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2018 Vol. LXVIII

Recherches sur les déformations no. 2
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Summary

We consider conditions for convergence of Dirichlet series on a finite-dimensional space

in Stepanov’s metric. Also, we obtain some applications for Stepanov’s and Besicovitch’s

almost periodic functions.
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Consider a Dirichlet series
∑
k

ake
λkz, ak ∈ C, λk ∈ R. In the paper [4] and [5],

V. Stepanov obtained the following result:

Theorem S. Suppose that
∞∑

k=−∞
|ak|2 < ∞. If λk+1 − λk > α > 0, k ∈ Z, α does

not depend on n, then the sums SN (x) =
N∑

k=−N
ake

iλkx form a Cauchy sequence with

respect to the integral metric, namely

sup
y∈R




y+1∫

y

|SM − SN |2dx




1
2

→ 0 M,N →∞.

[61]
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The quantity

DSp
l
[f(x), g(x)] = sup

x∈R
[
1

l

x+l∫

x

|f(y)− g(y)|pdy]
1
p , p ≥ 1,

is called Stepanov’s distance of order p (p ≥ 1) associated with length l (l > 0). The

corresponding metric is called Stepanov’s one.

Here we assume that functions f(x), g(x) are pth power integrable on each seg-

ment. Note that Stepanov’s distances are equivalent for various l > 0; the space of

functions with finite Stepanov’s norm DSp
l
[f(x), 0] is complete (see [4]).

In our paper we prove an analogue of Theorem S on the space Rd. In one-

dimensional case our result is stronger than Theorem S.

We need some definitions and notations.

Let B(x0, r) be the open ball with center at the point x0 ∈ Rd and radius r > 0,

〈t, x〉 be the scalar product on Rd, and ωd be the volume of a unit ball in Rd.
Suppose that f : Rd → C, g : Rd → C are measurable and Lp-integrable functions

on each compact set.

Definition 1.

DSp
l
[f(x), g(x)] = sup

x∈Rd


 1

ωdld

∫

B(x,l)

|f(y)− g(y)|pdy




1
p

, p ≥ 1.

The metrics generating by these distances with different l > 0 are equivalent and

complete, therefore we will take l = 1 and write DSp instead of DSp
1
. Such distance

is called Stepanov’s metric.

By SH(Rd) denote the Schwartz space of smooth functions f(x), x ∈ Rd, with

the following property: for any m = (m1,m2, ...,md) ∈ (N∪ {0})d and for any k ∈ N
the equality

(
∂m1+m2+...+md

∂xm1∂xm2 ...∂xmd
f
)

(x) = o
(

1
|x|k
)
, x→∞ holds true.

Definition 2. (see [6]) The function f̂(t) =
∫
Rd

f(x)e−i〈t,x〉dx, t ∈ Rd, is called the

Fourier transform of f(x) ∈ L1(Rd).

It is known (see, for example, [6], [8]), that the Fourier transform is the automor-

phism on SH(Rd).

Let {(an, λn)}∞n=1 be a set of pairs where an ∈ C, λn ∈ Rd. Let Λ =
∞⊔
j=1

Λj be

a partition of the set Λ = {λn}∞n=1 with the property diam Λj < 1, j = 1, 2, ....

Denote SN (x) =
N∑
k=1

ake
i〈λk,x〉.
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Theorem 1. Suppose an > 0, 0 < r <∞. Then

∞∑

j=1


 ∑

λn∈Λj

an




2

≤ C1 sup
N

∫

B(0;r)

|SN (x)|2dx,

where C1 = C1(r, d).

Proof. Let ϕ(x) ∈ SH(Rd) be an even nonnegative function such that suppϕ(x) ⊂
B(0, r2 ). Put ψ(x) = 1

δd
(ϕ ∗ ϕ)(xδ ) for δ ∈ (0, 1). Clearly, suppψ(x) ⊂ B(0, δr) and

ψ̂(t) = |ϕ̂(δt)|2 ≥ 0, ψ̂(0) > 0 and

ψ̂(t) ≥ ε > 0, t ∈ B(0, 1) (1)

for appropriate δ.

Let M = sup
Rd

ψ(x). We have the following sequence of inequalities:

∫

B(0;r)

|SN (x)|2dx ≥

≥M−1

∫

Rd

ψ(x)|SN (x)|2dx = M−1

∫

Rd

ψ(x)
N∑

n=1

N∑

l=1

anale
i〈λn−λl, x〉dx =

= M−1
N∑

n=1

N∑

l=1

anal

∫

Rd

ψ(x)ei〈λn−λl, x〉dx = M−1
N∑

n=1

N∑

l=1

analψ̂(λl − λn).

Since ψ̂(t) ≥ 0 we omit all the terms where the elements λn, λk belong to different

sets Λj and get the following inequalities:

M−1
N∑

n=1

N∑

l=1

analψ̂(λl − λn) ≥M−1
∑

j

∑

1≤n,l≤N
λn,λk∈Λj

analψ̂(λl − λn) ≥

≥M−1ε
∑

j

∑

1≤n,l≤N
λn,λl∈Λj

anal = M−1ε
∑

j



∑

1≤n≤N
λn∈Λj

an




2

.

Thus,

∑

j


 ∑

λn∈Λj

an




2

≤ C1 sup
N

∫

B(0,r)

|SN (x)|2dx.

This completes the proof of the Theorem. �
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Define Tm = {(j, l) : m ≤ dist(Λj , Λl) < m+ 1}. Note that N2 =
∞⊔
m=0

Tm.

Let {B(xj , 1)} be a set of balls such that multiplicities of their intersections do

not exceed h and Λj ⊂ B(xj , 1) for all j ∈ N. Note that for a fixed k and any j

such that B(xk, 2) ∩ B(xj , 2) 6= ∅ we have |xj − xk| < 4 and B(xj , 1) ⊂ B(xk, 5).

Let M be a number of such balls B(xj , 1). The sum of volumes of these balls is at

most Mωd. Clearly, Mωd ≤ h5dωd, therefore multiplicities of the system of the balls

B(xj , 2) bound by H = h5d. Replace each ball B(xj , 1) by some ball B(x′j , 1) with

x′j ∈ Λj ⊂ B(xj , 1). Note that Λj ⊂ B(x′j , 1). Since B(x′j , 1) ⊂ B(xj , 2), we see that

multiplicities of intersections of the system {B(x′j , 1)} are bounded by H. Hence we

may suppose that xj ∈ Λj .

Lemma. For any l,m ∈ N the number of elements of the set {k ∈ N : (k, l) ∈ Tm}
does not exceed C2Hm

d−1, C2 = C2(d).

Proof. Let (k, l) ∈ Tm. We have m ≤ dist(Λk,Λl) ≤ |xk − xl| ≤ dist(Λk,Λl) + 2 ≤
m + 3. Therefore, all balls B(xk, 1) with (k, l) ∈ Tm are contained in the spherical

layer {x : m− 1 ≤ |x− xl| ≤ m+ 4}. The volume of this spherical layer is ωd((m+

4)d − (m− 1)d) ≤ C2ωdm
d−1, where C2 depends on d only.

Hence a common value of the set Tm of balls B(xk, 1) with (l, k) ∈ Tm does not

exceed C2Hm
d−1. �

Theorem 2. Let Λ = {λn}∞n=1, Λ =
∞⊔
j=1

Λj , diam Λj < 1, j = 1, 2, . . . . Suppose that

Λj ⊂ B(xj , 1), xj ∈ Λj and the multiplicities of intersections of the balls B(xj , 1) do

not exceed h, also suppose that
∞∑
j=1

(
∑

λn∈Λj

|an|
)2

= K2 <∞ for some an ∈ C.

Then the following conditions are fulfilled:

a) DS2 [SN (x), 0] ≤ C3K,

where SN (x) =
N∑
k=1

ake
i〈λk,x〉, C3 does not depend on N.

b) lim
M,N→∞

DS2 [SN (x), SM (x)] = 0,

therefore the series
∑
k

ake
i〈λk,x〉 converges in the metric DS2 .

Proof. Let ϕ(x) ∈ SH(Rd) be a function such that ϕ(x) = 1, x ∈ B(0; 1) and

suppϕ(x) ⊂ B(0, 2), 0 ≤ ϕ(x) ≤ 1.

Then ∫

B(y;1)

|SN (x)|2dx ≤
∫

Rd

ϕ(x− y)
∑

1≤k≤N

∑

1≤l≤N
akale

i〈λk−λl, x〉dx =
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=
∑

1≤k≤N

∑

1≤l≤N
akal

∫

Rd

ϕ(x)ei〈λk−λl, x+y〉dx ≤

≤
∑

1≤k≤N

∑

1≤l≤N
|ak||al|

∣∣∣∣∣∣

∫

Rd

ϕ(x)ei〈λk−λl, x+y〉dx

∣∣∣∣∣∣
=

=
∑

1≤k≤N

∑

1≤l≤N
|ak||al||ϕ̂(λl − λk)|.

Since ϕ̂ ∈ SH(Rd), we get |ϕ̂(x)| ≤ C4min{1, 1
|x|d+1 }. After appropriate rear-

rangement of the summands

∑

1≤k≤N

∑

1≤l≤N
|ak||al||ϕ̂(λk − λl)|

we get:

∑

1≤k≤N

∑

1≤l≤N
|ak||al||ϕ̂(λk − λl)| =

=
∑

j

∑

1≤k, l≤N
λk, λl∈Λj

|ak||al||ϕ̂(λk − λl)|+

+
∞∑

m=1

∑

(j, p)∈Tm

∑

1≤k, l≤N
λk∈Λj , λl∈Λp

|ak||al||ϕ̂(λk − λl)| = Σ1 + Σ2.

We estimate the sums Σ1 and Σ2 separately.

We have |ϕ̂(λk − λl)| ≤ C4 for any j under the condition λk, λl ∈ Λj . Hence the

next bound for Σ1 holds:

∑

1<k,l<N
λk,λl∈Λj

|ak||al||ϕ̂(λk − λl)| ≤ C4

∑

λk∈Λj

|ak|
∑

λl∈Λj

|al| = C4


 ∑

λk∈Λj

|ak|




2

,

Therefore,

Σ1 ≤ C4K
2. (2)

Further, for each fixed m ≥ 1 :

∑

(j,p)∈Tm

∑

1≤k, l≤N
λk∈Λj , λl∈Λp

|ak||al||ϕ̂(λk − λl)| ≤ C4
1

md+1

∑

(j,p)∈Tm

∑

1≤k≤N
λk∈Λj

|ak|
∑

1≤l≤N
λl∈Λp

|al| ≤
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≤ 1

2
C4

1

md+1

∑

(j,p)∈Tm





 ∑

λk∈Λj

|ak|




2

+


 ∑

λl∈Λp

|al|




2

 (3)

Using Lemma and replacing the summation over p such that (j, p) ∈ Tm by the

summation over all s ∈ N, we obtain the following estimate for (3):

C2C4

2

md−1

md+1

∑

s



( ∑

λk∈Λs

|ak|
)2

+

( ∑

λl∈Λs

|al|
)2

 =

C2C4

m2

∑

s

( ∑

λl∈Λs

|al|
)2

.

Therefore,

Σ2 ≤ C5K
2. (4)

Finally, taking into account (2) and (4), we obtain

∫

B(y;1)

|SN (x)|2dx ≤ C6 ·K2,

where C6 does not depend on N. Hence, DS2 [SN (x)] ≤ C3 ·K, where C3 does not

depend on N, so the proposition a) is proved.

Prove the proposition b). Let K2
N =

∑
j




∑
1≤k≤N
λk∈Λj

|ak|




2

. Actually we have just

proved the inequality

sup
y

∫

B(y,1)

|SN (x)|2dx ≤ (C3KN )2. (5)

Substituting the sum SN (x)− SM (x) for SN (x) in inequality (5), we get

DS2 [SN (x), SM (x)] ≤ C2
3 (K2

N −K2
M ),

here K2
N −K2

M =
∑
j

(
∑

M≤n≤N
λn∈Λj

|ak|)2.

Prove that (K2
N −K2

M )→ 0 as N,M →∞. Assume that M is sufficiently large.

By the condition
∑
j

(
∑

λn∈Λj

|an|
)2

= K2, for each ε > 0 there exists q ∈ N (q does

not depend on M and on N ) such that
∞∑

j=q+1




∑
M≤n≤N
λn∈Λj

|an|




2

≤ ε
2 .
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Next, for each fixed 1 ≤ j ≤ q there exists M such that the inequality

 ∑

λn∈Λj

|an|




2

≤ ε

2q

is satisfied for n > M . Then
q∑
j=1




∑
M≤n≤N
λn∈Λj

|an|




2

≤ q · ε2q = ε
2 . Hence, for each ε > 0

we obtain (K2
N −K2

M ) ≤ ε. This completes the proof. �
Remark 1. Theorem 2 is true for diam Λj ≤ r, j = 1, 2, ..., and for the balls of

radius R ≥ r.
Suppose that there exists a set of balls {B(xj , R)} such that multiplicities of

intersections of the balls do not exceed h, and the numbers of points λ ∈ Λ contained

in B(xj , R) are uniformly bounded.

Put Λ1 = Λ ∩ B(x1, R), Λ2 = Λ ∩ B(x1, R) \ Λ1, Λj = (Λ ∩ B(x1, R)) \
j−1⋃
k=1

Λk.

The sets Λj satisfy all the conditions of Theorem 2 and for any j the number of

elements Λj does not exceed some bound s <∞.

Clearly,
∞∑
n=1
|an|2 <∞ implies

∑
j=1

(
∑

λn∈Λj

|an|
)2

≤ ∑
j=1

s
∑

λn∈Λj

|an|2 <∞.

We get the following consequence of Theorem 2:

Theorem 3. Let Λ = {λn}∞n=1 and {B(xj , R)} be a set of balls such that multiplic-

ities of intersections of the balls do not exceed h. Suppose that numbers of elements

of the sets Λ ∩ B(xj , R) are uniformly bounded for all j ∈ N. If for some an ∈ C
∞∑
n=1
|an|2 <∞, then the following conditions are fulfilled:

a) sup
N
SN (x) <∞,

here SN (x) =
N∑
k=1

ake
i〈λk,x〉.

b) lim
M,N→∞

DS2 [SN (x), SM (x)] = 0.

Consider some applications of the obtained results.

Definition 3. (see [2] for the case d=1). Function f(x) : Rd → C is called Stepanov’s

almost periodic function of order p (Sp-almost periodic function) if there exists a

sequence of finite exponential sums Sn(x) =
∑
j

cje
i〈λj ,x〉, cj ∈ C, λj ∈ Rd, such that

lim
n→∞

DSp [f(x), Sn(x)] = 0.
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To each Sp-almost periodic function f(x), x ∈ Rd, we associate the Fourier series

f(x) ∼
∑

λ∈Rd

a(λ, f)ei〈λ,x〉,

where a(λ, f) = lim
T→∞

1
ωdTd

∫
B(0, T )

f(x)e−i〈λ,x〉dx.

Definition 4. (see [2] for the case d = 1 and [3] for the case d > 1) The spectrum

of function f(x) is the set spf = {λ ∈ Rd : a(λ, f) 6= 0}.
It is well known (for the case d = 1 see [2], the proof for the case d > 1 can be

treated in the same way) that spectrum of Sp-a.p.function is at most countable. The

properties of the spectrum of the almost periodic functions in various metrics were

considered in [7]. There were considered Stepanov’s, Weil’s and Besicovitch’s almost

periodic functions on Rd.

Theorem 4. For any set of pairs {(an, λn)}∞n=1 that satisfy the conditions of Theo-

rem 2 there exists S2– almost periodic function f(x) with Fourier series
∑
n
ane

i〈λn,x〉.

Proof. It follows from the completeness of the metric DS2 and Theorem 2 that the

sums
∑
n≤N

ane
i〈λn,x〉 converge to f(x) with respect to the metric DS2 . �

Also we get

Theorem 5. For any set of pairs {(an, λn)}∞n=1 that satisfy the conditions of Theo-

rem 3 there exists S2– almost periodic function f(x) with Fourier series
∑
n
ane

i〈λn,x〉.

Let the functions f : Rd → C, g : Rd → C be measurable and Lp-integrable on

each compact in Rd.
Generalizing the definition of Besikovitch’s distance ( see [1]) for the function on

Rd we have the following definition.

Definition 5. Put

DBp [f(x), g(x)] =





lim
T→∞

1

ωdTn

∫

B(0,T )

|f(y)− g(y)|pdy





1
p

, p ≥ 1,

the metric generated by this distance is called Besicovitch’s distance of order p.

Definition 6. (see [1] for the case d=1) Function f(x) : Rd → C is called Besi-

covitch’s almost periodic function of order p (Bp–almost periodic function) if there

exists a sequence of finite exponential sums Sn(x) =
∑
j

cje
i〈λj ,x〉, cj ∈ C, λj ∈ Rd,

such that

lim
n→∞

DBp [f(x), Sn(x)] = 0.
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Each Bp–almost periodic function f(x), x ∈ Rd, has at most countable spectrum

spf = {λ : a(λ, f) = lim
T→∞

1

ωdT d

∫

B(0, T )

f(x)e−i〈λ,x〉dx 6= 0}.

Moreover, for each B2 – almost periodic function f we have
∑

λn∈spf

|a(λn, f)|2 <∞.

The proof is similarly to the case d = 1.

Hence we obtain

Theorem 6. Let f(x), x ∈ Rd, be B2– almost periodic function with the spectrum

Λ = {λk}∞k=1. Suppose that there exists a set of balls {B(xj , R)} such that the multi-

plicities of intersections do not exceed h, and numbers of elements λ ∈ Λ ∩B(xj , R)

is uniformly bounded. Then the function f(x) is S2 – almost periodic.
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O ZBIEŻNOŚCI SZEREGU DIRICHLETA W PRZESTRZENI

SKOŃCZENIE WYMIAROWEJ

S t r e s z c z e n i e
Rozważamy warunki zbieżności szeregów Dirichleta w przestrzeni skończenie wymiaro-

wej przy metryce Stepanova. Uzyskujemy też pewne zastosowania dla funkcji prawie okre-
sowych Stepanova i Besicovitcha.

S lowa kluczowe: szereg Dirichleta, wyk ladniki w szeregu Dirichleta, szereg Fouriera, metryka

Stepanova, metryka Besicovitcha, funkcje prawie okresowe


