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Summary
In the present paper, the estimates of some determinants over the classR(α), 0 ≤ α < 1,

of analytic functions f standardly normalized such that

Ref ′(z) > α, z ∈ D := {z ∈ C : |z| < 1},

are shown.
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1. Introduction

Let H be the class of analytic functions in D := {z ∈ C : |z| < 1} and let A be its
subclass of f normalized by f(0) := 0 and f ′(0) := 1, so of the form

(1.1) f(z) = z +

∞∑
n=2

anz
n, z ∈ D.

Given n, q ∈ N, the Hankel determinant Hq,n(f) of a function f ∈ A of the form
(1.1) is defined as

Hq,n(f) :=

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣ ,
where a1 := 1. To find the growth of the Hankel determinant Hq,n(f) dependent on
q and n for the whole class S ⊂ A of univalent functions as well as for its subclasses
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is one of the main problem to study. For the class S some important result was
shown by Pommerenke [16]. For fixed q and n the growth problem is reduced to
find the bound of the Hankel determinant over selected compact subclasses of A.
Recently many authors examined the Hankel determinant H2,2(f) of order 2 as well
as the Hankel determinant H3,1(f) of order 3 (see e.g., [9], [14], [11], [2]). Note that
H2,1(f) = a3 − a22. Thus the Hankel determinant H2,1(f) of order 2 reduces to the
well known coefficient functional which for S was estimated in 1916 by Bieberbach
(see e.g., [7, Vol. I, p. 35]).

Given α ∈ [0, 1), by R(α) we denote a subclass of A of functions f such that

(1.2) Ref ′(z) > α, z ∈ D.

Functions in R(α) are called of bounded turning of order α and in R := R(0) of
bounded turning (see e.g., [7, Vol. I, p. 101]).

In this paper we found sharp estimates of the Hankel determinants H2,2(f),

H2,1(f) and of the determinant

(1.3)
∣∣∣∣a1 a2
a3 a4

∣∣∣∣ = a4 − a2a3

over the class R(α). Having these results, the Hankel determinant H3,1(f) can be
estimated also, however far from sharpness. For the class R it was done in [1] with
some correctness in [2]. This result for R was recently improved in [17].

Let P be the class of Carathéodory functions p ∈ H of the form

(1.4) p(z) = 1 +

∞∑
n=1

cnz
n, z ∈ D,

having a positive real part in D. The results below for the class P will be used in
further considerations.

Lemma 1.1. [6, p. 41] If p ∈ P is of the form (1.4), then

(1.5) |cn| ≤ 2, n ∈ D.

The inequality is sharp and the equality holds for the function p := L, where

L(z) :=
1 + z

1− z
= 1 + 2

∞∑
n=1

zn, z ∈ D.

Let D := {z ∈ C : |z| ≤ 1}.

Lemma 1.2. ([12], [13]) If p ∈ P is of the form (1.4) with c1 > 0, then

(1.6) 2c2 = c21 + ζ(4− c21)

and

(1.7) 4c3 = c31 + 2c1(4− c21)ζ − c1(4− c21)ζ2 + 2(4− c21)(1− |ζ|2)η

for some ζ ∈ D and η ∈ D.
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The next lemma is a special case of more general results due to Choi, Kim and
Sugawa [5] (see also [15]). Define

Y (a, b, c) := max
z∈D

(
|a+ bz + cz2|+ 1− |z|2

)
, a, b, c ∈ R.

Lemma 1.3. ([5]) If ac ≥ 0, then

Y (a, b, c) =

 |a|+ |b|+ |c|, |b| ≥ 2(1− |c|),

1 + |a|+ b2

4(1− |c|)
, |b| < 2(1− |c|).

If ac < 0, then
Y (a, b, c)

=


1− |a|+ b2

4(1− |c|)
, −4ac(c−2 − 1) ≤ b2 ∧ |b| < 2(1− |c|),

1 + |a|+ b2

4(1 + |c|)
, b2 < min

{
4(1 + |c|)2,−4ac(c−2 − 1)

}
,

R(a, b, c), otherwise,

where

R(a, b, c) =


|a|+ |b| − |c|, |c|(|b|+ 4|a|) ≤ |ab|,
−|a|+ |b|+ |c|, |ab| ≤ |c|(|b| − 4|a|),

(|c|+ |a|)
√

1− b2

4ac
, otherwise.

2. Main results

We will start with the determinant (1.3).

Theorem 2.1. Let α ∈ [0, 1). If f ∈ R(α) is the form (1.1), then

(2.1) |a2a3 − a4| ≤
1

2
(1− α).

The inequality is sharp and the equality holds for the function

(2.2) f(z) :=

∫ z

0

1 + (1− 2α)u3

1− u3
du, z ∈ D.

Proof. Fix α ∈ [0, 1) and let f ∈ R(α) be of the form (1.1). Then by (1.2) the
function

(2.3) p(z) :=
1

1− α
(f ′(z)− α), z ∈ D,

belongs to P. Putting the series (1.1) and (1.4) into (2.3) by equating the coefficients
we get

(2.4) an+1 =
(1− α)cn
n+ 1

, n ∈ N.
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Hence

(2.5) |a2a3 − a4| =
1

12
(1− α)|2(1− α)c1c2 − 3c3|.

Now by using (1.6) and (1.7) we have

(2.6) |a2a3 − a4|

=
1

48
(1− α)|(1− 4α)c31 + (4− c21)[(−4α− 2)c1ζ + 3c1ζ

2 − 6(1− |ζ|2)η]|,

where (ζ, η) ∈ D×D. Since the class R(α) is invariant under the rotations, by (1.5)
we may assume that c1 =: t ∈ [0, 2].

Assume first that t := 2. Then p = L in (2.3) (see e.g., [7, Vol. I, p. 100]), so

(2.7) f(z) =

∫ z

0

1 + (1− 2α)u

1− u
du, z ∈ D,

with a2 = 1−α, a3 = 2(1−α)/3 and a4 = (1−α)/2. Hence we see that for α ∈ [0, 1)

the inequality

|a2a3 − a4| =
1

6
(1− α)|1− 4α| ≤ 1

2
(1− α),

is true, so the inequality (2.1) holds for the function (2.7).
Let now t ∈ [0, 2). From (2.6) we have

|a2a3 − a4| ≤
1

48
(1− α)

×
[∣∣(1− 4α)t3 + (4− t2)[(−4α− 2)tζ + 3tζ2

∣∣+ 6(4− t2)(1− |ζ|2)|η|
]

≤ 1

8
(1− α)(4− t2)

[∣∣∣∣ (1− 4α)t3

6(4− t2)
− 1

3
(1 + 2α)tζ +

1

2
tζ2
∣∣∣∣+ 1− |ζ|2

]
=

1

8
(1− α)(4− t2)

[
|A+Bζ + Cζ2|+ 1− |ζ|2

]
,

where

A :=
(1− 4α)t3

6(4− t2)
, B := −1

3
(1 + 2α)t, C :=

1

2
t.

Thus to prove the theorem we will show that

(2.8) (4− t2)
[
|A+Bζ + Cζ2|+ 1− |ζ|2

]
≤ 4.

I. Consider first the case AC ≥ 0 which holds when α ∈ [0, 1/4].

1. Since |B| ≥ 2(1− |C|) holds when t ∈ [3/(2 + α), 2), by Lemma 1.3 we have

(2.9)

(4− t2)
[
|A+Bζ + Cζ2|+ 1− |ζ|2

]
≤ (4− t2)(|A|+ |B|+ |C|) = (4− t2) · (1− 4α)t3 + (4α+ 5)(4− t2)t

6(4− t2)
= −2

3
(1 + 2α)t3 +

2

3
(4α+ 5)t =: γ(t), t ∈ [3/(2 + α), 2).

Note that
γ′(t) = −2(1 + 2α)t2 +

2

3
(4α+ 5)

= −2(1 + 2α)(t+ t0)(t− t0), t ∈ [3/(2 + α), 2),
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where

t0 :=

√
4α+ 5

3(1 + 2α)
.

But
t0 <

3

2 + α
, α ∈ [0, 1).

Indeed, the above inequality equivalently written as
4α+ 5

3(1 + 2α)
<

9

(2 + α)2

is equivalent to the inequality

4α3 + 21α2 − 18α− 7 = (α− 1)(4α2 + 25α+ 7) < 0, α ∈ [0, 1),

which clearly holds. Thus the function γ is decreasing, and moreover

(2.10)
γ(t) ≤ γ

(
3

2 + α

)
=

8α3 + 42α2 + 36α+ 22

(2 + α)3
≤ 4, t ∈ [3/(2 + α), 2).

Indeed, the second inequality is equivalent to the inequality

2α3 + 9α2 − 6α− 5 = (α− 1)(α+ 5)(2α+ 1) ≤ 0, α ∈ [0, 1),

which clearly holds.
2. Since |B| < 2(1− |C|) holds when t ∈ [0, 3/(2 + α)), by Lemma 1.3 we have

(4− t2)
[
|A+Bζ + Cζ2|+ 1− |ζ|2

]
≤ (4− t2)

(
1 + |A|+ B2

4(1− |C|)

)
= (4− t2)

(
1 +

(1− 4α)t3

6(4− t2)
+

(1 + 2α)2t2

18(2− t)

)

(2.11) = (4− t2) · 72 + [2(1 + 2α)2 − 18]t2 + [3(1− 4α) + (1 + 2α)2]t3

18(4− t2)

=
1

18

(
72 + t2[4(1− α)2t+ 8(α− 1)(α+ 2)]

)
≤ 4 +

1

2(2 + α)2

[
4(1− α)2 · 3

2 + α
+ 8(α− 1)(α+ 2)

]
= 4 +

2

(2 + α)3
(α− 1)(α+ 5)(2α+ 1) ≤ 4, α ∈ [0, 1), t ∈ [0, 3/(2 + α)).

Summarizing, by (2.9) and (2.11) it follows that (2.8) is true for α ∈ [0, 1/4].

II. Consider the case AC < 0 which holds when α ∈ (1/4, 1).

1. Since
B2C2 + 4AC(1− C2) =

1

9
(1− α)2t4 ≥ 0
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and |B| < 2(1− |C|) holds when t < 3/(2+α), by Lemma 1.3, repeating computing
as in (2.11) we have

(4− t2)
[
|A+Bζ + Cζ2|+ 1− |ζ|2

]
(2.12) ≤ (4− t2)

(
1− |A|+ B2

4(1− |C|)

)

= (4− t2)
(
1 +

(1− 4α)t3

6(4− t2)
+

(1 + 2α)2t2

18(2− t)

)
≤ 4, t ∈ [0, 3/(2 + α)).

2. Since 4(1 + |C|)2 = (2 + t)2 and −4AC(C−2 − 1) = (4α − 1)t2/3, so the
inequality

B2 =
1

9
(1 + 2α)2t2

< min
{
4(1 + |C|)2,−4AC(C−2 − 1)

}
=

1

3
(4α− 1)t2

is equivalent to the inequality (α− 1)2 < 0 which clearly does not hold.
3.(a) Note that the inequality |C|(|B|+ 4|A|) ≤ |AB|, i.e., the inequality

t

2

(
1

3
(1 + 2α)t− 2(1− 4α)t3

3(4− t2)

)
≤ (4α− 1)(1 + 2α)t4

18(4− t2)
which after computing is equivalent to the inequality

t ≥ 1

1− α

√
3

2
(1 + 2α)

does not hold since the inequality

1

1− α

√
3

2
(1 + 2α) > 2, α ∈ (1/4, 1),

equivalently written as

8α2 − 22α+ 5 < 0, α ∈ (1/4, 1),

is clearly true.
(b) Observe that the inequality |AB| ≤ |C|(|B| − 4|A|), i.e., the inequality

(4α− 1)(1 + 2α)t4

18(4− t2)
≤ t

2

(
1

3
(1 + 2α)t− 2(4α− 1)t3

3(4− t2)

)
for t ∈ [3/(2 + α), 2), is equivalent to the inequality

(2.13)
3

2 + α
≤ t ≤

√
3(1 + 2α)

2α2 + 8α− 1
.

Note first that 2α2 + 8α− 1 > 0 for α ∈ (1/4, 1). Moreover√
3(1 + 2α)

2α2 + 8α− 1
>

3

2 + α
.
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Indeed, by squaring both sides of above inequality and by simple computing we
equivalently get the inequality

2α3 + 3α2 − 12α+ 7 = (1− α)2(2α+ 7) > 0, α ∈ (1/4, 1),

which clearly holds. We also see that that the inequality√
3(1 + 2α)

2α2 + 8α− 1
< 2

holds, since by squaring and further computing it is equivalent to the true inequality

8α2 + 26α− 7 = 8

(
α+

7

2

)(
α− 1

4

)
> 0, α ∈ (1/4, 1).

Arguing now exactly as of Part I.1 for t satisfying (2.13) we get

(4− t2)
[
|A+Bζ + Cζ2|+ 1− |ζ|2

]
(2.14) ≤ (4− t2)(−|A|+ |B|+ |C|)

= −2

3
(1 + 2α)t3 +

2

3
(4α+ 5)t = γ(t) ≤ 4.

(c) It remains to consider

(2.15)

√
3(1 + 2α)

2α2 + 8α− 1
< t < 2.

Then by by Lemma 1.3 we have

(4− t2)
[
|A+Bζ + Cζ2|+ 1− |ζ|2

]
≤ (4− t2)(|C|+ |A|)

√
1− B2

4AC

=

(
4− 4

3
(1− α)t2

)√
(1− α)2t2 − (1 + 2α)2

3(1− 4α)
=: ϕ(t),

where t satisfies (2.15). Hence ϕ′(t) = 0 iff

−8

3
(1− α)t · (1− α)

2t2 − (1 + 2α)2

3(1− 4α)
+

4

3

(
1− 1

3
(1− α)t2

)
(1− α)2t
1− 4α

= 0

i.e., after simplifying iff

3(1− α)2t2 = 8α2 + 5α+ 5,

and hence iff
t = ± 1√

3(1− α)

√
8α2 + 5α+ 5 =: ±t1,

where α ∈ (1/4, 1) and t satisfies (2.15). But t1 > 2. Indeed, this inequality after
simplifying is equivalent to the inequality

4α2 − 29α+ 7 = 4

(
α− 1

4

)
(α− 7) < 0, α ∈ (1/4, 1),
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which is obviously true. Consequently ϕ′(t) > 0 iff

−3(1− α)2t2 + 8α2 + 5α+ 5 < 0

which holds for t satisfying (2.15). Thus the function ϕ is increasing and hence

(2.16)
ϕ(t) ≤ ϕ(2) =

(
4− 16

3
(1− α)

)√
4(1− α)2 − (1 + 2α)2

3(1− 4α)

=
4

3
(4α− 1) ≤ 4, α ∈ (1/4, 1).

Summarizing, by (2.14), (2.15) and (2.16) it follows that (2.8) is true for α ∈
(1/4, 1). In this way it was shown that the inequality (2.8) is true which ends the
proof of the inequality (2.1).

To show the sharpness, fix α ∈ [0, 1) and take the function f given by (2.2).
Clearly, f ∈ R(α) with a2 = a3 = 0 and a4 = (1− α)/2 which make the equality in
(2.1). �

For α := 0, i.e., for the class R the above theorem reduces to Theorem 2.1 of [2].

Remark 2.2. The proof of Theorem 2.1 was based on Lemma 1.3 which is use-
ful for such computing. This lemma was also applied in [3] and [4] to find sharp
bounds analogous as in Theorem 2.1 for the class of starlike functions of order α
and of strongly starlike functions, respectively. Let now remark that the result of
Theorem 2.1 can be achieved in a simple way by using Theorem 2.4 of [8] which
particularly produces the following result: if p ∈ P is of the form (1.4) and µ ∈ [0, 1],

then for n,m ∈ N, m < n, the following sharp estimate holds

(2.17) |cn − µcn−mcm| ≤ 2.

Hence, from (2.5) and since µ := 2(1− α)/3 ≤ 1 for α ∈ [0, 1), we have

|a2a3 − a4| =
1

4
(1− α)

∣∣∣∣c3 − 2

3
(1− α)c1c2

∣∣∣∣ ≤ 1

2
(1− α).

Theorem 2.4 can be found in [14] as Corollary 3.2. We reprove it by using the
result below for the class R shown in [9].

Lemma 2.3. If f ∈ R is of the form (1.1), then

(2.18) |a2a4 − a23| ≤
4

9
.

The inequality is sharp and the equality holds for the function

(2.19) f(z) :=

∫ z

0

1 + u2

1− u2
du = −z + log

1 + z

1− z
, z ∈ D, log 1 := 0.
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Theorem 2.4. Let α ∈ [0, 1). If f ∈ R(α) is the form (1.1), then

(2.20) |a2a4 − a23| ≤
4

9
(1− α)2.

The inequality is sharp and the equality holds for the function

f(z) :=

∫ z

0

1 + (1− 2α)u2

1− u2
du

(2.21)
= (−1 + 2α)z + (1− α) log 1 + z

1− z
, z ∈ D, log 1 := 0.

Proof. Fix α ∈ [0, 1) and let f ∈ R(α). Define

(2.22) g(z) :=
1

1− α
(f(z)− αz), z ∈ D.

Assuming that

(2.23) g(z) = z +

∞∑
n=2

bnz
n, z ∈ D,

and using (1.1), from (2.22) by comparing the coefficients of the series, we get

(2.24) an = (1− α)bn, n ∈ N \ {1}.
Since g ∈ R, by applying the inequality (2.18) we get

|a2a4 − a23| = (1− α)2|b2b4 − b23| ≤
4

9
(1− α)2.

Since the equality in (2.18) holds for the function given by (2.19), it follows from
(2.22) that the equality in (2.20) holds for the function given by (2.21). �

To prove Theorem 2.6 we use the following result related to the Fekete-Szegö
functional for the class R (see e.g., [10, Corollary 2.7]).

Theorem 2.5. Let λ ∈ [0, 4/3]. If f ∈ R is of the form (1.1), then

(2.25) |a3 − λa22| ≤
2

3
.

The inequality is sharp and for each λ ∈ [0, 4/3] the equality holds for the function
(2.19).

Theorem 2.6. Let α ∈ [0, 1). If f ∈ R(α) is the form (1.1), then

(2.26) |a3 − a22| ≤
2

3
(1− α).

The inequality is sharp and the equality holds for the function (2.21).
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Proof. Let α ∈ [0, 1) and f ∈ R(α). Let g be a function defined by (2.22) of
the form (2.23). Since g ∈ R by (2.24) and by applying the inequality (2.25) with
λ := 1− α ∈ [0, 1], we have

|a3 − a22| = (1− α)|b3 − (1− α)b2| ≤
2

3
(1− α).

Since the equality in (2.25) holds for the function given by (2.19), it follows from
(2.22) that the equality in (2.26) holds for the function (2.21).

The inequality (2.26) follows also from the inequality (2.17). Indeed, by using
(2.17), (2.4) and since µ := 3(1− α)/4 ≤ 1 for α ∈ [0, 1), we have

|a3 − a22| = 1
3 (1− α)

∣∣c2 − 3
4 (1− α)c

2
1

∣∣ ≤ 2
3 (1− α). �

Let α ∈ [0, 1) and let f of the form (1.1) belong to the class R(α). Then the
function p given by (2.3) is in P. Thus by (2.4) and (1.5) we have the following well
known result.

Theorem 2.7. Let α ∈ [0, 1). If f ∈ R(α) is the form (1.1), then

(2.27) |an| ≤
2(1− α)

n
, n ∈ N \ {1}.

The inequality (2.27) is sharp and the equality holds for the function

f(z) := (−1 + 2α)z − 2(1− α) log(1− z), z ∈ D, log 1 := 0.

Since for f ∈ A,

|H3,1(f)| ≤ |a3||a2a4 − a23|+ |a4||a4 − a2a3|+ |a5||a3 − a22|,

by using (2.1), (2.20), (2.26) and (2.27) we have

Theorem 2.8. Let α ∈ [0, 1). If f ∈ R(α) is the form (1.1), then

|H3,1(f)| ≤
1

540
(1− α)2(439− 160α).

Particularly, for α := 0 we get Theorem 2.2 of [2].

Corollary 2.9. If f ∈ R is the form (1.1), then

|H3,1(f)| ≤
439

540
≈ 0.813.

Recent result [17] improves the above one.

Corollary 2.10. If f ∈ R is the form (1.1), then

|H3,1(f)| ≤
41

60
≈ 0.683.
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OSZACOWANIA PEWNYCH WYZNACZNIKÓW DLA FUNKCJI
O OGRANICZONYM OBROCIE RZȨDU ALFA

S t r e s z c z e n i e

W pracy podane sa̧ oszacowania pewnych wyznaczników w klasie R(α), 0 ≤ α < 1,
funkcji analitycznych f standardowo unormowanych takich, że

Ref ′(z) > α, z ∈ D := {z ∈ C : |z| < 1}.

Słowa kluczowe: funkcje jednolistne, funkcje o ograniczonym obrocie, funkcje o ograni-
czonym obrocie rzędu alpha, wyznacznik Hankela


