B U L L E T I N

| DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES | DE | ŁÓDŹ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2017 | | | | | Vol. LXVII |

Recherches sur les déformations
pp. 79-90

Bogumiła Kowalczyk, Adam Lecko, and Barbara Śmiarowska

ON SOME COEFFICIENT INEQUALITY IN THE SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS

Summary

A coefficient inequality related to the Fekete-Szegö-Goluzin problem in some subclass of close-to-convex functions is shown.

Keywords and phrases: Coefficient inequality, close-to-convex functions, Fekete-SzegöGoluzin problem.

1. Introduction

To find for each $\lambda \in[0,1]$ the maximum value of the coefficient functional

$$
\Phi_{\lambda}(f):=\left|a_{3}-\lambda a_{2}^{2}\right|
$$

over the class \mathcal{S} of univalent functions f in the unit disk $\mathbf{D}:=\{z \in \mathbf{C}:|z|<1\}$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad z \in \mathbf{D} \tag{1.1}
\end{equation*}
$$

is a well known problem having the source in the paper [5] by Fekete and Szegö. They considered the case $\lambda:=(k-1) /(2 k), k=2,3, \ldots$, however the case $\lambda \in(0,1)$ was first discussed and solved by Goluzin [6]. Particularly, recall that

$$
\max _{f \in \mathcal{S}} \Phi_{\lambda}(f)= \begin{cases}1+2 \exp (-2 \lambda /(1-\lambda)), & \lambda \in[0,1), \\ 1, & \lambda:=1 .\end{cases}
$$

The problem to find $\max _{f \in \mathcal{F}} \Phi_{\lambda}(f)$ over compact subclasses \mathcal{F} of the class \mathcal{A} of all analytic functions f in \mathbf{D} of the form (1.1), as well as for λ being an arbitrary real or complex number, was studied by many authors (see e.g., [8], [12], [9], [10], [15], [32], [28], [17], [13], [11], [16], [2]).

Let \mathcal{S}^{*} denote the class of functions $f \in \mathcal{A}$ such that

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, \quad z \in \mathbf{D}
$$

called starlike, and let \mathcal{S}^{c} denote the class of functions $f \in \mathcal{A}$ such that

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0, \quad z \in \mathbf{D}
$$

called convex. Clearly, $\mathcal{S}^{c} \nsubseteq \mathcal{S}^{*}$.
Given $\delta \in(-\pi / 2, \pi / 2)$ and $g \in \mathcal{S}^{*}$, let $\mathcal{C}_{\delta}(g)$ denote the class of functions $f \in \mathcal{A}$ such that

$$
\operatorname{Re}\left\{\mathrm{e}^{\mathrm{i} \delta} \frac{z f^{\prime}(z)}{g(z)}\right\}>0, \quad z \in \mathbf{D}
$$

called close-to-convex with argument δ with respect to g. For $g \in \mathcal{S}^{*}$ let

$$
\mathcal{C}(g):=\bigcup_{\delta \in(-\pi / 2, \pi / 2)} \mathcal{C}_{\delta}(g)
$$

be the class of functions called close-to-convex with respect to g. For $\delta \in(-\pi / 2, \pi / 2)$ let

$$
\mathcal{C}_{\delta}:=\bigcup_{g \in \mathcal{S}^{*}} \mathcal{C}_{\delta}(g), \quad \mathcal{C}_{\delta}^{c}:=\bigcup_{h \in \mathcal{S}^{c}} \mathcal{C}_{\delta}(h)
$$

Let

$$
\mathcal{C}:=\bigcup_{\delta \in(-\pi / 2, \pi / 2)} \bigcup_{g \in \mathcal{S}^{*}} \mathcal{C}_{\delta}(g)
$$

denote the class of close-to-convex functions (see [27, pp. 184-185], [14]), and let

$$
\mathcal{C}^{c}:=\bigcup_{\delta \in(-\pi / 2, \pi / 2)} \bigcup_{h \in \mathcal{S}^{c}} \mathcal{C}_{\delta}(h) .
$$

In [15] Keogh and Merkes proved that

$$
\max _{f \in \mathcal{C}_{0}} \Phi_{\lambda}(f)= \begin{cases}|3-4 \lambda|, & \lambda \in \mathbf{R} \backslash(1 / 3,1) \\ 1 / 3+4 /(9 \lambda), & \lambda \in[1 / 3,2 / 3] \\ 1, & \lambda \in[2 / 3,1]\end{cases}
$$

For $\lambda \in[0,1]$ Koepf [17] extended the above result for the whole class \mathcal{C} showing that

$$
\max _{f \in \mathcal{C}} \Phi_{\lambda}(f)=\max _{f \in \mathcal{C}_{0}} \Phi_{\lambda}(f)
$$

In fact, the last result holds for all real λ.
For the class \mathcal{C}_{0}^{c} the Fekete-Szegö problem was considered by Abdel-Gawad and Thomas [1]. For the whole class \mathcal{C}^{c} the computing was done by Srivastava, Mishra
and Das [31]. Their results together with some remark of [22] can be written as follow:

$$
\max _{f \in \mathcal{C}^{c}} \Phi_{\lambda}(f)=\max _{f \in \mathcal{C}_{0}^{c}} \Phi_{\lambda}(f)= \begin{cases}5 / 3-9 \lambda / 4, & \lambda \in[0,2 / 9] \\ 2 / 3+1 /(9 \lambda), & \lambda \in[2 / 9,2 / 3]\end{cases}
$$

and

$$
\max _{f \in \mathcal{C}_{0}^{c}} \Phi_{\lambda}(f) \leq \max _{f \in \mathcal{C}^{c}} \Phi_{\lambda}(f) \leq \frac{5}{6}, \quad \lambda \in(2 / 3,1] .
$$

Given $\alpha \in[0,1]$ let, for $z \in \mathbf{D}$,

$$
g_{\alpha}(z):=\frac{z}{(1-\alpha z)^{2}}, \quad h_{\alpha}(z):=\frac{z}{1-\alpha z} .
$$

Clearly, $g_{\alpha} \in \mathcal{S}^{*}$ and $h_{\alpha} \in \mathcal{S}^{c}$ for $\alpha \in[0,1]$. The corresponding classes $\mathcal{C}\left(g_{\alpha}\right)$ and $\mathcal{C}\left(h_{\alpha}\right)$ are defined, respectively, as: for $\delta \in(-\pi / 2, \pi / 2)$,

$$
\begin{equation*}
\operatorname{Re}\left\{\mathrm{e}^{\mathrm{i} \delta}(1-\alpha z)^{2} f^{\prime}(z)\right\}>0, \quad z \in \mathbf{D} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\mathrm{e}^{\mathrm{i} \delta}(1-\alpha z) f^{\prime}(z)\right\}>0, \quad z \in \mathbf{D} \tag{1.3}
\end{equation*}
$$

For the class $\mathcal{C}\left(g_{\alpha}\right)$ it was shown in [18] that

$$
\begin{gather*}
\max _{f \in \mathcal{C}\left(g_{\alpha}\right)} \Phi_{\lambda}(f) \tag{1.4}\\
\leq \begin{cases}\left|\frac{2}{3}+\frac{4}{3} \alpha+\alpha^{2}-(1+\alpha)^{2} \lambda\right|, & \lambda \in \mathbf{R} \backslash\left(\tau_{1}(\alpha), \tau_{2}(\alpha)\right), \\
\alpha^{2}\left(\frac{(2-3 \lambda)^{2}}{3(2-|2-3 \lambda|)}+|1-\lambda|\right)+\frac{2}{3}, & \lambda \in\left[\tau_{1}(\alpha), \tau_{2}(\alpha)\right],\end{cases}
\end{gather*}
$$

where

$$
\begin{equation*}
\tau_{1}(\alpha):=\frac{2 \alpha}{3(1+\alpha)}, \quad \tau_{2}(\alpha):=\frac{2(2+\alpha)}{3(1+\alpha)} \tag{1.5}
\end{equation*}
$$

The sharpness holds for each $\alpha \in(0,1]$ and each $\lambda \in \mathbf{R} \backslash\left(2 / 3, \tau_{2}(\alpha)\right)$ as well as for $\alpha:=0$ and each $\lambda \in \mathbf{R}$.

As it is known, the Koebe function $k:=g_{1}(\alpha:=1)$ is extremal for various computational problems in the class \mathcal{S}^{*} of starlike functions. Moreover the class $\mathcal{C}_{0}(k)$ of functions called convex in the positive direction of the real axis plays an important role as the subclass of functions convex in one direction defined by Robertson [30] and it was intensively recently studied (see e.g., [3], [24], [4]). For the class $\mathcal{C}(k)$ the Fekete-Szegö problem was separately considered in [19] where it was shown that

$$
\max _{f \in \mathcal{C}(k) \cup\left\{k_{0}\right\}} \Phi_{\lambda}(f)=\max _{f \in \mathcal{C}} \Phi_{\lambda}(f), \quad \lambda \in \mathbf{R},
$$

where

$$
k_{0}(z):=\frac{z}{1-z^{2}}, \quad z \in \mathbf{D}
$$

is the odd close-to-convex function.

For the class $\mathcal{C}\left(h_{\alpha}\right)$ it was shown in [21] that

$$
\begin{gather*}
\max _{f \in \mathcal{C}\left(h_{\alpha}\right)} \Phi_{\lambda}(f) \tag{1.6}\\
\leq \begin{cases}\alpha^{2}\left|\frac{1}{3}-\frac{\lambda}{4}\right|+(1+\alpha)\left|\frac{2}{3}-\lambda\right|, & \lambda \in \mathbf{R} \backslash\left[\tau_{1}^{\prime}(\alpha), \tau_{2}^{\prime}(\alpha)\right], \\
\alpha^{2}\left(\frac{(2-3 \lambda)^{2}}{12(2-|2-3 \lambda|)}+\left|\frac{1}{3}-\frac{\lambda}{4}\right|\right)+\frac{2}{3}, & \lambda \in\left[\tau_{1}^{\prime}(\alpha), \tau_{2}^{\prime}(\alpha)\right]\end{cases}
\end{gather*}
$$

where

$$
\tau_{1}^{\prime}(\alpha):=\frac{2 \alpha}{3(2+\alpha)}, \quad \tau_{2}^{\prime}(\alpha):=\frac{2(4+\alpha)}{3(2+\alpha)}
$$

The sharpness holds for each $\alpha \in(0,1]$ and each $\lambda \in \mathbf{R} \backslash(2 / 3,4 / 3)$, as well as for $\alpha:=0$ and each $\lambda \in \mathbf{R}$.

As it is known, the function $h:=h_{1}(\alpha:=1)$ is extremal for computational problems in the class \mathcal{S}^{c} of convex functions. For the first time the inequality (1.3) with $\alpha=1$, treated as the univalence criterium, was distinguished explicitly in [27, p. 185]. For the class $\mathcal{C}(h)$ the Fekete-Szegö problem was separately considered in [20] where it was shown (1.6) for $\alpha=1$; particularly, it was proved that for $\lambda \in[0,2 / 3]$,

$$
\max _{f \in \mathcal{C}(h)} \Phi_{\lambda}(f)=\max _{f \in \mathcal{C}_{0}^{c}} \Phi_{\lambda}(f)=\max _{f \in \mathcal{C}^{c}} \Phi_{\lambda}(f) .
$$

For $\alpha:=0$ the conditions (1.2) and (1.3) reduce to

$$
\begin{equation*}
\operatorname{Re}\left\{\mathrm{e}^{\mathrm{i} \delta} f^{\prime}(z)\right\}>0, \quad z \in \mathbf{D} \tag{1.7}
\end{equation*}
$$

Functions f having such a property are called of bounded turning with argument δ and form the class denoted usually as $\mathcal{P}^{\prime}(\delta)$, and further the class $\mathcal{P}^{\prime}:=\mathcal{C}\left(g_{0}\right)$ of functions called of bounded turning (cf. [7, Vol. I, p. 101]). On the other hand, the condition (1.7) is known as a famous criterium of univalence due to Noshiro [26] and Warschawski [33]. By setting $\alpha:=0$ into (1.4) or (1.6) we get the following result published, among other results, in [13, Theorem 2.3]: for $\lambda \in[0,4 / 3]$,

$$
\max _{f \in \mathcal{P}^{\prime}} \Phi_{\lambda}(f)=\frac{2}{3} .
$$

In this paper we unify results recalled above for the classes $\mathcal{C}\left(g_{\alpha}\right)$ and $\mathcal{C}\left(h_{\alpha}\right)$ with $\alpha \in[0,1]$. Given $\alpha, \beta \in[0,1]$, let

$$
g_{\alpha, \beta}(z):=\frac{z}{(1-\alpha z)(1-\beta z)}, \quad z \in \mathbf{D} .
$$

Thus the class $\mathcal{C}\left(g_{\alpha, \beta}\right)$ is defined as

$$
\operatorname{Re}\left\{\mathrm{e}^{\mathrm{i} \delta}(1-\alpha z)(1-\beta z) f^{\prime}(z)\right\}>0, \quad z \in \mathbf{D} .
$$

Clearly, $\mathcal{C}\left(g_{\alpha, \alpha}\right)=\mathcal{C}\left(g_{\alpha}\right)$ and $\mathcal{C}\left(g_{\alpha, 0}\right)=\mathcal{C}\left(g_{0, \alpha}\right)=\mathcal{C}\left(h_{\alpha}\right)$ for $\alpha \in[0,1]$. The class $\mathcal{C}\left(g_{\alpha, \beta}\right)$ appeared in [23] and [25] as a generalization of convexity in one direction (see [30]). In the main result we show the upper bound for the Fekete-Szegö functional for the class $\mathcal{C}\left(g_{\alpha, \beta}\right)$ generalizing (1.4) and (1.6).

2. Main result

Let \mathcal{P} denote the class of analytic functions in \mathbf{D} of the form

$$
\begin{equation*}
p(z):=1+\sum_{n=1}^{\infty} c_{n} z^{n}, \quad z \in \mathbf{D} \tag{2.1}
\end{equation*}
$$

having a positive real part in \mathbf{D}. Let

$$
L(z):=\frac{1+z}{1-z}, \quad z \in \mathbf{D}
$$

Lemma 2.1. ([25, pp. 41,46]) If $p \in \mathcal{P}$ is of the form (2.1), then

$$
\begin{equation*}
\left|c_{n}\right| \leq 2, \quad n \in \mathbf{N} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|c_{2}-c_{1}^{2} / 2\right| \leq 2-\left|c_{1}\right|^{2} / 2 \tag{2.3}
\end{equation*}
$$

Both inequalities are sharp. The equality in (2.2) holds for L and in (2.3) for every function
(2.4) $p_{t, \theta}(z):=t L\left(\mathrm{e}^{\mathrm{i} \theta} z\right)+(1-t) L\left(\mathrm{e}^{2 \mathrm{i} \theta} z^{2}\right)=1+2 t \mathrm{e}^{\mathrm{i} \theta} z+2 \mathrm{e}^{2 \mathrm{i} \theta} z^{2}+\ldots, \quad z \in \mathbf{D}$, where $t \in[0,1]$ and $\theta \in \mathbf{R}$.

The details of the proof of the main theorem are almost exactly the same as of Theorem 2.4 of [18]. Therefore here we present only a sketch of the proof. Similar method of proof with all details of computing appeared in [21]. The main theorem of the paper is

Theorem 2.2. Let $\alpha, \beta \in[0,1]$. Then

$$
\begin{gather*}
\max _{f \in \mathcal{C}\left(g_{\alpha, \beta}\right)} \Phi_{\lambda}(f) \tag{2.5}\\
\leq\left\{\begin{array}{l}
\frac{1}{6}\left|\alpha^{2}+\beta^{2}+(\alpha+\beta)^{2}\left(1-\frac{3}{2} \lambda\right)\right| \\
\frac{1}{6}\left|\alpha^{2}+\beta^{2}+(\alpha+\beta)^{2}\left(1-\frac{3}{2} \lambda\right)\right|
\end{array}\right. \\
+(1+\alpha+\beta)\left|\frac{2}{3}-\lambda\right|, \quad \lambda \in \mathbf{R} \backslash\left(\tau_{1}(\alpha, \beta), \tau_{2}(\alpha, \beta)\right) \\
+\frac{(\alpha+\beta)^{2}(2-3 \lambda)^{2}}{12(2-|2-3 \lambda|)}+\frac{2}{3}, \quad \lambda \in\left[\tau_{1}(\alpha, \beta), \tau_{2}(\alpha, \beta)\right],
\end{gather*}
$$

where

$$
\tau_{1}(\alpha, \beta):=\frac{2(\alpha+\beta)}{3(2+\alpha+\beta)}, \tau_{2}(\alpha, \beta):=\frac{2(4+\alpha+\beta)}{3(2+\alpha+\beta)}
$$

For each $\alpha, \beta \in[0,1],(\alpha, \beta) \neq(0,0)$, and each $\lambda \in \mathbf{R} \backslash(2 / 3, \lambda(\alpha, \beta))$, where

$$
\lambda(\alpha, \beta):=\frac{2}{3}+\frac{2}{3} \max \left\{\frac{\alpha^{2}+\beta^{2}}{(\alpha+\beta)^{2}}, \frac{2}{2+\alpha+\beta}\right\}
$$

as well as for $\alpha=\beta:=0$ and each $\lambda \in \mathbf{R}$, the inequality is sharp and the equality is attained by a function in $\mathcal{C}_{0}\left(g_{\alpha, \beta}\right)$. In particular,
(i) when $\alpha, \beta \in[0,1],(\alpha, \beta) \neq(0,0)$, then for each $\lambda \in\left[\tau_{1}(\alpha, \beta), 2 / 3\right]$ the second equality in (2.5) is attained by a function $f_{\alpha, \beta, t_{\alpha, \beta, \lambda}}$ such that

$$
\begin{equation*}
f_{\alpha, \beta, t_{\alpha, \beta, \lambda}}^{\prime}(z)=\frac{p_{t_{\alpha, \beta, \lambda}, 0}(z)}{(1-\alpha z)(1-\beta z)}, \quad z \in \mathbf{D} \tag{2.6}
\end{equation*}
$$

with $f_{\alpha, \beta, t_{\alpha, \beta, \lambda}}(0):=0$ and

$$
t_{\alpha, \beta, \lambda}:=(\alpha+\beta)(1 /(3 \lambda)-1 / 2) ;
$$

(ii) when $\alpha, \beta \in[0,1],(\alpha, \beta) \neq(0,0)$, then for each $\lambda \in \mathbf{R} \backslash\left(\tau_{1}(\alpha, \beta), \lambda(\alpha, \beta)\right)$ the first equality in (2.5) is attained by the function $f_{\alpha, \beta, 1}$, given by (2.6) with $t_{\alpha, \beta, \lambda}:=1$, i.e., when $\alpha, \beta \in(0,1), \alpha \neq \beta$, by the function:

$$
\begin{align*}
f_{\alpha, \beta, 1}(z) & :=\frac{1}{\alpha-\beta}\left(\frac{1+\alpha}{\alpha(1-\alpha)} \log (1-\alpha z)-\frac{1+\beta}{\beta(1-\beta)} \log (1-\beta z)\right) \tag{2.7}\\
& -\frac{2}{(1-\alpha)(1-\beta)} \log (1-z), \quad z \in \mathbf{D}, \log 1:=0
\end{align*}
$$

when $\beta:=1, \alpha \in[0,1)$, by the function

$$
\begin{equation*}
f_{\alpha, 1,1}(z):=\frac{1}{1-\alpha}\left(\frac{1+\alpha}{1-\alpha} \log \frac{1-z}{1-\alpha z}+\frac{2 z}{1-z}\right), \quad z \in \mathbf{D}, \log 1:=0 \tag{2.8}
\end{equation*}
$$

when $\alpha:=1, \beta \in[0,1)$, by the function $f_{1, \beta, 1}:=f_{\beta, 1,1} ;$ when $\beta:=0$ and $\alpha \in(0,1)$ by the function

$$
\begin{equation*}
f_{\alpha, 0,1}(z):=\frac{1}{1-\alpha}\left(\frac{1+\alpha}{\alpha} \log (1-\alpha z)-2 \log (1-z)\right), \quad z \in \mathbf{D}, \log 1:=0 \tag{2.9}
\end{equation*}
$$

when $\alpha:=0$ and $\beta \in(0,1)$ by the function $f_{0, \beta, 1}:=f_{\beta, 0,1}$; when $\beta:=\alpha \in(0,1)$ by the function

$$
\begin{equation*}
f_{\alpha, \alpha, 1}(z):=\frac{1}{(1-\alpha)^{2}} \log \frac{1-\alpha z}{1-z}-\frac{1+\alpha}{1-\alpha} \cdot \frac{z}{1-\alpha z}, \quad z \in \mathbf{D}, \log 1:=0 \tag{2.10}
\end{equation*}
$$

when $\beta=\alpha:=1$ by the Koebe function $f_{1,1,1}:=k$.
(iii) when $\beta=\alpha:=0$, then for each $\lambda \in[0,4 / 3]$ the second equality in (2.5) is attained by the function

$$
\begin{equation*}
f_{0,0,0}(z):=-z+\log \frac{1+z}{1-z}, \quad z \in \mathbf{D}, \log 1:=0 \tag{2.11}
\end{equation*}
$$

for each $\lambda \in \mathbf{R} \backslash(0,4 / 3)$ the first equality in (2.5) is attained by the function

$$
\begin{equation*}
f_{0,0,1}(z):=-z-2 \log (1-z), \quad z \in \mathbf{D}, \quad \log 1:=0 \tag{2.12}
\end{equation*}
$$

Proof. Fix $\alpha, \beta \in[0,1]$. Observe that $f \in \mathcal{C}\left(g_{\alpha, \beta}\right)$ if and only if for $z \in \mathbf{D}$,

$$
\begin{equation*}
z f^{\prime}(z)=\mathrm{e}^{-\mathrm{i} \delta} g_{\alpha, \beta}(z)(p(z) \cos \delta+\mathrm{i} \sin \delta) \tag{2.13}
\end{equation*}
$$

for $\delta \in(-\pi / 2, \pi / 2)$ and $p \in \mathcal{P}$. For $z \in \mathbf{D}$ we have

$$
g_{\alpha, \beta}(z)=z+(\alpha+\beta) z^{2}+\left(\alpha^{2}+\alpha \beta+\beta^{2}\right) z^{3}+\ldots
$$

Setting the above series with the series (1.1) and (2.1) into (2.13) by comparing coefficients we get

$$
\begin{align*}
& a_{2}=\frac{1}{2}\left(c_{1} \mathrm{e}^{-\mathrm{i} \delta} \cos \delta+\alpha+\beta\right) \\
& a_{3}=\frac{1}{3}\left(c_{2} \mathrm{e}^{-\mathrm{i} \delta} \cos \delta+(\alpha+\beta) c_{1} \mathrm{e}^{-\mathrm{i} \delta} \cos \delta+\alpha^{2}+\alpha \beta+\beta^{2}\right) . \tag{2.14}
\end{align*}
$$

Let $\lambda \in \mathbf{R}$. By (2.14) and (2.3) we have

$$
\begin{gather*}
\Phi_{\lambda}(f)=\left\lvert\, \frac{1}{3}\left(\alpha^{2}+\alpha \beta+\beta^{2}\right)-\frac{1}{4}(\alpha+\beta)^{2} \lambda+\frac{1}{3}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \mathrm{e}^{-\mathrm{i} \delta} \cos \delta\right. \\
\left.+\frac{c_{1}^{2}}{6}\left(1-\frac{3}{2} \lambda \mathrm{e}^{-\mathrm{i} \delta} \cos \delta\right) \mathrm{e}^{-\mathrm{i} \delta} \cos \delta+\frac{1}{2}(\alpha+\beta)\left(\frac{2}{3}-\lambda\right) c_{1} \mathrm{e}^{-\mathrm{i} \delta} \cos \delta \right\rvert\, \\
\quad \leq\left|\frac{1}{3}\left(\alpha^{2}+\alpha \beta+\beta^{2}\right)-\frac{1}{4}(\alpha+\beta)^{2} \lambda\right|+\frac{1}{3}\left(2-\frac{\left|c_{1}\right|^{2}}{2}\right) \cos \delta \tag{2.15}\\
\quad+\frac{\left|c_{1}\right|^{2}}{6}\left|1-\frac{3}{2} \lambda \mathrm{e}^{-\mathrm{i} \delta} \cos \delta\right| \cos \delta+\frac{1}{2}(\alpha+\beta)\left|\frac{2}{3}-\lambda\right|\left|c_{1}\right| \cos \delta \\
=\frac{1}{6}\left|\alpha^{2}+\beta^{2}+\frac{1}{2}(\alpha+\beta)^{2} \gamma\right|+\frac{1}{6}\left(4+x^{2}\left(s_{\gamma}(y)-1\right)+(\alpha+\beta)|\gamma| x\right) y,
\end{gather*}
$$

where $x:=\left|c_{1}\right|, y:=\cos \delta, \gamma:=2-3 \lambda$ and

$$
s_{\gamma}(y):=\sqrt{1-\left(1-\gamma^{2} / 4\right) y^{2}}
$$

In view of $(2.2), x \in[0,2]$ and clearly, $y \in(0,1]$. Set $\mu:=(\alpha+\beta) / 2$ and $R:=$ $[0,2] \times[0,1]$. Thus $\mu \in[0,1]$ and with $\gamma \in \mathbf{R}$ define

$$
F_{\mu, \gamma}(x, y):=\left(4+x^{2}\left(s_{\gamma}(y)-1\right)+2 \mu|\gamma| x\right) y, \quad(x, y) \in R
$$

Hence and by (2.15) we have

$$
\begin{equation*}
\max _{f \in \mathcal{C}\left(g_{\alpha, \beta}\right)} \Phi_{\lambda}(f) \leq \frac{1}{6}\left|\alpha^{2}+\beta^{2}+\frac{1}{2}(\alpha+\beta)^{2} \gamma\right|+\frac{1}{6} \max _{(x, y) \in R} F_{\mu, \gamma}(x, y) \tag{2.16}
\end{equation*}
$$

Now for each $\mu \in[0,1]$ and $\gamma \in \mathbf{R}$ we find the maximum value of $F_{\mu, \gamma}$ on the rectangle R. Since from now the computing is exactly identical as in [21] we demonstrate the short sketch of the proof only.

In the corners of R we have

$$
\begin{align*}
& F_{\mu, \gamma}(0,0)=F_{\mu, \gamma}(2,0)=0 \\
& F_{\mu, \gamma}(0,1)=4, \quad F_{\mu, \gamma}(2,1)=2(1+2 \mu)|\gamma| \tag{2.17}
\end{align*}
$$

For $x:=0$ and $y \in(0,1)$ we have a linear function and for $x \in(0,2)$ and $y:=0$ we have a constant function.

For $x \in(0,2)$ and $y:=1$ we have a function

$$
G_{\mu, \gamma}(x):=F_{\mu, \gamma}(x, 1)=\left(\frac{|\gamma|}{2}-1\right) x^{2}+2 \mu|\gamma| x+4
$$

which for $|\gamma|=2$ reduces to the linear function and for $|\gamma| \neq 2$ has the unique critical point at

$$
x=\frac{2 \mu \mid \gamma}{2-|\gamma|}=: x_{\mu, \gamma} \in(0,2)
$$

if and only if

$$
\begin{equation*}
\mu \neq 0 \wedge 0<|\gamma|<\frac{2}{1+\mu} \tag{2.18}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
F_{\mu, \gamma}\left(x_{\mu, \gamma}, 1\right)=G_{\mu, \gamma}\left(x_{\mu, \gamma}\right)=\frac{2 \mu^{2} \gamma^{2}}{2-|\gamma|}+4 \tag{2.19}
\end{equation*}
$$

For $x:=2$ and $y \in(0,1)$ we have a function

$$
H_{\mu, \gamma}(y):=F_{\mu, \gamma}(2, y)=4 y s_{\gamma}(y)+4 \mu|\gamma| y
$$

which for $|\gamma|=2$ reduces to the linear function and for $|\gamma| \neq 2$ has the unique critical point at

$$
y=\sqrt{\frac{4-\mu^{2} \gamma^{2}+\mu|\gamma| \sqrt{\mu^{2} \gamma^{2}+8}}{2\left(4-\gamma^{2}\right)}}=: y_{\mu, \gamma} \in(0,1)
$$

if and only if

$$
\begin{equation*}
|\gamma|<\sqrt{\frac{2}{1+\mu}} \tag{2.20}
\end{equation*}
$$

Moreover

$$
\begin{gather*}
F_{\mu, \gamma}\left(2, y_{\mu, \gamma}\right)=H_{\mu, \gamma}\left(y_{\mu, \gamma}\right) \tag{2.21}\\
=\sqrt{\frac{4-\mu^{2} \gamma^{2}+\mu|\gamma| \sqrt{\mu^{2} \gamma^{2}+8}}{2\left(4-\gamma^{2}\right)}}\left(\sqrt{\mu^{2} \gamma^{2}+8}+3 \mu|\gamma|\right) .
\end{gather*}
$$

Repeating exactly argumentation of [18, pp. 8-10] we show that for each $\mu \in[0,1]$ and each $\gamma \in \mathbf{R}$ the function $F_{\mu, \gamma}$ has no critical point in $(0,2) \times(0,1)$.

Summarizing, we conclude that the maximum value of $F_{\mu, \gamma}$ is attained on the boundary of R. Taking into account (2.18) and (2.20), as in [18, p. 10] the following cases hold. For $|\gamma| \geq 2 /(1+\mu)$ the maximum value of $F_{\mu, \gamma}$ is attained in a corner of R, namely,

$$
\max _{(x, y) \in R} F_{\mu, \gamma}(x, y)=F_{\mu, \gamma}(2,1)=2(1+2 \mu)|\gamma|
$$

For $\sqrt{2 /(1+\mu)} \leq|\gamma|<2 /(1+\mu)$ the maximum value of $F_{\mu, \gamma}$ is attained in $\left(x_{\mu, \gamma}, 1\right)$, i.e.,

$$
\max _{(x, y) \in R} F_{\mu, \gamma}(x, y)=F_{\mu, \gamma}\left(x_{\mu, \gamma}, 1\right)
$$

For $0<|\gamma|<\sqrt{2 /(1+\mu)}$ we compare all values (2.17), and by (2.19) and (2.21), the values $F_{\mu, \gamma}\left(x_{\mu, \gamma}, 1\right)$ and $F_{\mu, \gamma}\left(2, y_{\mu, \gamma}\right)$ and we show that the maximum value of $F_{\mu, \gamma}$ is attained in $\left(x_{\mu, \gamma}, 1\right)$. The key of the computation is to show that

$$
F_{\mu, \gamma}\left(x_{\mu, \gamma}, 1\right) \geq F_{\mu, \gamma}\left(2, y_{\mu, \gamma}\right)
$$

Putting (2.19) and (2.21) into above, we get the inequality which is identical as the inequality (2.42) of [18] and further the proof follows exactly as in [18, pp. 10-13] (similar method of proof with all details can be found in [21]). Going back to (2.16) with $\mu=(\alpha+\beta) / 2$ we conclude that the following inequality holds:

$$
\begin{gathered}
\max _{f \in \mathcal{C}\left(g_{\alpha, \beta}\right)} \Phi_{\lambda}(f) \\
\leq \begin{cases}\frac{1}{6}\left|\alpha^{2}+\beta^{2}+\frac{1}{2}(\alpha+\beta)^{2} \gamma\right|+\frac{1}{3}(1+\alpha+\beta)|\gamma|, & |\gamma| \geq \frac{4}{2+\alpha+\beta} \\
\frac{1}{6}\left|\alpha^{2}+\beta^{2}+(\alpha+\beta)^{2} \gamma\right|+\frac{(\alpha+\beta)^{2} \gamma^{2}}{12(2-|\gamma|)}+\frac{2}{3}, & |\gamma| \leq \frac{4}{2+\alpha+\beta}\end{cases}
\end{gathered}
$$

Setting $\gamma=2-3 \lambda$ the above result yields the inequality (2.5).
Now we discuss the sharpness of the result. Let $\alpha, \beta \in[0,1],(\alpha, \beta) \neq(0,0)$. Let $\lambda \in\left[\tau_{1}(\alpha, \beta), 2 / 3\right]$. Then we consider the second inequality in (2.5) which after simple computing is

$$
\begin{equation*}
\max _{f \in \mathcal{C}\left(g_{\alpha, \beta}\right)} \Phi_{\lambda}(f) \leq \frac{(\alpha+\beta)^{2}}{9 \lambda}+\frac{2-\alpha \beta}{3} . \tag{2.22}
\end{equation*}
$$

Let $t_{\alpha, \beta, \lambda}:=(\alpha+\beta)(1 /(3 \lambda)-1 / 2)$. Since $\tau_{1}(\alpha, \beta) \leq \lambda \leq 2 / 3$, so $0 \leq t_{\alpha, \beta, \lambda} \leq 1$. Thus in view of (2.4), $p_{t_{\alpha, \beta, \lambda}, 0} \in \mathcal{P}$ with $c_{1}=2 t_{\alpha, \beta, \lambda}$ and $c_{2}=2$. Setting $\delta:=0$ and $p:=p_{t_{\alpha, \beta, \lambda}, 0}$ into (2.13) we get the function $f_{\alpha, \beta, t_{\alpha, \beta, \lambda}}$ given by (2.6) for which, by (2.14),

$$
\begin{align*}
& a_{2}=t_{\alpha, \beta, \lambda}+(\alpha+\beta) / 2=(\alpha+\beta) /(3 \lambda) \\
& a_{3}=\left(2+2(\alpha+\beta) t_{\alpha, \beta, \lambda}+\alpha^{2}+\alpha \beta+\beta^{2}\right) / 3 \tag{2.23}\\
& =2(\alpha+\beta)^{2} /(9 \lambda)+(2-\alpha \beta) / 3
\end{align*}
$$

and which makes the equality in (2.22).
Let now $\lambda \in \mathbf{R} \backslash\left(\tau_{1}(\alpha, \beta), \lambda(\alpha, \beta)\right)$. Since $\lambda(\alpha, \beta) \geq \tau_{2}(\alpha, \beta)$, we consider the first inequality in (2.5) which, taking also into account that $\tau_{1}(\alpha, \beta) \leq 2 / 3$, after computing, is

$$
\begin{equation*}
\max _{f \in \mathcal{C}\left(g_{\alpha, \beta}\right)} \Phi_{\lambda}(f) \leq\left|\frac{2}{3}+\frac{2}{3}(\alpha+\beta)+\frac{1}{3}\left(\alpha^{2}+\alpha \beta+\beta^{2}\right)-\frac{1}{4}(2+\alpha+\beta)^{2} \lambda\right| \tag{2.24}
\end{equation*}
$$

Setting $\delta:=0$ and $p:=L$ into (2.13) we get the function $f_{\alpha, \beta, 1}$ given by (2.6) with $t_{\alpha, \beta, \lambda}:=1$ and with the coefficients a_{2} and a_{3} given by (2.23), which makes the equality in (2.24). In particular, the function $f_{\alpha, \beta, 1}$ is one of the form (2.7)-(2.10).

Let $\alpha=\beta:=0$. For $\lambda \in\left[\tau_{1}(0,0), \tau_{2}(0,0)\right]=[0,4 / 3]$ the inequality (2.5) reduces to

$$
\max _{f \in \mathcal{C}\left(g_{0,0}\right)} \Phi_{\lambda}(f)=\max _{f \in \mathcal{P}^{\prime}} \Phi_{\lambda}(f) \leq \frac{2}{3}
$$

Setting $\delta:=0$ and by (2.4), $p:=p_{0,0}$ into (2.13) we get the function (2.11) with $a_{2}=0$ and $a_{3}=2 / 3$, which makes the equality above. For $\lambda \in \mathbf{R} \backslash(0,4 / 3)$ the inequality (2.5) reduces to

$$
\max _{f \in \mathcal{C}\left(g_{0,0}\right)} \Phi_{\lambda}(f)=\max _{f \in \mathcal{P}^{\prime}} \Phi_{\lambda}(f) \leq\left|\frac{2}{3}-\lambda\right|
$$

Setting $\delta:=0$ and by (2.4), $p:=L$ into (2.13) we get the function (2.12) with $a_{2}=1$ and $a_{3}=2 / 3$, which makes the equality above.

Remark 2.3. Let $\beta:=\alpha \in(0,1]$. Then by (1.5) we have

$$
\lambda(\alpha, \alpha)=\frac{2}{3}+\frac{2}{3} \max \left\{\frac{1}{2}, \frac{1}{1+\alpha}\right\}=\tau_{2}(\alpha)
$$

so (2.5) with sharpness reduces to (1.4) (Theorem 2.4 of [18]). Let $\beta:=0$ and $\alpha \in(0,1]$. Then

$$
\lambda(\alpha, 0)=\frac{2}{3}+\frac{2}{3} \max \left\{1, \frac{2}{2+\alpha}\right\}=\frac{4}{3}
$$

so (2.5) with sharpness reduces to (1.6) (Theorem 2.4 of [21]).

References

[1] H. R. Abdel-Gawad, D. K. Thomas, A subclass of close-to-convex functions, Publ. de L'Inst. Math. 49 (63) (1991), 61-66.
[2] B. Bhowmik, S. Ponnusamy, K. J. Wirths, On the Fekete-Szegö problem for concave univalent functions, J. Math. Anal Appl. 373 (2011), 432-438.
[3] W. Ciozda, Sur la classe des fonctions convexes vers l'axe réel négatif, Bull. Acad. Polon. Sci. 27 (1979), no. 3-4, 255-261.
[4] M. Elin, D. Khavinson, S. Reich, D. Shoikhet, Linearization models for parabolic dynamical systems via Abel's functional equation, Ann. Acad. Sci. Fenn. 35 (2010), 439-472.
[5] M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc. 8 (1933), 85-89.
[6] G. Goluzin, Some question of the theory of univalent functions, Trudy Mat. Inst. Steklov 27 (1949), 11-123.
[7] A. W. Goodman, Univalent Functions, Mariner, Tampa, Florida, 1983.
[8] Z. J. Jakubowski, Le maximum d'une fonctionnelle dans la famille des fonctions univalentes bornées, Coll. Math. 7 (1959), 127-128.
[9] Z. J. Jakubowski, Sur le maximum de la fonctionnelle $\left|A_{3}-\alpha A_{2}^{2}\right|(0 \leq \alpha<1)$ dans la famille de fonctions F_{M}, Bull. Soc. Sci. Lettres Łódź XIII (1962), no. 1, 1-19.
[10] Z. J. Jakubowski, Sur les coefficients des fonctions univalentes dans le cercle unité, Ann. Polon. Math. 19 (1967), 207-233.
[11] Z. J. Jakubowski, On some extremal problems of the theory of univalent functions, Pitman Reserch Notes in Mathematics, Series 257, 1991, 49-55.
[12] J. A. Jenkins, On certain coefficients of univalent functions II, Trans. Amer. Math. Soc. 96 (1960), 534-545.
[13] S. Kanas, A. Lecko, On the Fekete-Szegö problem and the domain of convexity for a certain class of univalent functions, Folia Sci. Univ. Tech. Resov. 73 (1990), 49-57.
[14] W. Kaplan, Close to convex schlicht functions, Mich. Math. J. 1 (1952), 169-185.
[15] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12.
[16] Y. C. Kim, J. H. Choi, T. Sugawa, Coefficient bounds and convolution properties for certain classes of close-to-convex functions, Proc. Japan Acad. 76 (2000), 95-98.
[17] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), 89-95.
[18] B. Kowalczyk, A. Lecko, The Fekete-Szegö inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter, Jour. Ineq. Appl. 2014 (2014), no. 1.65, 1-16.
[19] B. Kowalczyk, A. Lecko, The Fekete-Szegö problem for close-to-convex functions with respect to the Koebe function, Acta Math. Sci. 34(B) (2014), no. 5, 1571-1583.
[20] B. Kowalczyk, A. Lecko, Fekete-Szegö problem for a certain subclass of close-to-convex functions, Bull. Malay. Math. Sci. Soc. 38 (2015), 1393-1410.
[21] B. Kowalczyk, A. Lecko, Fekete-Szegö problem for close-to-convex functions with respect to a certain convex function dependednt on a real parameter, Front. Math. China 11 (2016), no. 6, 1471-1500.
[22] B. Kowalczyk, A. Lecko, H. M. Srivastava, A note on the Fekete-Szegö problem for close-to-convex functions with respect to convex function, Publ. Inst. Math. (accepted).
[23] A. Lecko, A generalization of analytic condition for convexity in one direction, Demonstratio Math. XXX (1997), no. 1, 155-170.
[24] A. Lecko, On the class of functions convex in the negative direction of the imaginary axis, J. Aust. Math. Soc. 73 (2002), 1-10.
[25] A. Lecko, T. Yaguchi, A generalization of the condition due to Robertson, Math. Japonica 47 (1998), no. 1, 133-141.
[26] K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ. Jap. 2 (1934-35), 129-155.
[27] S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daig. Sect. A 2 (1935), 167-188.
[28] A. Pfluger, The Fekete-Szegö Inequality for Complex Parameter, Complex Variables 7 (1986), 149-160.
[29] Ch. Pommerenke, Univalent Functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.
[30] M. S. Robertson, Analytic functions star-like in one direction, Amer. J. Math. 58 (1936), 465-472.
[31] H. M. Srivastava, A. K. Mishra, M. K. Das, The Fekete-Szegö problem for a Subclass of Close-to-Convex Functions, Complex Variables 44 (2001), 145-163.
[32] A. Szwankowski, Estimation of the functional $\left|a_{3}-\alpha a_{2}^{2}\right|$ in the class \mathcal{S} of holomorphic and univalent functions for α complex, Acta Univ. Lodz 1 (1984), 151-157.
[33] S. E. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc. 38 (1935), no. 2, 310-340.

Department of Complex Analysis
Faculty of Mathematics and Computer Science
University of Warmia and Mazury
Słoneczna 54, 10-710 Olsztyn, Poland
e-mail: b.kowalczyk@matman.uwm.edu.pl

Department of Complex Analysis
Faculty of Mathematics and Computer Science
University of Warmia and Mazury
Słoneczna 54, 10-710 Olsztyn, Poland
e-mail: alecko@matman.uwm.edu.pl
Department of Complex Analysis
Faculty of Mathematics and Computer Science
University of Warmia and Mazury
Słoneczna 54, 10-710 Olsztyn, Poland
e-mail: b.smiarowska@matman.uwm.edu.pl

Presented by Zbigniew Jakubowski at the Session of the Mathematical-Physical Commission of the Łódź Society of Sciences and Arts on May 23, 2016.

O PEWNEJ NIERÓWNOŚCI DLA WSPÓモCZYNNIKÓW W PODKLASIE FUNKCJI PRAWIE WYPUKEYCH

Streszczenie

Dla $\alpha, \beta \in[0,1]$ niech $g_{\alpha, \beta}(z):=z / /((1-\alpha z)(1-\beta z)), z \in \mathbf{D}:=\{z \in \mathbf{C}:|z|<1\}$. Funkcja analityczna unormowana $f: \mathbf{D} \rightarrow \mathbf{C}$ nazywna jest prawie wypuktă wzglȩdem funkcji $g_{\alpha, \beta}$, jeśli dla pewnego $\delta \in(-\pi / / 2, \pi / / 2)$ zachodzi nierówność

$$
\operatorname{Re}\left\{\mathrm{e}^{\mathrm{i} \delta} \frac{z f^{\prime}(z)}{g_{\alpha, \beta}(z)}\right\}>0, \quad z \in \mathbf{D} .
$$

Dla klasy $\mathcal{C}\left(g_{\alpha, \beta}\right)$ funkcji prawie wypukłych względem funkcji $g_{\alpha, \beta}$ badany jest problem Fekete-Szegö-Guluzina.

Słowa kluczowe: nierówności współczynnikowe, funkcje prawie wypukłe, problem Fekete-Szegö-Goluzina

