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A NOTE ABOUT IRREDUCIBILITY OF A RESULTANT

Summary

We present a theorem about irreducibility of a polynomial that is the resultant of two

others polynomials. The proof of this fact is based on the field theory. We also consider the

converse theorem and some examples.
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The aim of the paper

The aim of the paper is to prove some irreducibility criterion for resultants, which

are elements of the polynomial ring (Theorem 2.1). A motivation to take up this

issue is irreducibility of polynomials over the ring of formal power series, which is a

current problem in the algebraic geometry (see for example [4], [5], [6], [8]).

The main result of the article (Theorem 2.1) implies the following corollary.

Corollary 1. Let k be a field and f, g ∈ k[Y ] be monic polynomials. If Res(f −T, g)

is a product of some relatively prime polynomials in k[T ], then g is also a product of

some relatively prime polynomials in k[Y ].

The above fact allows to prove some generalization of the well known Hensel’s

Lemma (see [2]), which we outline below. Let k be an algebraically closed field of

characteristic zero. We consider the formal power series ring k[[X1, . . . , Xd]] and a

fractional power series ring k[[X
1/m
1 , . . . , X

1/m
d ]], where m is a positive integer. For

every q = (q1, . . . , qd) ∈ Qd≥0 we denote the monomial Xq := Xq1
1 · · ·Xqd

d and we say

that q is the order of Xq. Let

f = Y n + an−1Y
n−1 + · · ·+ a0 ∈ k[[X1, . . . Xd]][Y ]

[27]
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be a monic polynomial. Such a polynomial is called quasi-ordinary if its discriminant

equals uXq with u(0) 6= 0. We say that f is a Weierstrass polynomial if ai(0) = 0

for all i = 0, . . . , n− 1. The Abhyankar-Jung theorem (see [7]) says that every quasi-

ordinary polynomial has its roots in the ring k[[X
1/m
1 , . . . , X

1/m
d ]] for some positive

integer m.

Assume that g ∈ k[[X1, . . . , Xd]][Y ] is a Weierstrass polynomial such that

g(λ+ ZXh) = G(Z)Xq + terms of greater order,

where λ ∈ k[[X
1/m
1 , . . . , X

1/m
d ]] is a root of some irreducible quasi-ordinary Weier-

strass polynomial f ∈ k[[X1, . . . , Xd]][Y ] and G(Z) ∈ k[Z] is a nonzero polyno-

mial such that degG · deg f = deg g. Therefore, under suitable assumptions, if

G(Z) = G1(Z)G2(Z), where G1(Z), G2(Z) ∈ k[Z] are relatively prime, then g = g1g2
for some relatively prime polynomials g1, g2 ∈ k[[X1, . . . , Xd]][Y ] such that

g1(λ+ ZXh) = G1(Z)Xq1 + terms of greater order,

g2(λ+ ZXh) = G2(Z)Xq2 + terms of greater order.

This generalization of Hensel’s Lemma is not published yet, so we do not include

the details.

1. Preliminaries

At the beginning, we recall some basic definitions and facts from the field theory.

Every nonzero homomorphism of fields is called an embedding. For a field ex-

tension F < E and an embedding σ : F ↪→ L, an embedding σ̄ : E ↪→ L such that

σ̄|F = σ is called an extension of σ. An extension of the identity map F ↪→ F < L is

called an F–embedding.

If σ : F ↪→ E is an embedding and f = anX
n + · · · + a0 ∈ F [X], then we set

fσ := σ(an)Xn + · · ·+ σ(a0) ∈ E[X].

We say that E is a splitting field over F of a family F ⊂ F [X] if every polynomial

f ∈ F splits over E and E = F (S), where S is the set of all roots of polynomials

from the family F (we assume that S ⊂ F̄ , the algebraic closure of F ).

An algebraic extension F < E, where E < F̄ , is said to be normal if E is

a splitting field of some family F ⊂ F [X]. In this situation we also say that E is

normal over F .

Consider a field extension F < E. The set Gal(E/F ) of all F–automorphisms of

E is a group under the composition of mappings, which we call the Galois group of

the extension F < E.

Let f be a polynomial over a field F . We define the Galois group of the polynomial

f as the Galois group of the extension F < Lf , where Lf is the splitting field of f .

We denote this group by Gal(f). It acts on the set Zf of all roots of f by an obvious

way.



A note about irreducibility of a resultant 29

The following theorem collects some well known properties of extension of fields,

all of which can be found in [3].

Theorem 1.1. Assume that F < E is an algebraic field extension and L is an al-

gebraically closed field. Then:

(i) Let α ∈ E and mα,F be the minimal polynomial of α over F . If σ : F ↪→ L

is an embedding and β ∈ L is a root of mσ
α,F , then σ can be extended to

an embedding σ̄ : E ↪→ L such that σ̄(α) = β.

(ii) If E < F̄ , then F < E is normal if and only if every F–embedding E ↪→ F̄ is

an automorphism of E.

We need a slight generalization of a well known property of the Galois group.

Theorem 1.2. Let f be a monic polynomial over a field F , deg f > 0. Then Gal(f)

acts transitively on the set of all roots of the polynomial f if and only if f is a power

of some monic irreducible polynomial.

Proof. Assume that Gal(f) acts transitively on the set Zf of all roots of the poly-

nomial f . Let f1, . . . , fs ∈ F [X] be all distinct irreducible factors of f (all of them

are monic). Take ri ∈ Zfi , rj ∈ Zfj . Then ri, rj ∈ Zf and according to our as-

sumption there exists an automorphism σ ∈ Gal(f) such that σ(ri) = rj . Thus

0 = σ(fi(ri)) = fi(rj). It follows that fj |fi, so fi = fj . This implies that f is a power

of a monic irreducible polynomial.

Conversely, assume that f is a power of a monic irreducible polynomial g ∈
F [X]. Then Zf = Zg and g is the minimal polynomial of every element of Zf . Take

ri, rj ∈ Zf . Since the extension F < Lf is algebraic, the identity F ↪→ F can be

extended to an F–embedding σ : Lf ↪→ F such that σ(ri) = rj (Theorem 1.1(i)). Ac-

cording to the normality of the extension F < Lf , the F–embedding σ must be

an element of the group Gal(f) (Theorem 1.1(ii)). Therefore Gal(f) acts transitively

on the set Zf . �

2. Main theorem

Let k be a field and ResY (f, g) denote the resultant of polynomials f, g ∈ k[Y, T ]

with respect to the variable Y .

Theorem 2.1. Let f, g ∈ k[Y ] be monic. If g is irreducible in the ring k[Y ] then

the polynomial h = (−1)deg gResY (g, f − T ) ∈ k[T ] is a power of some irreducible

polynomial.

Proof. Let Zg = {y1, . . . , ym}. Observe that h =
∏m
i=1(T − f(yi)), so Zh = {f(yi) :

i = 1, . . . ,m}. Set Lg := k(y1, . . . , ym) and Lh := k(f(y1), . . . , f(ym)). It is ob-

vious that k ⊂ Lh ⊂ Lg ⊂ k̄. Take i, j ∈ {1, . . . ,m}. Since the polynomial g is
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irreducible, Theorem 1.2 implies that the action of Gal(g) on the set Zg is transi-

tive. It follows that σ(yi) = yj for some σ ∈ Gal(g). Therefore σ|Lh
: Lh ↪→ k is

a k–embedding. The extension k < Lh is normal, so according to Theorem 1.1(ii),

we have that σ|Lh
is a k–automorphism of Lh. Thus τ := σ|Lh

∈ Gal(h) and

τ(f(yi)) = σ(f(yi)) = f(σ(yi)) = f(yj). It means that Gal(h) acts transitively

on the set Zh and by Theorem 1.2 the statement follows. �
Now, we present some examples connected with the converse theorem.

The first example shows that, in general, the converse to Theorem 2.1 does not

hold.

Example 2.2. Let f = Y 2−X3 ∈ C((X))[Y ] and g = (Y 2−X3)2−X7 ∈ C((X))[Y ].

Then h = (T 2−X7)2 ∈ C((X))[T ] is the square of the irreducible polynomial, but g

has two irreducible factors in C((X))[Y ] (see [1]). (Here C((X)) denotes the quotient

field of the ring C[[X]] of formal power series.)

If we assume that h is irreducible, then the converse to Theorem 2.1 holds.

Corollary 2. Let f, g ∈ k[Y ] be monic. If h = (−1)deg gResY (g, f − T ) ∈ k[T ] is

irreducible, then g is also irreducible.

Proof. Assume that g = g1 · · · gs, where k > 1 and g1, . . . , gs ∈ k[Y ] are monic and

irreducible. Then

h = (−1)deg gResY (g1, f − T ) · · ·ResY (gs, f − T ).

Since g1, . . . , gs are monic and irreducible over k, Theorem 2.1 implies that each

ResY (gi, f − T ) is a power of some irreducible polynomial. This means that h is

reducible in k[T ]. �
Consider the following example.

Example 2.3. Let f = Y 2 − X3 and g = (Y 2 − X3)2 − X5Y be polynomials

over the field C((X)). Let w(i, j) := 4i + 13j be a weight. Then the initial quasi-

homogeneous part of h = T 4 −X10T −X13 ∈ C[[X,T ]] is equal to T 4 −X13. Since

the integers 4 and 13 are coprime, the polynomial T 4−X13 is irreducible in the ring

C[X,T ]. Therefore Hensel’s Lemma (see [2, Lemma A1]) implies that h is irreducible

in the ring C((X))[T ]. By Corollary 2 the polynomial g is irreducible over C((X)).

Remark 2.4. Polynomials g1 = (Y 2 −X3)2 −X7 and g2 = (Y 2 −X3)2 −X5Y are

taken from [1]. Both were proposed by Tzee-Char Kuo.
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UWAGA DOTYCZA̧CA NIEROZK LADALNOŚCI RUGOWNIKA

S t r e s z c z e n i e
W pracy przedstawiono twierdzenie dotycza̧ce nierozk ladalności wielomianu, który jest

rugownikiem dwóch innych wielomianów. Dowód tego twierdzenia oparty jest na teorii cia l.
Ponadto, udowodniono pewien wariant twierdzenia odwrotnego oraz zaprezentowano kilka
przyk ladów.

S lowa kluczowe: teoria Galois, rozszerzenie rozdzielcze cia l, zanurzenie cia l, nierozk ladalność

wielomianu, rugownik




