left(\mathbb{R}^{d}\right)$ denote the Schwartz space of smooth functions $f(x), x \in \mathbb{R}^{d}$, with the following property: for any $m=\left(m_{1}, m_{2}, \ldots, m_{d}\right) \in(\mathbb{N} \cup\{0\})^{d}$ and for any $k \in \mathbb{N}$ the equality $\left(\frac{\partial^{m_{1}+m_{2}+\ldots+m_{d}}}{\partial x^{m_{1}} \partial x^{m_{2}} \ldots \partial x^{m_{d}}} f\right)(x)=\bar{o}\left(\frac{1}{|x|^{k}}\right), x \rightarrow \infty$ holds true.

Definition 2. (see [6]) The function $\widehat{f}(t)=\int_{\mathbb{R}^{d}} f(x) e^{-i\langle t, x\rangle} d x, t \in \mathbb{R}^{d}$, is called the Fourier transform of $f(x) \in L^{1}\left(\mathbb{R}^{d}\right)$.

It is known (see, for example, [6], [8]), that the Fourier transform is the automorphism on $S H\left(\mathbb{R}^{d}\right)$.

Let $\left\{\left(a_{n}, \lambda_{n}\right)\right\}_{n=1}^{\infty}$ be a set of pairs where $a_{n} \in \mathbb{C}, \lambda_{n} \in \mathbb{R}^{d}$. Let $\Lambda=\bigsqcup_{j=1}^{\infty} \Lambda_{j}$ be a partition of the set $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ with the property $\operatorname{diam} \Lambda_{j}<1, \quad j=1,2, \ldots$. Denote $S_{N}(x)=\sum_{k=1}^{N} a_{k} e^{i\left\langle\lambda_{k}, x\right\rangle}$.

Theorem 1. Suppose $a_{n}>0,0<r<\infty$. Then

$$
\sum_{j=1}^{\infty}\left(\sum_{\lambda_{n} \in \Lambda_{j}} a_{n}\right)^{2} \leq C_{1} \sup _{N} \int_{B(0 ; r)}\left|S_{N}(x)\right|^{2} d x
$$

where $C_{1}=C_{1}(r, d)$.
Proof. Let $\varphi(x) \in S H\left(\mathbb{R}^{d}\right)$ be an even nonnegative function such that $\operatorname{supp} \varphi(x) \subset$ $B\left(0, \frac{r}{2}\right)$. Put $\psi(x)=\frac{1}{\delta^{d}}(\varphi * \varphi)\left(\frac{x}{\delta}\right)$ for $\delta \in(0,1)$. Clearly, $\operatorname{supp} \psi(x) \subset B(0, \delta r)$ and $\widehat{\psi}(t)=|\widehat{\varphi}(\delta t)|^{2} \geq 0, \widehat{\psi}(0)>0$ and

$$
\begin{equation*}
\widehat{\psi}(t) \geq \varepsilon>0, \quad t \in B(0,1) \tag{1}
\end{equation*}
$$

for appropriate δ.
Let $M=\sup _{\mathbb{R}^{d}} \psi(x)$. We have the following sequence of inequalities:

$$
\begin{gathered}
\int_{B(0 ; r)}\left|S_{N}(x)\right|^{2} d x \geq \\
\geq M^{-1} \int_{\mathbb{R}^{d}} \psi(x)\left|S_{N}(x)\right|^{2} d x=M^{-1} \int_{\mathbb{R}^{d}} \psi(x) \sum_{n=1}^{N} \sum_{l=1}^{N} a_{n} a_{l} e^{i\left\langle\lambda_{n}-\lambda_{l}, x\right\rangle} d x= \\
=M^{-1} \sum_{n=1}^{N} \sum_{l=1}^{N} a_{n} a_{l} \int_{\mathbb{R}^{d}} \psi(x) e^{i\left\langle\lambda_{n}-\lambda_{l}, x\right\rangle} d x=M^{-1} \sum_{n=1}^{N} \sum_{l=1}^{N} a_{n} a_{l} \widehat{\psi}\left(\lambda_{l}-\lambda_{n}\right) .
\end{gathered}
$$

Since $\widehat{\psi}(t) \geq 0$ we omit all the terms where the elements λ_{n}, λ_{k} belong to different sets Λ_{j} and get the following inequalities:

$$
\begin{gathered}
M^{-1} \sum_{n=1}^{N} \sum_{l=1}^{N} a_{n} a_{l} \widehat{\psi}\left(\lambda_{l}-\lambda_{n}\right) \geq M^{-1} \sum_{j} \sum_{\substack{1 \leq n, l \leq N \\
\lambda_{n}, \lambda_{k} \in \Lambda_{j}}} a_{n} a_{l} \widehat{\psi}\left(\lambda_{l}-\lambda_{n}\right) \geq \\
\quad \geq M^{-1} \varepsilon \sum_{j} \sum_{\substack{1 \leq n, l \leq N \\
\lambda_{n}, \lambda_{l} \in \Lambda_{j}}} a_{n} a_{l}=M^{-1} \varepsilon \sum_{j}\left(\sum_{\substack{1 \leq n \leq N \\
\lambda_{n} \in \Lambda_{j}}} a_{n}\right)^{2} .
\end{gathered}
$$

Thus,

$$
\sum_{j}\left(\sum_{\lambda_{n} \in \Lambda_{j}} a_{n}\right)^{2} \leq C_{1} \sup _{N} \int_{B(0, r)}\left|S_{N}(x)\right|^{2} d x .
$$

This completes the proof of the Theorem.

Define $T_{m}=\left\{(j, l): m \leq \operatorname{dist}\left(\Lambda_{j}, \quad \Lambda_{l}\right)<m+1\right\}$. Note that $\mathbb{N}^{2}=\bigsqcup_{m=0}^{\infty} T_{m}$.
Let $\left\{B\left(x_{j}, 1\right)\right\}$ be a set of balls such that multiplicities of their intersections do not exceed h and $\Lambda_{j} \subset B\left(x_{j}, 1\right)$ for all $j \in \mathbb{N}$. Note that for a fixed k and any j such that $B\left(x_{k}, 2\right) \cap B\left(x_{j}, 2\right) \neq \emptyset$ we have $\left|x_{j}-x_{k}\right|<4$ and $B\left(x_{j}, 1\right) \subset B\left(x_{k}, 5\right)$. Let M be a number of such balls $B\left(x_{j}, 1\right)$. The sum of volumes of these balls is at most $M \omega_{d}$. Clearly, $M \omega_{d} \leq h 5^{d} \omega_{d}$, therefore multiplicities of the system of the balls $B\left(x_{j}, 2\right)$ bound by $H=h 5^{d}$. Replace each ball $B\left(x_{j}, 1\right)$ by some ball $B\left(x_{j}^{\prime}, 1\right)$ with $x_{j}^{\prime} \in \Lambda_{j} \subset B\left(x_{j}, 1\right)$. Note that $\Lambda_{j} \subset B\left(x_{j}^{\prime}, 1\right)$. Since $B\left(x_{j}^{\prime}, 1\right) \subset B\left(x_{j}, 2\right)$, we see that multiplicities of intersections of the system $\left\{B\left(x_{j}^{\prime}, 1\right)\right\}$ are bounded by H. Hence we may suppose that $x_{j} \in \Lambda_{j}$.

Lemma. For any $l, m \in \mathbb{N}$ the number of elements of the set $\left\{k \in \mathbb{N}:(k, l) \in T_{m}\right\}$ does not exceed $C_{2} H^{d-1}, C_{2}=C_{2}(d)$.

Proof. Let $(k, l) \in T_{m}$. We have $m \leq \operatorname{dist}\left(\Lambda_{k}, \Lambda_{l}\right) \leq\left|x_{k}-x_{l}\right| \leq \operatorname{dist}\left(\Lambda_{k}, \Lambda_{l}\right)+2 \leq$ $m+3$. Therefore, all balls $B\left(x_{k}, 1\right)$ with $(k, l) \in T_{m}$ are contained in the spherical layer $\left\{x: m-1 \leq\left|x-x_{l}\right| \leq m+4\right\}$. The volume of this spherical layer is $\omega_{d}((m+$ $\left.4)^{d}-(m-1)^{d}\right) \leq C_{2} \omega_{d} m^{d-1}$, where C_{2} depends on d only.

Hence a common value of the set T_{m} of balls $B\left(x_{k}, 1\right)$ with $(l, k) \in T_{m}$ does not exceed $C_{2} H m^{d-1}$.
Theorem 2. Let $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}, \Lambda=\bigsqcup_{j=1}^{\infty} \Lambda_{j}$, $\operatorname{diam} \Lambda_{j}<1, j=1,2, \ldots$ Suppose that $\Lambda_{j} \subset B\left(x_{j}, 1\right), x_{j} \in \Lambda_{j}$ and the multiplicities of intersections of the balls $B\left(x_{j}, 1\right)$ do not exceed h, also suppose that $\sum_{j=1}^{\infty}\left(\sum_{\lambda_{n} \in \Lambda_{j}}\left|a_{n}\right|\right)^{2}=K^{2}<\infty$ for some $a_{n} \in \mathbb{C}$.

Then the following conditions are fulfilled:

$$
\text { a) } D_{S^{2}}\left[S_{N}(x), 0\right] \leq C_{3} K
$$

where $S_{N}(x)=\sum_{k=1}^{N} a_{k} e^{i\left\langle\lambda_{k}, x\right\rangle}, C_{3}$ does not depend on N.

$$
\text { b) } \lim _{M, N \rightarrow \infty} D_{S^{2}}\left[S_{N}(x), S_{M}(x)\right]=0,
$$

therefore the series $\sum_{k} a_{k} e^{i\left\langle\lambda_{k}, x\right\rangle}$ converges in the metric $D_{S^{2}}$.
Proof. Let $\varphi(x) \in S H\left(\mathbb{R}^{d}\right)$ be a function such that $\varphi(x)=1, x \in B(0 ; 1)$ and $\operatorname{supp} \varphi(x) \subset B(0,2), 0 \leq \varphi(x) \leq 1$.

Then

$$
\int_{B(y ; 1)}\left|S_{N}(x)\right|^{2} d x \leq \int_{\mathbb{R}^{d}} \varphi(x-y) \sum_{1 \leq k \leq N} \sum_{1 \leq l \leq N} a_{k} \bar{a}_{l} e^{i\left\langle\lambda_{k}-\lambda_{l}, x\right\rangle} d x=
$$

$$
\begin{gathered}
=\sum_{1 \leq k \leq N} \sum_{1 \leq l \leq N} a_{k} \bar{a}_{l} \int_{\mathbb{R}^{d}} \varphi(x) e^{i\left\langle\lambda_{k}-\lambda_{l}, x+y\right\rangle} d x \leq \\
\leq\left.\sum_{1 \leq k \leq N} \sum_{1 \leq l \leq N}\left|a_{k}\right|\left|\bar{a}_{l}\right|\right|_{\mathbb{R}^{d}} \varphi(x) e^{i\left\langle\lambda_{k}-\lambda_{l}, x+y\right\rangle} d x \mid= \\
=\sum_{1 \leq k \leq N} \sum_{1 \leq l \leq N}\left|a_{k}\right|\left|a_{l}\right|\left|\widehat{\varphi}\left(\lambda_{l}-\lambda_{k}\right)\right| .
\end{gathered}
$$

Since $\widehat{\varphi} \in S H\left(\mathbb{R}^{d}\right)$, we get $|\widehat{\varphi}(x)| \leq C_{4} \min \left\{1, \frac{1}{|x|^{d+1}}\right\}$. After appropriate rearrangement of the summands

$$
\sum_{1 \leq k \leq N} \sum_{1 \leq l \leq N}\left|a_{k}\right|\left|a_{l} \| \widehat{\varphi}\left(\lambda_{k}-\lambda_{l}\right)\right|
$$

we get:

$$
\begin{gathered}
\sum_{1 \leq k \leq N} \sum_{1 \leq l \leq N}\left|a_{k}\right|\left|a_{l} \| \widehat{\varphi}\left(\lambda_{k}-\lambda_{l}\right)\right|= \\
=\sum_{j} \sum_{\substack{1 \leq k, l \leq N \\
\lambda_{k}, \lambda_{l} \in \Lambda_{j}}}\left|a_{k}\right|\left|a_{l} \| \widehat{\varphi}\left(\lambda_{k}-\lambda_{l}\right)\right|+ \\
+\sum_{m=1}^{\infty} \sum_{(j, p) \in T_{m}} \sum_{\substack{1 \leq k, l \leq N \\
\lambda_{k} \in \Lambda_{j}, \lambda_{l} \in \Lambda_{p}}}\left|a_{k}\left\|a_{l}\right\| \widehat{\varphi}\left(\lambda_{k}-\lambda_{l}\right)\right|=\Sigma_{1}+\Sigma_{2} .
\end{gathered}
$$

We estimate the sums Σ_{1} and Σ_{2} separately.
We have $\left|\widehat{\varphi}\left(\lambda_{k}-\lambda_{l}\right)\right| \leq C_{4}$ for any j under the condition $\lambda_{k}, \lambda_{l} \in \Lambda_{j}$. Hence the next bound for Σ_{1} holds:

$$
\sum_{\substack{1<k, l<N \\ \lambda_{k}, \lambda_{l} \in \Lambda_{j}}}\left|a_{k}\right|\left|a_{l}\right|\left|\widehat{\varphi}\left(\lambda_{k}-\lambda_{l}\right)\right| \leq C_{4} \sum_{\lambda_{k} \in \Lambda_{j}}\left|a_{k}\right| \sum_{\lambda_{l} \in \Lambda_{j}}\left|a_{l}\right|=C_{4}\left(\sum_{\lambda_{k} \in \Lambda_{j}}\left|a_{k}\right|\right)^{2}
$$

Therefore,

$$
\begin{equation*}
\Sigma_{1} \leq C_{4} K^{2} \tag{2}
\end{equation*}
$$

Further, for each fixed $m \geq 1$:

$$
\sum_{(j, p) \in T_{m}} \sum_{\substack{1 \leq k, l \leq N \\ \lambda_{k} \in \Lambda_{j}, \lambda_{l} \in \Lambda_{p}}}\left|a_{k}\right|\left|a_{l}\right|\left|\widehat{\varphi}\left(\lambda_{k}-\lambda_{l}\right)\right| \leq C_{4} \frac{1}{m^{d+1}} \sum_{(j, p) \in T_{m}} \sum_{\substack{1 \leq k \leq N \\ \lambda_{k} \in \Lambda_{j}}}\left|a_{k}\right| \sum_{\substack{1 \leq l \leq N \\ \lambda_{l} \in \Lambda_{p}}}\left|a_{l}\right| \leq
$$

$$
\begin{equation*}
\leq \frac{1}{2} C_{4} \frac{1}{m^{d+1}} \sum_{(j, p) \in T_{m}}\left(\left(\sum_{\lambda_{k} \in \Lambda_{j}}\left|a_{k}\right|\right)^{2}+\left(\sum_{\lambda_{l} \in \Lambda_{p}}\left|a_{l}\right|\right)^{2}\right) \tag{3}
\end{equation*}
$$

Using Lemma and replacing the summation over p such that $(j, p) \in T_{m}$ by the summation over all $s \in \mathbb{N}$, we obtain the following estimate for (3):

$$
\frac{C_{2} C_{4}}{2} \frac{m^{d-1}}{m^{d+1}} \sum_{s}\left(\left(\sum_{\lambda_{k} \in \Lambda_{s}}\left|a_{k}\right|\right)^{2}+\left(\sum_{\lambda_{l} \in \Lambda_{s}}\left|a_{l}\right|\right)^{2}\right)=\frac{C_{2} C_{4}}{m^{2}} \sum_{s}\left(\sum_{\lambda_{l} \in \Lambda_{s}}\left|a_{l}\right|\right)^{2}
$$

Therefore,

$$
\begin{equation*}
\Sigma_{2} \leq C_{5} K^{2} \tag{4}
\end{equation*}
$$

Finally, taking into account (2) and (4), we obtain

$$
\int_{B(y ; 1)}\left|S_{N}(x)\right|^{2} d x \leq C_{6} \cdot K^{2}
$$

where C_{6} does not depend on N. Hence, $D_{S^{2}}\left[S_{N}(x)\right] \leq C_{3} \cdot K$, where C_{3} does not depend on N, so the proposition a) is proved.

Prove the proposition b). Let $K_{N}^{2}=\sum_{j}\left(\sum_{\substack{1 \leq k \leq N \\ \lambda_{k} \in \Lambda_{j}}}\left|a_{k}\right|\right)^{2}$. Actually we have just proved the inequality

$$
\begin{equation*}
\sup _{y} \int_{B(y, 1)}\left|S_{N}(x)\right|^{2} d x \leq\left(C_{3} K_{N}\right)^{2} \tag{5}
\end{equation*}
$$

Substituting the sum $S_{N}(x)-S_{M}(x)$ for $S_{N}(x)$ in inequality (5), we get

$$
D_{S^{2}}\left[S_{N}(x), S_{M}(x)\right] \leq C_{3}^{2}\left(K_{N}^{2}-K_{M}^{2}\right)
$$

here $K_{N}^{2}-K_{M}^{2}=\sum_{j}\left(\sum_{\substack{M_{1} \leq n \leq N \\ \lambda_{n} \in \bar{\Lambda}_{j}}}\left|a_{k}\right|\right)^{2}$.
Prove that $\left(K_{N}^{2}-K_{M}^{2}\right) \rightarrow 0$ as $N, M \rightarrow \infty$. Assume that M is sufficiently large. By the condition $\sum_{j}\left(\sum_{\lambda_{n} \in \Lambda_{j}}\left|a_{n}\right|\right)^{2}=K^{2}$, for each $\varepsilon>0$ there exists $q \in \mathbb{N}(q$ does not depend on M and on N) such that $\sum_{j=q+1}^{\infty}\left(\sum_{\substack{M \leq n \leq N \\ \lambda_{n} \in \Lambda_{j}}}\left|a_{n}\right|\right)^{2} \leq \frac{\varepsilon}{2}$.

Next, for each fixed $1 \leq j \leq q$ there exists M such that the inequality

$$
\left(\sum_{\lambda_{n} \in \Lambda_{j}}\left|a_{n}\right|\right)^{2} \leq \frac{\varepsilon}{2 q}
$$

is satisfied for $n>M$. Then $\sum_{j=1}^{q}\left(\sum_{\substack{M \leq n \leq N \\ \lambda_{n} \in \Lambda_{j}}}\left|a_{n}\right|\right)^{2} \leq q \cdot \frac{\varepsilon}{2 q}=\frac{\varepsilon}{2}$. Hence, for each $\varepsilon>0$ we obtain $\left(K_{N}^{2}-K_{M}^{2}\right) \leq \varepsilon$. This completes the proof.
Remark 1. Theorem 2 is true for $\operatorname{diam} \Lambda_{j} \leq r, j=1,2, \ldots$, and for the balls of radius $R \geq r$.

Suppose that there exists a set of balls $\left\{B\left(x_{j}, R\right)\right\}$ such that multiplicities of intersections of the balls do not exceed h, and the numbers of points $\lambda \in \Lambda$ contained in $B\left(x_{j}, R\right)$ are uniformly bounded.

$$
\text { Put } \Lambda_{1}=\Lambda \cap B\left(x_{1}, R\right), \Lambda_{2}=\Lambda \cap B\left(x_{1}, R\right) \backslash \Lambda_{1}, \Lambda_{j}=\left(\Lambda \cap B\left(x_{1}, R\right)\right) \backslash \bigcup_{k=1}^{j-1} \Lambda_{k}
$$

The sets Λ_{j} satisfy all the conditions of Theorem 2 and for any j the number of elements Λ_{j} does not exceed some bound $s<\infty$.

Clearly, $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty$ implies $\sum_{j=1}\left(\sum_{\lambda_{n} \in \Lambda_{j}}\left|a_{n}\right|\right)^{2} \leq \sum_{j=1} s \sum_{\lambda_{n} \in \Lambda_{j}}\left|a_{n}\right|^{2}<\infty$.
We get the following consequence of Theorem 2:
Theorem 3. Let $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ and $\left\{B\left(x_{j}, R\right)\right\}$ be a set of balls such that multiplicities of intersections of the balls do not exceed h. Suppose that numbers of elements of the sets $\Lambda \cap B\left(x_{j}, R\right)$ are uniformly bounded for all $j \in \mathbb{N}$. If for some $a_{n} \in \mathbb{C}$ $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty$, then the following conditions are fulfilled:

$$
\text { a) } \sup _{N} S_{N}(x)<\infty
$$

here $S_{N}(x)=\sum_{k=1}^{N} a_{k} e^{i\left\langle\lambda_{k}, x\right\rangle}$.

$$
\text { b) } \lim _{M, N \rightarrow \infty} D_{S^{2}}\left[S_{N}(x), S_{M}(x)\right]=0
$$

Consider some applications of the obtained results.
Definition 3. (see [2] for the case $\mathrm{d}=1$). Function $f(x): \mathbb{R}^{d} \rightarrow \mathbb{C}$ is called Stepanov's almost periodic function of order $p\left(S^{p}\right.$-almost periodic function) if there exists a sequence of finite exponential sums $S_{n}(x)=\sum_{j} c_{j} e^{i\left\langle\lambda_{j}, x\right\rangle}, c_{j} \in \mathbb{C}, \lambda_{j} \in \mathbb{R}^{d}$, such that

$$
\lim _{n \rightarrow \infty} D_{S^{p}}\left[f(x), S_{n}(x)\right]=0
$$

To each S^{p}-almost periodic function $f(x), x \in \mathbb{R}^{d}$, we associate the Fourier series

$$
f(x) \sim \sum_{\lambda \in \mathbb{R}^{d}} a(\lambda, f) e^{i\langle\lambda, x\rangle}
$$

where $a(\lambda, f)=\lim _{T \rightarrow \infty} \frac{1}{\omega_{d} T^{d}} \int_{B(0, T)} f(x) e^{-i\langle\lambda, x\rangle} d x$.
Definition 4. (see [2] for the case $d=1$ and [3] for the case $d>1$) The spectrum of function $f(x)$ is the set $\operatorname{spf}=\left\{\lambda \in \mathbb{R}^{d}: a(\lambda, f) \neq 0\right\}$.

It is well known (for the case $d=1$ see [2], the proof for the case $d>1$ can be treated in the same way) that spectrum of S^{p}-a.p.function is at most countable. The properties of the spectrum of the almost periodic functions in various metrics were considered in [7]. There were considered Stepanov's, Weil's and Besicovitch's almost periodic functions on \mathbb{R}^{d}.

Theorem 4. For any set of pairs $\left\{\left(a_{n}, \lambda_{n}\right)\right\}_{n=1}^{\infty}$ that satisfy the conditions of Theorem 2 there exists S^{2} - almost periodic function $f(x)$ with Fourier series $\sum_{n} a_{n} e^{i\left\langle\lambda_{n}, x\right\rangle}$.
Proof. It follows from the completeness of the metric $D_{S^{2}}$ and Theorem 2 that the sums $\sum_{n \leq N} a_{n} e^{i\left\langle\lambda_{n}, x\right\rangle}$ converge to $f(x)$ with respect to the metric $D_{S^{2}}$.

Also we get
Theorem 5. For any set of pairs $\left\{\left(a_{n}, \lambda_{n}\right)\right\}_{n=1}^{\infty}$ that satisfy the conditions of Theorem 3 there exists S^{2} - almost periodic function $f(x)$ with Fourier series $\sum_{n} a_{n} e^{i\left\langle\lambda_{n}, x\right\rangle}$.

Let the functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}, g: \mathbb{R}^{d} \rightarrow \mathbb{C}$ be measurable and L^{p}-integrable on each compact in \mathbb{R}^{d}.

Generalizing the definition of Besikovitch's distance (see [1]) for the function on \mathbb{R}^{d} we have the following definition.

Definition 5. Put

$$
D_{B^{p}}[f(x), g(x)]=\left\{\varlimsup_{T \rightarrow \infty} \frac{1}{\omega_{d} T^{n}} \int_{B(0, T)}|f(y)-g(y)|^{p} d y\right\}^{\frac{1}{p}}, \quad p \geq 1
$$

the metric generated by this distance is called Besicovitch's distance of order p.
Definition 6. (see [1] for the case $\mathrm{d}=1$) Function $f(x): \mathbb{R}^{d} \rightarrow \mathbb{C}$ is called Besicovitch's almost periodic function of order p (B^{p}-almost periodic function) if there exists a sequence of finite exponential sums $S_{n}(x)=\sum_{j} c_{j} e^{i\left\langle\lambda_{j}, x\right\rangle}, c_{j} \in \mathbb{C}, \lambda_{j} \in \mathbb{R}^{d}$, such that

$$
\lim _{n \rightarrow \infty} D_{B^{p}}\left[f(x), S_{n}(x)\right]=0
$$

Each B^{p}-almost periodic function $f(x), x \in \mathbb{R}^{d}$, has at most countable spectrum

$$
\operatorname{sp} f=\left\{\lambda: a(\lambda, f)=\lim _{T \rightarrow \infty} \frac{1}{\omega_{d} T^{d}} \int_{B(0, T)} f(x) e^{-i\langle\lambda, x\rangle} d x \neq 0\right\}
$$

Moreover, for each B^{2} - almost periodic function f we have

$$
\sum_{\lambda_{n} \in \operatorname{sp} f}\left|a\left(\lambda_{n}, f\right)\right|^{2}<\infty
$$

The proof is similarly to the case $d=1$.
Hence we obtain
Theorem 6. Let $f(x), x \in \mathbb{R}^{d}$, be B^{2} - almost periodic function with the spectrum $\Lambda=\left\{\lambda_{k}\right\}_{k=1}^{\infty}$. Suppose that there exists a set of balls $\left\{B\left(x_{j}, R\right)\right\}$ such that the multiplicities of intersections do not exceed h, and numbers of elements $\lambda \in \Lambda \cap B\left(x_{j}, R\right)$ is uniformly bounded. Then the function $f(x)$ is S^{2} - almost periodic.

References

[1] A. S. Besicovitch, Almost periodic functions. Cambridge University Press, 1932, 253 p.
[2] B. M. Levitan, Almost periodic functions. Gostehizdat, Moskow, 1953, 396 p. (In Russian)
[3] L. I. Ronkin, Almost periodic distributions and divisors in tube domains. Zap. Nauchn. Sem. POMI 247 (1997), 210-236. (In Russian).
[4] V. V. Stepanov, About metric in S_{2}-almost periodic function's space. DAN USSR, (1949) V.LXIV. No 3., P. 171. (In Russian)
[5] V. V. Stepanov, One class of almost periodic function. DAN USSR. (1949). V.LXIV. No 3.- -P. 297. (In Russian)
[6] W. Rudin, Functional analysis. - 2nd ed., New York: McGraw-Hill. ISBN 0-07-100944-2. (1991), 424 p.
[7] S. Yu. Favorov, N. P. Girya, Various definitions of spectrum of almost periodic functions. Ufa Mathematical Journal. Vol. 7. No 4. (2015), 58-70.
[8] V. S. Vladimirov, Equations of mathematical physics. New York: M. Dekker (1971), VI. 418 p.

Karazin's Kharkiv National University
Svobody sq., 4, UA-61022, Kharkiv
Ukraine
E-mail: sfavorov@gmail.com

National Technical University
Kharkiv Polytechnic Institute
Ukraine
E-mail: n82girya@gmail.com
Presented by Władysław Wilczyński at the Session of the Mathematical-Physical Commission of the Łódź Society of Sciences and Arts on June 25, 2018.

O ZBIEŻNOŚCI SZEREGU DIRICHLETA W PRZESTRZENI SKOŃCZENIE WYMIAROWEJ

Streszczenie
Rozważamy warunki zbieżności szeregów Dirichleta w przestrzeni skończenie wymiarowej przy metryce Stepanova. Uzyskujemy też pewne zastosowania dla funkcji prawie okresowych Stepanova i Besicovitcha.

Stowa kluczowe: szereg Dirichleta, wykładniki w szeregu Dirichleta, szereg Fouriera, metryka Stepanova, metryka Besicovitcha, funkcje prawie okresowe

