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ON F (p, n)-FIBONACCI QUATERNIONS

Summary

In this paper we introduce and study a special one-parameter generalization of Fibonacci

quaternions. We investigate their properties and we give generalizations of some classical

results for Fibonacci quaternions.
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1. Introduction

Let Fn be the nth Fibonacci number defined recursively by Fn = Fn−1 + Fn−2 for

n ≥ 2 with the initial terms F0 = F1 = 1. The nth Lucas number Ln is defined

recursively by Ln = Ln−1 + Ln−2 for n ≥ 2 with the initial terms L0 = 2, L1 = 1.

Apart Fibonacci and Lucas numbers there are known numbers defined recursively

by the second order linear recurrence relations. It is necessary to mention Pell num-

bers, Pell-Lucas numbers, Jacobsthal numbers, Jacobsthal-Lucas numbers, for details

see [1]. These numbers are also named as numbers of the Fibonacci type and they

have applications in distinct areas of mathematics. In this paper we use Fibonacci

numbers in the theory of quaternions.

Let H be the set of quaternions q of the form

q = a + bi + cj + dk (1)

where a, b, c, d ∈ R and

i2 = j2 = k2 = ijk = −1. (2)

Note that (2) implies ij = −ji = k, jk = −kj = i, ki = −ik = j.

Quaternions were introduced by Hamilton in 1843 as an extension of the complex

numbers.

[131]
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Analogously as for complex numbers the addition, the substraction and the mul-

tiplication of quaternions were defined.

Let q1 = a1 + b1i + c1j + d1k and q2 = a2 + b2i + c2j + d2k be two quaternions.

Then the addition and the subtraction of them is defined as follows

q1 ± q2 = (a1 ± a2) + (b1 ± b2)i + (c1 ± c2)j + (d1 ± d2)k.

The quaternion multiplication also is defined analogously as the complex numbers

multiplication using the rule (2).

For details of the quaternion theory see [17].

In 1963 Horadam [6] introduced the nth Fibonacci and Lucas quaternions as

follows

Gn = Fn + iFn+1 + jFn+2 + kFn+3

and

Kn = Ln + iLn+1 + jLn+2 + kLn+3,

respectively.

Distinct properties of the Fibonacci and Lucas quaternions can be found for

example in [5], [6], [9]. In [7] Horadam indicated the possibility of introducing Pell

quaternions and generalized Pell quaternions. Interesting results of Pell quaternions,

Pell-Lucas quaternions obtained recently can be found in [3], [15]. Also Jacobsthal

quaternions and Jacobsthal-Lucas quaternions were introduced and studied, see [14].

There are also many papers containing some generalization of Fibonacci quater-

nions, see [4], [8], [13], [16]. Some types of these quaternions relate to distinct gen-

eralizations of numbers of the Fibonacci type. In [12] Polatli, Kizilates and Kesim

studied the split k-Fibonacci and k-Lucas quaternions. Catarino in [2] derived the

generating function and some identities for the modified Pell and the modified k-Pell

quaternions. Also Kilic [10] considered split k-Jacobsthal and k-Jacobsthal-Lucas

quaternions and presented their properties.

Motivated by their investigations and results in this paper we introduce and study

F (p, n)-Fibonacci quaternions which generalize the Fibonacci quaternions.

2. F (p, n)- Fibonacci numbers

Besides the usual Fibonacci and Lucas numbers many kinds of generalizations of

these numbers have been presented in the literature, see their list in [1]. In [11]

Kwaśnik and I. W loch introduced the generalized Fibonacci numbers F (p, n) and

the generalized Lucas numbers L(p, n) defined as follows

F (p, n) = n + 1, for n = 0, 1, . . . , p− 1,

F (p, n) = F (p, n− 1) + F (p, n− p), for n ≥ p, (3)

L(p, n) = n + 1, for n = 0, 1, . . . , 2p− 1,

L(p, n) = L(p, n− 1) + L(p, n− p), for n ≥ 2p, (4)
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where p ≥ 2, n ≥ 0.

Note that for n ≥ 0 we have that F (2, n) = Fn+1 and for n ≥ 2 L(2, n) = Ln.

The numbers F (p, n) and L(p, n) were introduced and studied as a generalization

of the classical Fibonacci and Lucas numbers in the context of graph theory. They

were used for determining the total number of p-independent sets (i.e. subsets of

vertices which induce the empty subgraph) in special classes of graphs.

The following Table presents the initial words of the generalized Fibonacci num-

bers and the generalized Lucas numbers for special case of n and p.

Table 1. The values of F (p, n), L(p, n), Fn and Ln.

n 0 1 2 3 4 5 6 7 8 9 10

Fn 1 1 2 3 5 8 13 21 34 55 89

F (2, n) 1 2 3 5 8 13 21 34 55 89 144

F (3, n) 1 2 3 4 6 9 13 19 28 41 60

F (4, n) 1 2 3 4 5 7 10 14 19 26 36

F (5, n) 1 2 3 4 5 6 8 11 15 20 26

Ln 2 1 3 4 7 11 18 29 47 76 123

L(2, n) 1 2 3 4 7 11 18 29 47 76 123

L(3, n) 1 2 3 4 5 6 10 15 21 31 46

L(4, n) 1 2 3 4 5 6 7 8 13 19 26

In [18] some combinatorial properties of the generalized Fibonacci numbers and

the generalized Lucas numbers were obtain by A. W loch. We recall some of them.

Theorem 2.1 ([18]). Let p ≥ 2 be integer. Then for n ≥ p + 1

n−p∑

l=0

F (p, l) = F (p, n)− p. (5)

Theorem 2.2 ([18]). Let p ≥ 2, n ≥ p be integers. Then

n∑

l=1

F (p, lp− 1) + 1 = F (p, np). (6)

Theorem 2.3 ([18]). Let p ≥ 2, n ≥ 2p− 2 be integers. Then

F (p, n) =

p−1∑

l=0

F (p, n− (p− 1)− l). (7)

Theorem 2.4 ([18]). Let p ≥ 2, n ≥ 2p be integers. Then

n∑

l=2

L(p, pl) = L(p, np + 1)− (p + 2). (8)
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Theorem 2.5 ([18]). Let p ≥ 2, n ≥ 2p be integers. Then

L(p, n) = pF (p, n− (2p− 1)) + F (p, n− p). (9)

3. F (p, n)-Fibonacci quaternions

The nth F (p, n)-Fibonacci quaternion FQp
n and the nth L(p, n)-Lucas quaternion

LQp
n are defined as

FQp
n = F (p, n) + iF (p, n + 1) + jF (p, n + 2) + kF (p, n + 3), (10)

LQp
n = L(p, n) + iL(p, n + 1) + jL(p, n + 2) + kL(p, n + 3), (11)

respectively.

Theorem 3.1. Let p ≥ 2 be integer. Then for n ≥ p + 1

n−p∑

l=0

FQp
l = FQp

n − p− i (p + F (p, 0))− j (p + F (p, 0) + F (p, 1)) +

− k (p + F (p, 0) + F (p, 1) + F (p, 2)) . (12)

Proof. Using (5) and (10) we have

n−p∑

l=0

FQp
l = FQp

0 + FQp
1 + . . . + FQp

n−p =

= F (p, 0) + iF (p, 1) + jF (p, 2) + kF (p, 3)+

+ F (p, 1) + iF (p, 2) + jF (p, 3) + kF (p, 4) + . . .+

+ F (p, n− p) + iF (p, n− p + 1) + jF (p, n− p + 2) + kF (p, n− p + 3) =

= F (p, 0) + F (p, 1) + . . . + F (p, n− p)+

+ i (F (p, 1) + . . . + F (p, n− p + 1) + F (p, 0)− F (p, 0)) +

+ j (F (p, 2) + . . . + F (p, n− p + 2) + F (p, 0) + F (p, 1)− F (p, 0)− F (p, 1)) +

+ k (F (p, 3) + . . . + F (p, n− p + 3) + F (p, 0) + F (p, 1) + F (p, 2)+

−F (p, 0)− F (p, 1)− F (p, 2)) =

= F (p, n)− p + i (F (p, n + 1)− p− F (p, 0)) +

+ j (F (p, n + 2)− p− F (p, 0)− F (p, 1)) +

+ k((F (p, n + 3)− p− F (p, 0)− F (p, 1)− F (p, 2)) =

= FQp
n − p− i (p + F (p, 0))− j (p + F (p, 0) + F (p, 1)) +

− k (p + F (p, 0) + F (p, 1) + F (p, 2)) ,

which ends the proof. �

Remark. If p = 2 then we obtain the known equality for the Fibonacci quaternions
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Gn (see [5])

n−2∑

l=0

Gl = Gn − (2 + 3i + 5j + 8k) = Gn −G1. (13)

Lemma 3.2. Let p ≥ 2, n ≥ p be integers. Then
n∑

l=1

F (p, lp) = F (p, np + 1)− F (p, 1), (14)

n∑

l=1

F (p, lp + 1) = F (p, np + 2)− F (p, 2), (15)

n∑

l=1

F (p, lp + 2) = F (p, np + 3)− F (p, 3). (16)

Proof. Using the second equation from (3) we have

F (p, n− 1) = F (p, n)− F (p, n− p), for n ≥ p.

For integers p, 2p, . . . , np we obtain
F (p, p) = F (p, p + 1)− F (p, 1)

F (p, 2p) = F (p, 2p + 1)− F (p, p + 1)

F (p, 3p) = F (p, 3p + 1)− F (p, 2p + 1)
...

F (p, np) = F (p, np + 1)− F (p, (n− 1)p + 1).

Adding these equalities we obtain (14).

In the same way one can easily prove (15) and (16). �
Theorem 3.3. Let p ≥ 2, n ≥ p be integers. Then

n∑

l=1

FQp
lp−1 = FQp

np − (F (p, 0) + iF (p, 1) + jF (p, 2) + kF (p, 3)) . (17)

Proof. Using (10) we have
n∑

l=1

FQp
lp−1 = FQp

p−1 + FQp
2p−1 + . . . + FQp

np−1 =

= F (p, p− 1) + iF (p, p) + jF (p, p + 1) + kF (p, p + 2)+

+ F (p, 2p− 1) + iF (p, 2p) + jF (p, 2p + 1) + kF (p, 2p + 2) + . . .+

+ F (p, np− 1) + iF (p, np) + jF (p, np + 1) + kF (p, np + 2) =

= F (p, p− 1) + F (p, 2p− 1) + . . . + F (p, np− 1)+

+ i (F (p, p) + F (p, 2p) + . . . + F (p, np)) +

+ j (F (p, p + 1) + F (p, 2p + 1) + . . . + F (p, np + 1)) +

+ k (F (p, p + 2) + F (p, 2p + 2) + . . . + F (p, np + 2)) .
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Writing (6) as
n∑

l=1

F (p, lp−1) = F (p, np)−1 = F (p, np)−F (p, 0) and using (14)–(16)

we obtain (17). �

Remark. If p = 2 then we obtain the known equality for the Fibonacci quaternions

Gn (see [5])

n∑

l=1

G2l−1 = G2n − (1 + 2i + 3j + 5k) = G2n −G0. (18)

Theorem 3.4. Let p ≥ 2, n ≥ 2p− 2 be integers. Then

FQp
n =

p−1∑

l=0

FQp
n−(p−1)−l. (19)

Proof. Using (7) and (10) we have

p−1∑

l=0

FQp
n−(p−1)−l = FQp

n−(p−1) + FQp
n−(p−1)−1 + . . . + FQp

n−(p−1)−(p−1) =

= F (p, n− (p− 1)) + iF (p, n− (p− 1) + 1)+

+ jF (p, n− (p− 1) + 2) + kF (p, n− (p− 1) + 3)+

+ F (p, n− (p− 1)− 1) + iF (p, n− (p− 1))+

+ jF (p, n− (p− 1) + 1) + kF (p, n− (p− 1) + 2) + . . .+

+ F (p, n− (p− 1)− (p− 1)) + iF (p, n− (p− 1)− (p− 1) + 1)+

+ jF (p, n− (p− 1)− (p− 1) + 2)+

+ kF (p, n− (p− 1)− (p− 1) + 3) =

= F (p, n) + iF (p, n + 1) + jF (p, n + 2) + kF (p, n + 3) = FQp
n,

which ends the proof. �

Remark. If p = 2 and n ≥ 2 then we obtain the basic equality for the Fibonacci

quaternions Gn

Gn = Gn−1 + Gn−2. (20)

Lemma 3.5. Let p ≥ 2, n ≥ 2p be integers. Then
n∑

l=2

L(p, pl + 1) = L(p, np + 2)− L(p, p + 2), (21)

n∑

l=2

L(p, pl + 2) = L(p, np + 3)− L(p, p + 3), (22)

n∑

l=2

L(p, pl + 3) = L(p, np + 4)− L(p, p + 4). (23)
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Proof. Using the second equation from (4) we have

L(p, n− 1) = L(p, n)− L(p, n− p), for n ≥ 2p.

For integers 2p + 1, 3p + 1, . . . , np + 1 we obtain

L(p, 2p + 1) = L(p, 2p + 2)− L(p, p + 2)

L(p, 3p + 1) = L(p, 3p + 2)− L(p, 2p + 2)

L(p, 4p + 1) = L(p, 4p + 2)− L(p, 3p + 2)
...

L(p, np + 1) = L(p, np + 2)− L(p, (n− 1)p + 2).

Adding these equalities we obtain (21).

In the same way one can easily prove (22) and (23). �

Theorem 3.6. Let p ≥ 2, n ≥ 2p be integers. Then

n∑

l=2

LQp
pl = LQp

np+1 − LQp
p+1. (24)

Proof. Using (11) we have

n∑

l=2

LQp
pl = LQp

2p + LQp
3l + . . . + LQp

nl =

= L(p, 2p) + iL(p, 2p + 1) + jL(p, 2p + 2) + kL(p, 2p + 3)+

+ L(p, 3p) + iL(p, 3p + 1) + jL(p, 3p + 2) + kL(p, 3p + 3) + . . .+

+ L(p, np) + iL(p, np + 1) + jL(p, np + 2) + kL(p, np + 3)+

= L(p, 2p) + L(p, 3p) + . . . + L(p, np)+

+ i (L(p, 2p + 1) + L(p, 3p + 1) + . . . + L(p, np + 1)) +

+ j (L(p, 2p + 2) + L(p, 3p + 2) + . . . + L(p, np + 2)) +

+ k (L(p, 2p + 3) + L(p, 3p + 3) + . . . + L(p, np + 3)) .

Writing (8) as
n∑

l=2

L(p, pl) = L(p, np+ 1)−L(p, p+ 1) and using (21)–(23) we obtain

(24). �

Theorem 3.7. Let p ≥ 2, n ≥ 2p be integers. Then

LQp
n = p · FQp

n−(2p−1) + FQp
n−p. (25)

Proof. Using (10) we have

FQp
n−(2p−1) = F (p, n− (2p− 1)) + iF (p, n− (2p− 1) + 1)+

+ jF (p, n− (2p− 1) + 2) + kF (p, n− (2p− 1) + 3)
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and

FQp
n−p = F (p, n− p) + iF (p, n− p + 1)+

+ jF (p, n− p + 2) + kF (p, n− p + 3),

consequently

p · FQp
n−(2p−1) + FQp

n−p =

= p · F (p, n− (2p− 1)) + F (p, n− p)+

+ i (p · F (p, (n + 1)− (2p− 1)) + F (p, (n + 1)− p)) +

+ j (p · F (p, (n + 2)− (2p− 1)) + F (p, (n + 2)− p)) +

+ k (p · F (p, (n + 3)− (2p− 1)) + F (p, (n + 3)− p)) .

Using (9) we have

p · FQp
n−(2p−1) + FQp

n−p =

= L(p, n) + iL(p, n + 1) + jL(p, n + 2) + kL(p, n + 3),

which ends the proof. �
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KWATERNIONY F (p, n) -FIBONACCIEGO

S t r e s z c z e n i e
W pracy wprowadzamy i badamy jednoparametrowe uogólnienie kwaternionów Fibonac-

ciego. Podajemy w lasności kwaternionów F (p, n)-Fibonacciego, a także uogólnienia klasy-
cznych wyników dla kwaternionów Fibonacciego.

S lowa kluczowe: liczby Fibonacciego, liczby Lucasa, kwaterniony, zależności rekurencyjne




