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Summary
Jacobi polynomials are used to derive approximate solutions of the complete singular

integral equation with Cauchy–type kernel defined on the real half–line in the case of
constant complex coefficients. Moreover, estimations of errors of the approximated solutions
are presented and proved.
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1. Introduction

In the theory of singular integral equations (SIEs) with Cauchy–type kernels [9, 12,
13,26,30] there is considered the following equation:

a(x)ϕ (x) +
1

πi

1∫
−1

b(t)ϕ (t)

t− x
dt+

1

πi

1∫
−1

k(x, t)ϕ(t) dt = f (x) , −1 < x < 1,

a2(x)− b2(x) 6= 0, ∀x ∈ [−1, 1].

(1)

The equation (1) plays a pivotal role in the airfoil theory, aeroelasticity, and other
problems of solid and fluid mechanics [3,4,16,22,27,28,37]. A comprehensive survey
of applications of SIEs to mechanics can be found in [5]. The first studies on the
approximate solutions of this equation appeared in the beginning of the third decade
of the previous century and now the number of papers concerning numerical method
of solving singular integral equations with Cauchy-type kernels is very large. For the
details one can consult the papers [6, 7, 10, 11, 14, 17–21, 23, 38, 41, 43], monographs
[2, 8, 15] and citations therein.
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In the present paper, we consider the complete singular integral equation

(2) aϕ (x) +
1

πi

+∞∫
0

bϕ (σ)

σ − x
dσ +

1

πi

+∞∫
0

k(x, σ)ϕ(σ) dσ = f (x) , x > 0,

where k(x, σ), f(x) are given complex-valued Hölder continuous functions, the co-
efficients a and b are given complex numbers satisfying the conditions a2 − b2 6= 0,
b 6= 0, and ϕ (x) is the unknown function. We assume that the behavior of the kernel
k(x, σ) as |σ| → ∞ is described by the relation k(x, σ) = k0(x, σ)(σ+1)−α, Reα > 1,

where k0(x, σ) satisfies Hölder condition with respect to both variables.
The solution ϕ(x), x > 0, will be sought in the class of Hölder functions, vanishing

at infinity and having an integrable singularity in a neighbourhood of x = 0 (h(∞)

class) or bounded at x = 0 (h(0,∞) class) (cf. [34, 35]).
The theory of singular integral equations defined on the infinite curve can be

slightly different from the theory of corresponding equations on the finite curve, see,
eg. the works [1, 9, 24, 29, 33, 35, 36]. Equations of this type occur i.a. in quantum
mechanics [31].

The exact solution of dominant equation

(3) aϕ (x) +
1

πi

+∞∫
0

bϕ (σ)

σ − x
dσ = f (x) , x > 0,

which is a special case of equation (3), was presented i.a. in [9,34]. Moreover, in [34]
Jacobi polynomials were applied to derive approximate solutions of (3).

The main objective of the present paper is to build the approximate solutions of
(2) in the h(∞) and h(0,∞) function classes.

The paper is organized as follows. First we reduce the equation (2) to a Fred-
holm equation using Carleman-Vekua regularization and we find the conditions for
the unique solvability of (2). Next, we present efficient numerical schemes for equa-
tion (2) based on Jacobi polynomials and estimate the order of accuracy of the
approximate solution.

2. Exact solution

In this section, we reduce the singular integral equation (2) to a Fredholm equation
by Carleman–Vekua regularization [12,30,40]. Setting

(4) x =
1 + t

1− t
, σ =

1 + τ

1− τ
,

we can present the equation (2) in the form

aϕ∗(t) +
b

πi

1∫
−1

ϕ∗(τ)

τ − t
dτ − b

πi

1∫
−1

ϕ∗(τ)

τ − 1
dτ +

1

πi

1∫
−1

k∗(t, τ)ϕ∗(τ) dτ = f∗ (t),

−1 < t < 1, lim
t→1−

ϕ∗ (t)= lim
x→∞

ϕ(x) = 0,

(5)
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where

ϕ∗ (t) = ϕ

(
1 + t

1− t

)
, f∗ (t) = f

(
1 + t

1− t

)
, k∗(t, τ) = 2 k

(
1 + t

1− t
,

1 + τ

1− τ

)
(1− τ)

−2
.

Passing in (5) to the new unknown function u (t) by the rule ϕ∗ (t) = Z(t)
a2−b2 u (t),

and introducing notation A = a
a2−b2 , B = b

a2−b2 , we reduce Eq. (5) to the form

AZ(t)u(t) +
1

πi

1∫
−1

BZ(τ)u(τ)

τ − t
dτ − 1

πi

1∫
−1

BZ(τ)u(τ)

τ − 1
dτ

+
1

πi

1∫
−1

k∗(t, τ)
Z(τ)

a2 − b2
u(τ) dτ = f∗ (t) , t ∈ (−1, 1).

(6)

Note that k∗(t, τ) as τ → 1 has the form

(7) k∗(t, τ) = 21−αk

(
1 + t

1− t
,

1 + τ

1− τ

)
(1− τ)

α−2
.

Function Z(t) depends on the function class in which we are looking for its
solution. If the solution ϕ∗ (t) belongs to h (1) function class [30] (i.e. the class of
Hölder continuous functions on (−1, 1), bounded in a neighbourhood of the point
z = 1, and admitting an integrable singularity at the point z = −1), then for
0 < θ < π we have (cf. [34])

(8) Z (t) =
√
a2 − b2 (1− t)α (1 + t)

β
, α = ω1 + iω2, β = −ω1 − iω2,

and for −π < θ < 0 we obtain

(9) Z (t) = −
√
a2 − b2 (1− t)α (1 + t)

β
, α = 1 + ω1 + iω2, β = −1− ω1 − iω2,

where

G =
a− b
a+ b

, θ = argG, ω1 =
θ

2π
and ω2 = − 1

2π
ln |G|.

The index of the characteristic operator is equal to κ = − (α+ β) = 0.
If the solution ϕ∗ (t) is sought in the class h (−1, 1) [30] (i.e. the class of Hölder

continuous functions on (−1, 1), bounded at neighbourhoods of points z = ±1), then
for 0 < θ < π we have (cf. [34])

(10) Z (t) =
√
a2 − b2 (1− t)α (1 + t)

β
, α = ω1 + iω2, β = 1− ω1 − iω2,

and for −π < θ < 0 we obtain

(11) Z (t) = −
√
a2 − b2 (1− t)α (1 + t)

β
, α = 1 + ω1 + iω2, β = −ω1 − iω2.

In this case, the index κ is equal to κ = − (α+ β) = −1.
Moving the regular term of Eq. (6) to the right-hand side and then solving it as

a dominant equation in h(1) class (cf. [34]), after a few elementary transformations
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Eq. (6) can be reduced to the Fredholm equation of the form

(12) u(t) +

1∫
−1

N(t, τ1)u(τ1) dτ1 = F (t),

where

N(t, τ1) =
1

πi

Z(τ1)

Z(t) (a2 − b2)

ak∗(t, τ1)− Z(t)

πi

1∫
−1

b

Z (τ)

k∗(τ, τ1)

τ − t
dτ

,
F (t) =

a

Z (t)
f∗ (t)− 1

πi

1∫
−1

b

Z (τ)

f∗ (τ)

τ − t
dτ + γ0,

where γ0 is an arbitrary complex constant. The theory of Fredholm equations is valid
for Eq. (12) ([12]). Therefore, if the corresponding equation with F (t) ≡ 0 is un-
solvable (has only the trivial solution), then the solution of the non homogeneous
equation (12) is equal to

(13) u(t) = F (t)−
1∫
−1

Γ(t, τ)F (τ) dτ, t ∈ (−1, 1),

where Γ(t, τ) is the resolvent of the kernel N(t, τ).
The constant γ0 will be uniquely determined if we supplement the equation (6)

by the following orthogonality condition

(14)
1

πi

1∫
−1

BZ (τ)
u (τ)

τ − 1
dτ = A∗0,

where A∗0 is a given complex number. Indeed, taking into account the Poincaré-
Bertrand formula [9, 12] and the relation [30, p.140]

Γ(t, τ) = N(t, τ) +

1∫
−1

N(t, τ3)Γ(τ3, τ) dτ3,

by a straightforward substitution we verify that γ0 = A∗0.

Remark 1. The same result can be retrieved by defining

ϕ∗ (t) = ϕ

(
1 + t

1− t

)
1

1− t
, f∗ (t) = f

(
1 + t

1− t

)
1

1− t
and considering the Muskhelishvilli class h0 (index κ = 1).

In h(−1, 1) class (κ < 0), Eq. (6) is solvable if and only if

1

πi

1∫
−1

b

Z (τ)

f∗ (τ)− 1

πi

1∫
−1

k∗(τ, τ1)
Z(τ1)

a2 − b2
u(τ1) dτ1 +A∗0

 dτ = 0,
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where A∗0 is given by (14). Since the above condition is equivalent to the relation

1

πi

1∫
−1

b

Z (τ)
f∗ (τ) dτ =

1

πi

1∫
−1

BZ (τ)
u (τ)

τ − 1
dτ

+
1

(πi)2

1∫
−1

1∫
−1

b

Z (τ)

Z(τ1)

a2 − b2
k∗(τ, τ1)u(τ1) dτ1 dτ,

(15)

Eq.(6) can be rewritten in the form

AZ(t)u(t) +
1

πi

1∫
−1

BZ(τ)u(τ)

τ − t
dτ +

1

πi

1∫
−1

k∗(t, τ)
Z(τ)

a2 − b2
u(τ) dτ

= f∗ (t) +
b

πi

1∫
−1

f∗ (τ) dτ

Z (τ)
− b

(πi)2

1∫
−1

1∫
−1

Z(τ1)

Z (τ)

u(τ1)

a2 − b2
k∗(τ, τ1) dτ1 dτ.

(16)

Then, in the same way as in the previous case, one can pass from Eq.(16), to Fred-
holm Eq.(12), in whose right-hand side one should set γ0 = 0.

In the original variables x, σ, the conditions (14) and (15) acquire the following
forms

(17)
1

πi

+∞∫
0

bϕ(σ)

σ + 1
dσ = A∗0,

where A∗0 is an arbitrary number, and

sgn(θ)√
a2 − b2

1

πi

+∞∫
0

f(σ)

σβ
dσ

σ + 1

= − 1

πi

+∞∫
0

ϕ(σ)
dσ

σ + 1
+

sgn(θ)√
a2 − b2

1

(πi)2

+∞∫
0

+∞∫
0

k(σ, σ1)

σβ
ϕ(σ)

σ + 1
dσ1dσ,

(18)

where α, β are specified in (10) or (11) depending on θ = arg a−b
a+b , respectively.

We have thereby proved the following assertion.

Theorem 2.1. Suppose that the coefficients a, b occurring in Eq. (6) are given com-
plex numbers such that a2− b2 6= 0, b 6= 0, the functions f∗(t), k∗(t, τ) belong to the
Hölder class (k∗(t, τ) with respect to both variables), and the kernel k∗(t, τ) can be
represented in the form (7) in a neighbourhood of τ = 1.

If the index of (6) is equal to zero (κ = 0) and the homogeneous equation (12)
is unsolvable, then the problem (6), (14) has a unique solution.

If κ = −1, then Eq. (6) is equivalent (in the sense of solvability) to the Fredholm
equation (12) with γ0 ≡ 0, supplemented with the condition (15).
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3. Approximate solution

Now, we will find an approximate solution un(t) of the problem (6), (14) in h(1) class
(κ = 0). For this purpose, we interpolate the function f∗ (t) at Chebyshev nodes

(19) tk = cos
(2k − 1)π

2 (n+ 1)
, k = 1, 2, ..., n+ 1,

by polynomial f∗n (t) of degree n of the form (cf. [32])

f∗n (t) =
2

n+ 1

n∑
j=0

δj

(
n+1∑
k=1

Tj (tk) f∗ (tk)

)
Tj (t), δj =

{
1, j = 0,

2, j > 0,
(20)

where Tj (t) = cos (j arccos t) are Chebyshev polynomials of the first kind. By ex-
pressing Chebyshev polynomials Tj (t) in terms of Jacobi polynomials [42], we obtain

(21) Tj (t) =

j∑
l=0

ρjlP
(−α,−β)
l (t),

where

ρjl =
1

h
(−α,−β)
l

1

π

1∫
−1

q (t)Tj (t)P
(−α,−β)
l (t) dt

= (−1)
1

h
(−α,−β)
l

1

sinπα
Res
z=∞

{
(z − 1)

−α
(z + 1)

−β
Tj (z)P

(−α,−β)
l (z)

}
,(22)

q (t) = (1− t)−α (1 + t)
−β

, α+ β = 0,

h
(−α,−β)
l =

1

π

1∫
−1

q (t)
[
P

(−α,−β)
l (t)

]2
dt =

2Γ (l − α+ 1) Γ (l − β + 1)

(2l + 1)πl!Γ (l + 1)
.(23)

Using (21), the interpolation polynomial (20) takes the form

(24) f∗n (t) =

n∑
k=0

f∗kP
(−α,−β)
k (t),

where

f∗k =
2

n+ 1

n∑
j=k

δj

(
n+1∑
i=1

Tj (ti) f
∗ (ti)

)
ρjk, k = 0, 2, ..., n.

Next, we interpolate the regular kernel k(t, τ) at Chebyshev nodes (19) with the
polynomial k∗nn(x, t) of the form

(25) k∗nn(t, τ) =

n∑
j=0

n∑
p=0

k∗jp P
(−α,−β)
j (t)P (α,β)

p (τ),

where

k∗jp =

n∑
l=j

n∑
m=p

αlm ρ
(−α,−β)
lj ρ(α,β)mp ,
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coefficients ρ(−α,−β)lj , ρ
(α,β)
mp are given by (22), and αlm are defined as follows

αlm =
δl

n+ 1

n+1∑
k=1

Tl(tk)

{
δm
n+ 1

n+1∑
r=1

Tm(τr)k
∗(tk, τr)

}
.

As in this case, by (6) we have

(26)
1

πi

1∫
−1

k∗(1, τ)
Z(τ)

a2 − b2
u(τ) dτ = f∗(1).

Therefore the approximate solution

(27) un(t) =

n∑
k=0

ckP
(α,β)
k (t),

of the problem (6), (14) can be defined as the solution of the following equation

AZ(t)un(t)+
1

πi

1∫
−1

BZ(τ)un(τ)dτ

τ − t

+
1

πi

1∫
−1

(k∗nn(t, τ)− k∗nn(1, τ))
Z(τ)un(τ) dτ

a2 − b2
= f∗n (t)− f∗n (1) +A∗0,

(28)

where A∗0 is a given complex number, coefficients α, β are defined in (8) for 0 < θ < π

and in (9) for −π < θ < 0.
Substituting (27), (25), and (24) into (28) and using formula [23,34]

AZ (x)P
(α,β)
k (x) +

B

πi

1∫
−1

Z (t)
P

(α,β)
k (t)

t− x
dt = P

(−α,−β)
k (x) , α+ β = 0, k ≥ 0,

for the computation of the singular integrals, we obtain
n∑
k=0

ckP
(−α,−β)
k (t) +

n∑
l=0

(
n∑

m=0

k∗lmhm

)(
P

(−α,−β)
l (t)− P (−α,−β)

l (1)
)

=

n∑
k=0

f∗kP
(−α,−β)
k (t)− f∗n(1) +A∗0,

where

hm =
1

πi

1∫
−1

Z(τ)

a2 − b2
(
P (α,β)
m (τ)

)2
dτ =

sgn (arg(θ))

i
√
a2 − b2

h
(α,β)
l

=
sgn (arg(θ))

i
√
a2 − b2 sinαπ

Res
z=∞

(
(z − 1)α(z + 1)β

(
P (α,β)
m (z)

)2)
.

(29)
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Thus, coefficients ck, k = 0, 1, . . . , n, of the solution un(t) can be determined
from the following system of linear equations

(30)
ci +

n∑
j=0

cj k
∗
ij hj = f∗i , i = 1, 2, . . . , n,

c0 +
n∑
j=0

cj k
∗
0j hj −

n∑
l=0

n∑
j=0

cjk
∗
ljhjP

(−α,−β)
l (1) = f∗0 +A0 − f∗n(1).

If κ < 0, then the approximate solution

(31) un−1(t) =

n−1∑
k=0

ckP
(α,β)
k (t),

of (16) in the class h(−1, 1) may be found as a solution of the following problem

AZ(t)un−1(t) +
1

πi

1∫
−1

BZ(τ)
un−1(τ)

τ − t
dτ +

1

πi

1∫
−1

k∗n,n−1(t, τ)

a2 − b2
Z(τ)un−1(τ)dτ

= f∗n (t) +
b

πi

1∫
−1

f∗n (τ)

Z (τ)
dτ − b

(πi)2

1∫
−1

1∫
−1

Z(τ1)

a2 − b2
k∗n,n−1(τ, τ1)

Z (τ)
un−1(τ1)dτ1dτ,

(32)

where f∗n(t) is defined by the rule (24). Moreover, k∗n,n−1(t, τ) is the interpolation
polynomial of the kernel k∗(t, τ) with Chebyshev nodes

(33) τ
′

l = cos
(2l − 1)π

2n
, l = 1, . . . , n, tk = cos

(2k − 1)π

2 (n+ 1)
, k = 1, . . . , n+ 1,

and it has the form

(34) k∗n,n−1(t, τ) =

n∑
j=0

n−1∑
p=0

k∗jp P
(−α,−β)
j (t)P (α,β)

p (τ),

where

k∗jp =

n∑
l=j

n−1∑
m=p

αlm ρ
(−α,−β)
lj ρ(α,β)mp ,

αlm =
δl

n+ 1

n+1∑
k=1

Tl(tk)

{
δm
n

n∑
r=1

Tm(τ
′

r)k
∗(tk, τ

′

r)

}
, δk =

{
1, k = 0,

2, k = 1, 2, ...,

and ρ
(−α,−β)
lj , ρ

(α,β)
mp are defined in the same way as in (22). Let us stress that in

this case taking into account the relation (26) doesn’t have an influence on final
algorithm.

Substituting (31), (34) and (24) into (32), and using formula [23,34]

AZ (x)P
(α,β)
k (x) +

B

πi

1∫
−1

Z (t)
P

(α,β)
k (t)

t− x
dt = 2P

(−α,−β)
k+1 (x) , α+ β = 1, k ≥ 0,
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we obtain

2

n−1∑
k=0

ckP
(−α,−β)
k+1 (t) +

n∑
l=1

(
n−1∑
m=0

k∗lm cm hm

)
P

(−α,−β)
l (t) =

n∑
k=1

f∗kP
(−α,−β)
k (t),

where hm are defined in the same way as in (29). The coefficients α, β and the
function Z(t) occurring in hm are given by (10) for 0 < θ = arg a−b

a+b < π and by (11)

for −π < θ < 0. Comparing the coefficients at P (−α,−β)
k (t), k = 1, . . . , n, we derive

the system

2ci−1 +

n−1∑
j=0

cj k
∗
ijhj = f∗i , i = 1, . . . , n.(35)

4. Numerical examples

Let us find the solution the following problem

(1 + i)ϕ (x) +
1− i
πi

+∞∫
0

ϕ (σ) dσ

σ − x
− 2

πi

+∞∫
0

ϕ(σ) dσ

(x+ 1)(σ + 1)(σ + 2)
=

1

2x+ 3
,

1

πi

+∞∫
0

(1− i)ϕ(σ)

σ + 1
dσ = −1,

(36)

in the h(∞) class (κ = 0). Using the above substitutions (4) the problem (36)
acquires the form

1− i
4

Z(t)u(t)− 1 + i

4πi

1∫
−1

Z(τ)u(τ)

τ − t
dτ =

t− 1

t− 5
− 1

πi

1∫
−1

Z(τ)

a2 − b2
1− t
τ − 3

u(τ) dτ − 1,

where
Z(t) =

√
2(1 + i)(1− t)1/4(1 + t)−1/4.

By solving the above equation in the h(1) class (cf. [34]), we obtain

Γ(t, τ) =
1

πi

1− 2t

2
(

5(1+i)

4 4√2
− i
) Z(τ)

4i

1

τ − 3
, Z(t) = (

√
2 + i

√
2) 4

√
1− t
1 + t

.

Since

u(t) =
2t− 1

2

4
√

3−
√

2√
2

(1 + i) 4
√

2

5 + i
(
1− 4 4

√
2
) + 4

(
3

2

) 1
4 1

t− 5
,

or, which is the same,

ϕ(x) = −i e
iπ
4

4 4
√
x

x− 3

x+ 1

4
√

3−
√

2√
2

(1 + i) 4
√

2

5 + i
(
1− 4 4

√
2
) + i

e
iπ
4

4
√
x

(
3

2

) 1
4 x+ 1

2x+ 3
.

The values of u(t), un(t) for n = 10 are shown in Table 1. In Table 2 we tabulate
the values of the exact and approximated solutions of the problem (36) in the h(∞)

class at the points x corresponding to t from the previous table.
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Tab. 1: Comparison of the values of u(t), un(t)

t u(t) un(t)

-0.717 -0.690070196863+0.076314953186i -0.690070196857+0.076314953184i
0.0016 -0.851205627507+0.031230292033i -0.851205627521+0.031230292033i
-0.956 -0.642559577943+0.091272157657i -0.642559577944+0.091272157655i
0.185 -0.897813651028+0.019688117490i -0.897813651035+0.019688117489i

Tab. 2: Comparison of the values of exact and approximated solutions of (36)

x ϕ(x) ϕn(x)

41.37 -0.160791967205+0.152881347804i -0.160791967212+0.152881347811i
7.916 -0.228530579779+0.221248009243i -0.228530579772+0.221248009237i
4.787 -0.248345980190+0.243720960213i -0.248345980195+0.243720960218i
0.020 -0.513057865584+0.683492017265i -0.513057865587+0.683492017263i

5. Estimation of errors

In this section, we determine the estimates of errors of the approximate solutions
of (5). In order to investigate proposed algorithms, we need the following theorem
presented in [40].

Theorem 5.1. Let us consider two Fredholm equations, namely the exact

(37) K(ϕ;x) ≡ ϕ(x) +

1∫
−1

k(x, t)ϕ(t)dt = f(x), −1 ≤ x ≤ 1

and the approximate

(38) Kn(ϕn;x) ≡ ϕn(x) +

1∫
−1

kn(x, t)ϕn(t)dt = fn(x), −1 ≤ x ≤ 1,

where k(x, t), kn(x, t), f(x) and fn(x) are given continuous functions (the first two
can have an integrable singularity at ±1).

In addition, suppose that the homogeneous equation (37) is not solvable (i.e. it has

only the zero solution) and max
−1≤x≤1

1∫
−1
|γ(x, t)| dt ≤ ρ, where γ(x, t) is the resolvent

of the kernel k(x, t).
If the following condition ε1B < 1 is satisfied, where

ε1 = max
x

1∫
−1

1∫
−1

|k(x, t)− kn(x, t)| |kn(t, τ)| dτdt, B = 1 + ρ,
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then the non homogeneous equation (38) is solvable and

∥∥K−1n ∥∥
∞ ≤

1 +BK1

1− ε1B
, where K1 = max

x

1∫
−1

|kn,n(x, t)| dt.

Besides,

‖ϕ− ϕn‖∞ ≤
1 +BK1

1− ε1B
[ε2B ‖f‖∞ + ε3],

where

ε2 = max
x

1∫
−1

|k(x, t)− kn(x, t)| dt, ε3 = ‖f − fn‖∞.

Theorem 5.2. Let us suppose that the Hölder continuous functions f∗(t), k∗(t, τ)

occurring in Eq. (6) are approximated by the polynomials f∗n(t) and k∗n,n(t, τ) defined
as in (24) and (25), respectively, and that the homogeneous equation corresponding
to (12) is not solvable.

Then the system of linear equations (30) is solvable for sufficiently large n, and
the estimate

(39) ‖(1− t)α(u(t)− un(t))‖∞ ≤M
ln3 n

nµ
, Reα > 0,

holds, where M is a constant independent of n.

Proof. The system (30) and the problem (28) are simultaneously solvable or unsolv-
able. As follows from the above-performed considerations, the latter is equivalent to
the solvability of the equation

(40) (1− t)αun(t) +

1∫
−1

Nn(t, τ)(1− τ)αun(τ) dτ = Fn(t), Reα > 0,

where

Nn(t, τ) =
(1− t)α

(1− τ)α
1

πi

Z(τ)

(a2 − b2)

ak∗nn(t, τ)

Z(t)
− b

πi

1∫
−1

k∗nn(τ1, τ) dτ1
Z (τ1) (τ1 − t)

,
Fn(t) = (1− t)α

 a

Z (t)
f∗n (t)− 1

πi

1∫
−1

b

Z (τ)

f∗n (τ)

τ − t
dτ + γ0

.
By Theorem 5.1, to establish the solvability of Eq.(40), it suffices to estimate

ε1 = max
−1<t<1

1∫
−1

1∫
−1

|N (t, τ)−Nn (t, τ)| |Nn (τ, τ1)| dτdτ1.
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Since in the h(1) class we have

Z (t) = ±
√
a2 − b2 (1− t)α (1 + t)

β
, 0 < Reα < 1, −1 < Reβ < 0,

one can apply the estimates from [39] in order to get

‖k (t, τ)− knn (t, τ)‖∞ ≤M1
ln2 n

nµ
,∣∣∣∣∣∣ 1

πi

1∫
−1

b

Z (τ1)
[k (τ1, τ)− knn (τ1, τ)]

dτ1
τ1 − t

∣∣∣∣∣∣ ≤ M2

(1− t)Reα

ln3 n

nµ
.

Consequently, we have

|N (t, τ)−Nn (t, τ)| =

∣∣∣∣∣ (1− t)α Z (τ)

πi (a2 − b2)Z (t)

{
a [k (t, τ)− knn (t, τ)]

−Z (t)

πi

1∫
−1

b

Z (τ1)
[k (τ1, τ)− knn (τ1, τ)]

dτ1
τ1 − t


∣∣∣∣∣∣ ≤M (1 + τ)

Reβ ln3 n

nµ
,

where M,M1,M2 are constants independent of n.
Hence it follows that ε1 ≤ M ln3 n

nµ . Thus, the Eq. (40) is solvable for sufficiently
large n.

Using the following estimations

K1 = max
t

1∫
−1

|Nn (t, τ)| dτ = max
t

1∫
−1

|[Nn (t, τ)−N (t, τ)] +N (t, τ)| dτ=O(1),

ε2 = max
t

1∫
−1

|N (t, τ)−Nn (t, τ)| dτ ≤M ln3 n

nµ
,

ε3 = ‖F (t)− Fn (t)‖∞ 6M
ln2 n

nµ
,

we finish the proof of (39). �

Theorem 5.3. Let the Hölder continuous functions f∗(t), k∗(t, τ) be approximated
by polynomials f∗n(t) and k∗n,n−1(t, τ) defined as in (24) and (34), respectively, and
the let the homogeneous equation (12) with γ0 = 0 be not solvable.

Then the system of linear equations (35) is solvable for sufficiently large n and
the estimate

(41) ‖Z(t)(u(t)− un−1(t))‖∞ ≤M
ln3 n

nµ
,

holds, where M is a constant independent of n.
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Proof. We have to estimate the value

ε∗1 = max
−1<t<1

1∫
−1

1∫
−1

∣∣N∗ (t, τ)−N∗n−1 (t, τ)
∣∣ ∣∣N∗n−1 (τ, τ1)

∣∣ dτdτ1,
where

N∗n−1(t, τ)=
1

πi

1

(a2 − b2)

a k∗n,n−1(t, τ)− Z(t)
b

πi

1∫
−1

k∗n,n−1(τ1, τ) dτ1

Z (τ1) (τ1 − t)

.
Since Z (t) = ±

√
a2 − b2 (1− t)α (1 + t)

β
, 0 < Reα,Reβ < 1, in the h(−1, 1) class,

it follows from [39] that ∣∣N∗(t, τ)−N∗n−1(t, τ)
∣∣ ≤M2

ln3 n

nµ
.

Thus, for sufficiently large n, the equation

Z(t)un−1(t) +

1∫
−1

N∗n−1(t, τ)Z(τ)un−1(τ) dτ = F ∗n(t), −1 < t < 1,

where F ∗n(t) = a f∗n (t)− Z(t)
πi

1∫
−1

b
Z(τ)

f∗n(τ)
τ−t dτ, is solvable.

Further, using the estimates

K1 = max
t

1∫
−1

∣∣N∗n−1(t, τ)
∣∣ dτ = O(1),

ε2 = max
t

1∫
−1

∣∣N∗(t, τ)−N∗n−1 (t, τ)
∣∣ dτ≤M ln3 n

nµ
,

ε3 = ‖F ∗ (t)− F ∗n (t)‖∞ 6M
ln2 n

nµ
,

we finish the proof of estimate (41). �
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ZASTOSOWANIE WIELOMIANÓW JACOBIEGO DO
ROZWIA̧ZANIA ZUPEŁNEGOMOCNO OSOBLIWEGO RÓWNANIA
CAŁKOWEGO Z JA̧DREM CAUCHY’EGO NA NIEUJEMNEJ
PÓŁOSI RZECZYWISTEJ

S t r e s z c z e n i e

W pracy skonstruowane zostały algorytmy przybliżonego rozwiązania zupełnego mocno
osobliwego równania całkowego z jądrem Cauchy’ego na nieujemnej półosi rzeczywistej
o stałych współczynnikach zespolonych z użyciem wielomianów Jacobiego. Ponadto wyzna-
czone zostały oszacowania błędów przedstawionych rozwiązań przybliżonych.

Słowa kluczowe: wielomiany Jacobiego, mocno osobliwe równania całkowe, jądro Cau-
chy’ego, rozwiązanie przybliżone


