
https://doi.org/10.26485/0459-6854/2018/68.1/6 PL ISSN 0459-6854

B U L L E T I N
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Summary

Isoptic curves have been known and studied since the 18th century. Nowadays they

have been examined inter alia by Benko, Cieślak, Góźdź, Miernowski and Mozgawa in

many papers for example in [1], [2], [3] and [7]. We want to propose a new point of view

isoptics. For a given oval we consider a dual curve on Blaschke cylinder and we construct

a dual curve for its isoptic. Some properties, for example the loss of convexity is easier to

observe on the dual curve than on the given curve. From the analysis of properties of dual

curves to isoptics we get a new form of the condition for the convexity of isoptic curves.

Keywords and phrases: isoptic curve, envelope, space of oriented lines, dual curve, Blaschke

cylinder

1. Introduction

In this paper, a plane, closed, simple, strictly convex and smooth curve will be called

an oval. We introduce a coordinate system with the origin O in the interior of C and

denote the support function of C by p(t), where t ∈ [0, 2π). As it was shown in [11] on

page 3 and in [8], this support function is differentiable and C can be parameterized

by

z(t) = p(t)eit + p′(t)ieit for t ∈ [0, 2π), (1)

because for a fixed point z ∈ C we can consider the tangent line l. We can find a

point M ∈ l, which is an orthogonal projection of the origin to the line l. If we denote

by t the angle between the x-axis and the segment OM , then

eit = (cos t, sin t), ieit = (− sin t, cos t) and p(t) = |OM |.
Note that for any oval C we have p(t) + p′′(t) > 0 for t ∈ [0, 2π) and the expression

R(t) = p(t) + p′′(t) is the radius of curvature of C.

[85]
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Fig. 1. A parametrization of a convex curve with a support function.

Fig. 2. Construction of an isoptic Cα of the curve C and isoptics of the ellipse x2
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For α fixed in the interval (0, π) the isoptic Cα of C is a set of points from which

the oval C is seen under the angle π − α. The equation of Cα is

zα(t) = p(t)eit + {−p(t) cotα+
1

sinα
p(t+ α)}ieit, t ∈ [0, 2π), (2)

where p(t) denotes the support function of C (see [2]). Let us notice that

zα(t) = xα(t) + iyα(t), (3)
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Fig. 3. The dual curve of the ellipse x2
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where

xα(t) =
1

sinα
(p(t) sin(t+ α)− p(t+ α) sin t),

yα(t) =
1

sinα
(−p(t) cos(t+ α) + p(t+ α) cos t). (4)

It is known that the tangent vector at zα(t) to the isoptic Cα is

z′α(t) = −λ(t)eit + ρ(t)ieit, (5)

hence

x′α(t) = −λ cos t− ρ sin t,

y′α(t) = −λ sin t+ ρ cos t. (6)

Let us notice that |z′α(t)| =
√

(x′α(t))2 + (y′α(t))2 = |q(t)|
sinα , where the vector q(t) =

z(t)− z(t+ α) is important and very convenient in studies of isoptics.
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2. The dual curve on the cylinder

The space of oriented lines can be visualized as the Blaschke cylinder Γ = S1×R as an

angle t and the value of the function p(t) defines the line l of equation 〈OM |eit〉 = p(t)

oriented by ieit (see fig. 1). Since a plane curve is the envelope of its support lines,

we can associate to each such line a single point on the Blaschke cylinder Γ. This

association can be explained in terms of duality of projection geometry (see [4], pp.

10–12, 18–19).

Let us notice that if C ⊂ R2 is a plane curve, which can be parameterized by a

support function, then we can easily construct its dual curve C∗ on the cylinder Γ.

Since C can be parameterized by

z(t) = p(t)eit + p′(t)ieit for t ∈ [0, 2π),

where p(t) > 0 denotes the distance between the origin and the tangent line to C at

z(t), then the equation of this tangent line is

x cos t+ y sin t− p(t) = 0.

Hence to a plane curve we associate the curve on the cylinder Γ by the following

formula

C∗ = {(cos t, sin t, p(t)) : t ∈ [0, 2π)} (7)

and we call it dual curve to C. For C with reverse orientation we get

C∗− = {(cos t, sin t,−p(t)) : t ∈ [0, 2π)}.
Let us notice that in Γ the oriented line l is coded as a pair (eit, p) ∈ S1 × R,

where t is an angle between the first axis of the coordinate system and the normal

vector of the line l. The value p is the distance between the line l and the origin

multiplied by the orientation of the line l (1 or −1).

Let us recall that the dual to a pencil of parallel lines with the normal vector

[x, y] is the intersection of the cylinder Γ and a vertical plane with normal vector

[x, y, 0]. The dual to a pencil of lines intersecting in a point A = [x, y] ∈ R2 is an

ellipse obtained as the intersection of the cylinder Γ and a plane passing through the

origin in R3 and with a normal vector [x, y,−1]. Particularly the dual to a pencil of

lines intersecting in the origin O is a circle x2 + y2 = 1 lying on the cylinder Γ.

Hence the shape of the dual curve to a given planar curve depends on the choice

of the origin in R2.

3. The dual curve to the isoptic

Now let us try to construct the dual curve to the isoptic Cα of a given curve C. Let

us notice that for Cα we do not have a parametrization with the support function.

Moreover as we can see in fig. 2 even the convex curve can have nonconvex isoptics.
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Let

C : z(t) = p(t)eit + p′(t)ieit

be a given oval and let

C∗ : {(x, y, z) = (cos t, sin t, p(t)), t ∈ [0, 2π)}
be a dual curve to C on the cylinder Γ = S1 × R. Let us fix an angle α ∈ (0, π).

Let us recall that the point zα(t) on the isoptic Cα of C is the intersection point

of two tangents to C one at z(t) and the other at z(t+ α). We already have a dual

curve to C so we have dual points to all tangent lines to C. In particular, we have

z∗(t) = (cos t, sin t, p(t)) and z∗(t+α) = (cos(t+α), sin(t+α), p(t+α)). For a fixed

t ∈ [0, 2π) we construct a plane π(t) which passes through the origin O = (0, 0, 0) of

R3 and points z∗(t) = (cos t, sin t, p(t)) and z∗(t+α) = (cos(t+α), sin(t+α), p(t+α))

on C∗. The intersection of the plane π(t) and the cylinder Γ gives an ellipse. Points

of this ellipse on the cylinder, that is in the space of oriented lines, correspond with

a pencil of lines passing through a point zα(t) on the isoptic Cα of C. One of these

lines is a tangent to the isoptic Cα at zα(t) and it corresponds to a point z∗α(t) on

the dual curve to Cα. We want to find it.

The normal vector to the plane π(t) is

N(t, α) = (xα(t), yα(t),−1).

Let us write the equation of the oriented tangent to isoptic Cα at zα(t). This line

contains zα(t) and its direction vector is z′α(t). Hence

l =

{
x = xα + s · x′α,
y = yα + s · y′α,

(8)

where s ∈ R what we can write as

y′α · x− x′α · y + yα · x′α − xα · y′α = 0

or equivalently

y′α
|z′α|
· x− x′α

|z′α|
· y − xα · y′α − yα · x′α

|z′α|
= 0.

Let us notice that if
z′α(t)
|z′α(t)| = ieiτ for some τ ∈ [0, 2π) then

eiτ =

(
y′α
|z′α|

,− x′α
|z′α|

)
.

Hence the dual curve to isoptic Cα is

C∗α =

(
y′α(t)

|z′α(t)| ,
−x′α(t)

|z′α(t)| ,
[zα(t), z′α(t)]

|z′α(t)|

)
, t ∈ [0, 2π),

where [a+ ib, c+ id] = ad− bc.
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Fig. 4. The dual curve to the isoptic C 3
4
π of the ellipse x2
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Remark 3.1. We would like to find some kind of generalized support function of

isoptics. Let τ : [0, 2π)→ [0, 2π) be such function that

y′α(t)

|z′α(t)| = cos τ(t) and
−x′α(t)

|z′α(t)| = sin τ(t)

and C∗α = (cos τ, sin τ, g(τ)). Note that for nonconvex isoptic the function τ(t) is

not an injection. Hence the mapping g(τ) is not a function, since it can have a few

different values for the same argument τ (see fig. 4), so it is a kind of multi-valued

function.

4. The condition for convexity of isoptics

In [2] the authors gave the following formula for the curvature of the isoptic Cα

kα(t) =
1

|z′α(t)|3 [z′α(t), z′′α(t)] =
sinα

|q(t)|3
(
2|q(t)|2 − [q(t), q′(t)]

)
, (9)

and in [7] one can find some geometric conditions for convexity of this family of

curves. Now we want to propose the new approach to examining of convexity of
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isoptics.

Theorem 4.1. Let C be a given oval and let Cα be its α-isoptic for α fixed in (0, π).

Let

N(t, α) = (xα, yα,−1).

The isoptic Cα is convex if det(N,N ′, N ′′) 6= 0 for all t ∈ [0, 2π), where prime

denotes differentiation over t.

Proof. Let us notice that

N ′(t, α) =
∂N(t, α)

∂t
= (x′α, y

′
α, 0) = (z′α, 0)

and

N ′′(t, α) =
∂2N(t, α)

∂t2
= (x′′α, y

′′
α, 0) = (z′′α, 0)

Hence

det(N,N ′, N ′′) =

∣∣∣∣∣∣

xα yα −1

x′α y′α 0

x′′α y′′α 0

∣∣∣∣∣∣
= −1

∣∣∣∣
x′α y′α
x′′α y′′α

∣∣∣∣ = −[z′α, z
′′
α].

From the formula for curvature of the parameterized curve we get

kα =
|[z′α, z′′α]|
|z′α|3

=
|det(N,N ′, N ′′)|

|z′α|3
.

Hence, if C is an oval and α ∈ (0, π), then the curvature kα(t) = 0 if and only if

det(N,N ′, N ′′) = 0. �

5. Invariants for dual curves to isoptics

For isoptics on the plane there are some geometrical objects as segments of tangents

λ and −µ and the vector q (see fig. 2), which are very useful to describe properties

of isoptics. Now we are looking for geometrically indicated segments on the cylinder

Γ which correspond to those planar segments.

Corollary 5.1. Let us fix t ∈ [0, 2π). For the segment of tangent of the length λ,

used in construction of α-isoptic of C, there is corresponding vertical segment on the

cylinder Γ of length dλ = λ sinα with one end at z∗(t+ α).

Similarly for the segment of tangent of the length −µ there is a corresponding

vertical segment on the cylinder Γ of length dµ = −µ sinα with one end at z∗(t).

Proof. Let us consider fig. 5. Lines l1 and l2 are tangents to the curve C at z(t) and

z(t+ α), respectively. In the dual space we find ellipses L∗1 and L∗2 corresponding to

the pencils of lines intersecting at z(t) and z(t + α). In R2 by l3 we denote a line

passing through the point z(t) parallel to l2. Let us notice that the distance between

l2 and l3 is equal to dλ = λ sinα. In the dual space l∗2 and l∗3 are the endpoints of
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Fig. 5. Invariant for the segment λ.

Fig. 6. Invariant for the segment −µ.

a vertical segment of length dλ. Let us notice that the value dλ does not depend on

the choice of the coordinate system.

In fig. 6 we can see the similar construction for the segment −µ. Let l4 be the

line passing through the point z(t+α) and parallel to l1. Then the distance between

l1 and l4 is equal to dµ = −µ sinα. In the dual space l∗1 and l∗4 are the endpoints of

a vertical segment of length dµ.

Additionally, let us notice that the area of the ,,triangle” on Γ with vertices l∗1,

l∗2 and l∗3 is equal to 1
2αdλ. Similarly, the area of the ,,triangle” on Γ with vertices l∗1,

l∗2 and l∗4 is equal to 1
2αdµ. �

Corollary 5.2. Let us fix t ∈ [0, 2π). There is a point −p∗ on the cylinder Γ which

correspond to the oriented line containing the vector q(t), used in construction of
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Fig. 7. Invariant for the vector q.

an α-isoptic of C. There is also a geometrically indicated vertical segment of length

d = |q(t)| on Γ.

Proof. Let us consider fig. 7. Lines l1 and l2 are tangents to the curve C at z(t) and

z(t+ α), respectively. In the dual space we find ellipses L∗1 and L∗2 corresponding to

the pencils of lines intersecting at z(t) and z(t + α). The common points of these

two ellipses correspond to the line p which include the vector q. The line oriented in

the direction of the vector q is represented by −p∗. To find geometrically indicated

vertical segment of length |q(t)| on Γ we consider points a∗ and b∗ on ellipses L∗1 and

L∗2 corresponding to lines perpendicular to p and passing through z(t) and z(t+ α),

respectively. We can get dual points a∗ and b∗ by moving from p∗ along ellipses L∗1
and L∗2 to an angle π

2 . The vertical distance between a∗ and b∗ is equal to |q(t)|. We

denote it by d. The area of a ,,triangle” on Γ with vertices a∗, b∗ and p∗ is equal

to π
4 · |q(t)| and it does not depend on the choice of the origin of the coordinate

system. �

Corollary 5.3. Let us fix t ∈ [0, 2π). For the segment of normal line to C at z(t) of

the length ρ(t), used in studies of α-isoptic of C, there is corresponding geometrically

indicated vertical segment on the cylinder Γ of length ρ(t) with one end at z∗(t).

Proof. Let us consider fig. 8. Lines l1 and l2 are tangents to the curve C at z(t) and

z(t + α), respectively. Let l⊥1 and l⊥2 be perpendicular lines to l1 and l2 at z(t) and

z(t+ α), respectively. Let Ω be the intersection of l⊥1 and l⊥2 . The value of function

ρ(t) is equal to the length of the segment joining points z(t) and Ω. Let us denote

by lΩ1 the line parallel to l1 which passes though Ω. In the dual space we find ellipses

L∗1, L∗2 and Ω∗ corresponding to the pencils of lines intersecting at z(t), z(t+α) and

Ω, respectively. The value ρ we get as a vertical segment on the cylinder Γ between
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Fig. 8. Invariant for the segment ρ.

L∗1 and Ω∗ with one end at z∗(t). �
In the future we plan to construct dual curves for other evolutions of ovals as inner

isoptics and evolutoids and examine their properties. We also want to describe limit

angles for isoptics of ovals parameterized by a support function p(t) = a+b cos kt, by

a function depending on parameters a, b and k. Graphs of functions included in this

paper were created in ,,Mathematica”, to create other drawings we used ,,Corel”.

The author wishes to thank Professor Remi Langevin for his valuable advice,

useful consultations and many remarks which have improved this paper.
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KRZYWE DUALNE DO IZOOPTYK OWALI

S t r e s z c z e n i e
Izooptyki, to krzywe, które by ly znane i rozważane od XVIII wieku. W ostatnim pó lwie-

czu badali je miȩdzy innymi przez Benko, Cieślak, Góźdź, Miernowski i Mozgawa w wielu
pracach, na przyk lad w [1], [2], [3] i [7]. W tej publikacji chcemy zaproponować nowy sposób
patrzenia na izooptyki. Dla danego owalu rozważamy jego krzywa̧ dualna̧ na cylindrze
Blaschke’go i konstruujemy krzywa̧ dualna̧ do jego izooptyki. Niektóre wasności, na przyk lad
utratȩ wypuk lości,  latwiej jest zaobserwować na krzywej dualnej niż na wyj́sciowej krzywej.
Z analizy w lasności krzywych dualnych do izooptyk otrzymujemy nowa̧ postać warunku na
wypukość izooptyk.

S lowa kluczowe: izooptyka, obwiednia, przestrzeń prostych zorientowanych, krzywa dualna,

cylinder Blaschke’go




