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Summary

In this paper we study classes of convex polyhedra with normal vectors belonging to a

given finite set G of vectors. Since a Minkowski sum A+B of two polyhedra may have normal

vectors which are normal to no face of A or B, a given class of polyhedra may be not closed

under Minkowski addition. The main result of this paper is a necessary and sufficient con-

dition under which a class of convex polyhedra is closed with respect to Minkowski addition.
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1. Introduction

In nature monocrystals assume polyhedral shape. However, typically this shape has

a number of defects. In our ideal model we identify monocrystals with convex poly-

hedra in three dimensional space. Growing a monocrystal can be identified with

multifunction of a real variable and values in the family of all convex polyhedra. The

growth of monocrystals can be described using vector addition also called Minkowski

addition [5, 6, 16]. As we know the sum of two convex polyhedra is a convex poly-

hedron. However, crystal structure or the ordered arrangement of atoms limits the

number of possible vectors normal to the faces of a given growing crystal. Therefore,

it is profitable to restrict considerations to a smaller class of convex polyhedra with

finite number of possible normal vectors.

The problem is that the sum of two convex polyhedra from such smaller class

may not belong to this class. It can happen because the sum of two convex polyhedra

[43]
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with the same of normal vectors may have larger set of normal vectors. We show a

simple example in Figure 1.

The polyhedron A is an elongated pyramid and polyhedron B is the same elon-

gated pyramid rotated around vertical axis. On Figure 1 we can see two polyhe-

dra and their Minkowski sum. Let first polyhedron be A, second be B and their

Minkowski sum be C = A+B.

(a) Polyhedron A. (b) Polyhedron B. (c) Polyhedron C = A+B.

Fig. 1: Two polyhedra and their Minkowski sum.

Let us see that the set of all normal vectors to the faces of the polyhedron A is

exactly the same set of all five normal vectors to the faces of the polyhedron B. This

set is by necessity contained in the set of all normal vectors to the polyhedron C.

However, the polyhedron C has an additional sixth face on top of it. Hence the class

of all polyhedra with normal vectors contained in the set of five normal vectors to

the faces of the polyhedron A is not closed under Minkowski addition.

This paper is dedicated to finding all finite sets of vectors belonging to the unit

sphere, which define classes of convex polyhedra which are closed with respect to

Minkowski addition. Further we show that such finite sets of vectors are very special

but we should not neglect them, because the growth of crystals belonging to such

classes can be easily described with the help of Minkowski addition.

2. Problem description

Let X = (X, τ) be a topological vector space. Let B(X) be the family of all nonempty

bounded closed convex subsets of X and K(X) be the family of all compact sets

from B(X). For A,B ⊂ X we have A + B = {a + b | a ∈ A, b ∈ B}, which is

called Minkowski sum of the sets A and B. Let A+̇B = cl(A + B) and αA = {αa |
a ∈ A,α ∈ R+}. The triples (K(X),+, ·) and (B(X), +̇, ·) are abstract convex cones

studied in a number of papers [7], [10], [12] or [17].

Let A ⊂ X, then convex hull of A is a set convA = {
n∑

i=1

αiai | αi ∈ R+, ai ∈

A,
n∑

i=1

αi = 1, n ∈ N}. For A ∈ B(R3) we define a support function hA on R3 by
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hA(x) = max
a∈X
〈a, x〉, where 〈·, ·〉 is inner product. The correspondence between family

K(Rn) and the family of all positively homogeneous and convex functions on Rn

is called Minkowski duality. Minkowski duality plays an important role in convex

analysis and especially in the study of quasidifferential functions [1] and [2].

We define also a support set A(z) = {a ∈ A | 〈a, z〉 = hA(z)} of the set A in the

direction of a nonzero vector z ∈ R3. Let G be a finite set of vectors {zi ∈ R3 | i ∈
{1, . . . , n}, ‖zi‖ = 1}. So we denote

BG(R3) = {A ∈ B(R3) | A = {x ∈ R3 | 〈x, zi〉 ≤ hA(zi), i = 1, . . . ,m}}

and elements of this family are called G-polyhedra. In particular, a G-polyhedron can

have an empty interior. Then it is a singleton, a segment or a polygon. A convex

polyhedron (with nonempty interior) is a G-polyhedron if and only if all vectors

normal to its faces belong to G.

A nonempty intersection of finite number of closed half-spaces is called a general

polyhedron. A bounded general polyhedron is a convex hull of finite number of points.

A bounded general polyhedron with nonempty interior is called a convex polyhedron.

The family BG(R3) is nonempty if and only if the origin is an interior point of

a convex hull of G. If G is contained in a unit sphere S2 then G is contained in no

hemisphere. Every normal vector of a G-polyhedron A belongs to G. Unfortunately

if A, B are G-polyhedra we cannot deduce that the polyhedron A + B is a G-

polyhedron. See for example Figure 1. However, every face, edge and vertex of a

given polyhedron A is a support set A(z) of A in some direction z. Obviously, a

support set of A + B is a Minkowski sum of respective support sets of A and B,

namely (A + B)(z) = A(z) + B(z). Therefore, if a support set (A + B)(z) is a face

of A+B i.e. it is a two-dimensional figure then the support set A(z) is a face of A

or B(z) is a face of B or both A(z) and B(z) are non-parallel edges of A and B. If

we consider polyhedra with nonempty interior then every edge is an intersection of

two faces. The third possibility shows that (in general) a sum of two G-polyhedra is

not a G-polyhedron.

Our purpose is to find all sets G such that for any two G-polyhedra A and B if

the support set (A+B)(z) is two-dimensional then z ∈ G. In other words, we want

to find which classes BG(R3) are closed under Minkowski addition.

In three-dimensional Euclidean space we consider a unit sphere of radius 1 and

center 0. The unit sphere is described by a quadric equation S2 = {(x1, x2, x3) ∈
R3 : x21 + x22 + x23 = 1}. Let π be a plane passing through the center 0 of the sphere

S2. The section π ∩ S2 is called a great circle. Two points x, y ∈ S2 of the sphere

are called antipodal if y = −x. The shortest path [x, y]S between two non-antipodal

points x, y on a sphere is the shorter segment of a great circle passing through x and

y and it is called a great circle segment joining x and y.
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If an edge of a polyhedron is an intersection of two faces A(x) and A(y) then

this edge is equal to A(z), where z is any point belonging to the great circle segment

[x, y]S joining x and y. So in the case of a polyhedron with nonempty interior each

edge corresponds to a great circle segment joining points corresponding to the faces

of a polyhedron containing this edge.

If there exists a face of (A+ B)(z) with normal vector z which is not normal to

any face of A or B then this face is equal to the sum A(z) +B(z) of two edges where

z lays on the intersection of two great circle segments [x, y]S and [u,w]S such that

A(x) and A(y) are faces of A containing the edge A(z) and B(u) and B(w) are faces

of B containing the edge B(z).

The following theorem reduces our problem to a geometric problem for the three-

dimensional space R3.

Theorem 2.1. The family BG(R3) of all G-polyhedra is closed with respect to

Minkowski addition if and only if every intersection of two great circle segments with

endpoints in G belongs to G.

Proof. Sufficiency follows directly from previous considerations.

Necessity. Let x, y, u, w ∈ G and [x, y]S ∩ [u,w]S = {z}. Let us define A = {a ∈
R3 | 〈a, v〉 ≤ 1 for all v ∈ G, 〈a, x〉 ≤ ε, 〈a, y〉 ≤ ε}. The set A is a polyhedron and

if ε is sufficiently small then the faces A(x) and A(y) intersect along the edge A(z).

Similarly if B = {b ∈ R3 | 〈b, v〉 ≤ 1 for all v ∈ G, 〈b, u〉 ≤ ε, 〈b, w〉 ≤ ε}, then the

set B is a polyhedron and if ε is sufficiently small then the faces B(u) and B(w)

intersect along the edge B(z). The edges A(z) and B(z) are nonparallel, and the face

(A+B)(z) is a parallelogram. Since A+B belongs to BG(R3), the normal vector z

to the faces (A+B)(z) belongs to G. �

In section 4 we characterize all finite subsets G of unit sphere such that every

point intersection of two great circle segments with endpoints in G belongs to G.

3. Planar sets with internally intersecting skeleton

Before characterizing finite subsets of unit sphere we characterize in this section

similar subsets of the plane. Solution of a planar problem will make the spherical

one clearer.

Let A = {a1, . . . , an} ⊂ R2. The set A Y A =
⋃

a,b∈A
[a, b], i.e. the union of line

segments with endpoints in A is called a skeleton of A. We say, that a set A has

internally intersecting skeleton, when every point intersection of two line segments

from the skeleton A Y A belongs to the set A. In this section, we aim to answer the

following question: What is a necessary and sufficient condition for the set A to have

an internally intersecting skeleton?
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First, we define a forbidden domain of a triangle. Let a, b, c be vertices of triangle.

An open unbounded set F (c, [a, b]) = {γ(αa+ (1− α)b) + (1− γ)c | 0 < α < 1 < γ}
is called a forbidden domain with respect to the point c and the segment [a, b] (see

Figure 2). Vertices and sides of any triangle generate three forbidden domains with

respect to a vertex and an opposite side. The union of these three disjoint domains

is called a forbidden domain of a triangle.

Fig. 2: Forbidden domain of a triangle ∆(a, b, c).

Now, we formulate a theorem, which presents a solution to the planar problem.

Theorem 3.1. Let A be a finite subset of R2. The following conditions are equiva-

lent :

(i) The set A has an internally intersecting skeleton.

(ii) For any a, b, c ∈ A if the triangle ∆(a, b, c) contains no other point of A, then

the forbidden domain of this triangle contains no points of A.

Proof. (ii) ⇒ (i) Proof by contradiction. Let us assume that the set A does not

have an internally intersecting skeleton. It implies, that there exist four points

a1, a2, a3, a4 ∈ A such that an intersection of line segments [a1, a2] and [a3, a4] is

a singleton {b} and the point b does not belong to A. We can assume, that between

a1 and a2 there are no other points belonging to the set A. In a similar way we can

assume, that there are no points of A between a3 and a4.

Let a5 ∈ A be a point of the triangle ∆(a2, a3, a4) other than a3 and a4 such

that the distance of a5 from a straight line a3a4 is the shortest. Let us notice that

the triangle ∆(a5, a3, a4) does not contain any point of A other than its vertices.

It can happen that a5 = a2. But a1 belongs to F (a2, [a3, a4]) ⊂ F (a5, [a3, a4]) and

F (a5, [a3, a4]) is the forbidden domain designated by the triangle ∆(a5, a3, a4), a

contradiction.

(i) ⇒ (ii) Proof by contradiction. Let a triangle ∆(a1, a2, a3), a1, a2, a3 ∈ A contain

no other point of A and let a4 ∈ A lie in the forbidden domain designated by this

triangle. Without loss of generality we can assume, that a4 ∈ F (a3, [a1, a2]) (see

Figure 4). Then two line segments [a1, a2] and [a3, a4] intersect in their relative

interiors at some point a5 not belonging to A. Hence the set A does not have an

internally intersecting skeleton. �
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Fig. 3: Point a1 lies in the forbidden

domain F (a5, [a3, a4]).

Fig. 4: Point a5 /∈ A of intersection

of segments [a1, a2] and [a3, a4].

The following theorem characterizes more precisely the sets with an internally

intersecting skeleton.

Theorem 3.2. A finite set A ⊂ R2 has an internally intersecting skeleton if and

only if there exists a straight line l such that one of the following conditions holds

true:

(a) The set A is contained in l.

(b) The set A \ l is a singleton.

(c) We have A \ l = {a, a′}, points a, a′ lie on the opposite sides of the line l and the

point of intersection of l and the line aa′ belongs to A.

(d) We have A \ l = {a, a′}, points a, a′ lie on the opposite sides of the line l then

the set A lies on one side of the line aa′.

(e) We have A = {a1, a2, . . . , a6}, a2, a3, a4 ∈ l, a3 ∈ [a2, a4], a1 ∈ [a3, a5] and

a2 ∈ [a1, a6].

The theorem states that a set A has an internally intersecting skeleton if and

only if one of the five following cases (see Figure 5) holds true. (a) The set A is

a set of collinear points. In particular, a singleton and a pair of points are sets of

collinear points. (b) The set A except one point is a set of collinear points. (c) The

set A except two points, let us say a and a′, is a subset of a straight line l and some

point of A lies between a and a′. Obviously, that point lies on the line l. (d) This

case is similar to (c). The difference is that no point of A lies between a and a′, but

all the set A lies on one side of the straight line aa′. (e) The set A has six points

a1, . . . , a6. Points a1, a2 and a3 are vertices of triangle ∆(a1, a2, a3) which contains

no other point of A. The point a4 lies on ray a2a3, a5 lies on ray a3a1 and a6 lies on

ray a1a2.

Proof. (⇐) It is easy to see, that the set described in the theorem has an internally

intersecting skeleton.

(⇒) We assume that the set A has an internally intersecting skeleton. We may also

assume that not all points of A are collinear. Let a1, a2, a3 ∈ A be vertices of a triangle

∆(a1, a2, a3) with the minimal surface among all triangles with vertices belonging to
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(a) (b)

(c) (d)

(e)

Fig. 5: Five possible structures of a set A.

A. It implies that in the triangle ∆(a1, a2, a3), inside and on its sides, there are no

other points of A. Otherwise, we could choose a triangle with smaller surface. From

Theorem 3.1 we know, that no point of A belongs to the forbidden domain of the

triangle ∆(a1, a2, a3).

Let us consider a case when neither straight line a1a2 nor a2a3, nor a1a3 contains

another point of A. If the set A contains only a1, a2 and a3 then we obtain the

situation from Figure 5b. Otherwise, let a4 ∈ A belong to one of vertically opposite

angles to the angles of the triangle ∆(a1, a2, a3) (see Figure 6a). Without loss of

generality we can assume, that a4 lies at the vertically opposite angle to the angle

]a1a3a2 and that no other point of A lying at this angle is closer to the line a1a2.

Notice, that neither the triangle ∆(a1, a3, a4) nor ∆(a2, a3, a4) contains other points

of A. Analysing union of all the forbidden domains of the triangles ∆(a1, a2, a3),

∆(a1, a3, a4) and ∆(a2, a3, a4) we see that other points of A may lie only on three



50 T. Stroiński

rays opposite to the ray a1a3, the ray a2a3 and the ray a4a3 (see Figure 6b).

However, by the case assumption only the ray opposite to the ray a4a3 may contain

points from A. This case leads us to the situation from Figure 5d.

(a) Point a4 ∈ A belongs to
the vertically opposite an-
gle to the angle ]a1a3a2.

(b) Three rays (dot-
ted) with initial points
a1, a2, a4.

Fig. 6: Neither straight line a1a2 nor a2a3, nor a1a3 contains another point of A.

Let us consider a complementary case when at least one of the lines a1a2, a2a3
or a1a3 contains some other point of A. Without loss of generality we can assume

that a4 ∈ line a2a3. We have two possibilities.

First, the line a2a3 contains more than three points of A.

Let a2, . . . , an ∈ A, n > 5 be all points of A lying on the line a2a3. Let ak, al ∈ A be

such that a2, . . . an lie between ak and al. If A = {a1, a2, . . . , an} then we obtain a

situation from Figure 5b. Otherwise, let an+1 ∈ A be a point, which is not belonging

to the line a2a3. The point an+1 does not belong to the union of forbidden domains

of all triangles ∆(a1, ai, aj), such that between ai and aj there is no points of A. If

the point an+1 lies on the line a1ai, i = 2, . . . , n, then we obtain the situation from

Figure 5c. Otherwise, the point an+1 lies at one of vertically opposite angles to the

angle ]a1alak or ]a1akal (see Figure 7). This case leads us to the situation from

Figure 5d.

Second, the line a2a3 contains exactly three points of A.

Without loss of generality we can assume that a3 ∈ [a2, a4]. If the set A contains no

other points, then we obtain the situation from Figure 5b. Otherwise, we have four

possibilities:

(1) The points a5 and a6 belong to the rays a3a1 and a1a2. This case is the situation

from Figure 5e. (2) The point a5 belongs to the line a1a3 and the point a6 does not

belong to the ray a1a2. This case leads us to the situation from Figure 5c, where

the line a1a3 is our line l. Then all other possible points of A belong to l. (3) We

have A = {a1, . . . , a5} and the point a5 lies on the line a1a2 or a1a4. Then we also

obtain the situation from Figure 5c and the line a2a3 is our line l. (4) We have
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Fig. 7: Point an+1 lies at one of vertically opposite angles to the angle ]a1alak.

A = {a1, . . . , a5} and the point a5 lies at the vertically opposite angle to the angle

]a1a2a3 or ]a1a4a3. This case leads us to the situation from Figure 5d. �

Having solved our planar problem we move to solve a similar spherical problem.

4. Spherical sets with internally intersecting skeleton

In this section our considerations are similar to those concerning the planar case. Let

G be a finite subset of a unit sphere S2 ⊂ R3. Let vectors g1, g2, g3 ∈ G be linearly

independent and let [g1, g2]S , [g1, g3]S , [g2, g3]S be great circle segments. The union of

these segments is a boundary of exactly two closed and simply-connected subsets of

the unit sphere. The smaller of these sets is called a spherical triangle ∆(g1, g2, g3)S .

The spherical triangle ∆(g1, g2, g3)S is the intersection of three spherical biangles

C1, C2, C3. Let a biangle C1 (see Figure 8) have vertices g1 and −g1, where −g1
is an antipodal point to g1 and let g2, g3 belong to the sides of the biangle C1. Let

biangles C2, C3 have respectively vertices g2, −g2 and g3, −g3. The interior of a set

(C1 ∪ C2 ∪ C3) \ (C1 ∩ C2 ∩ C3) (see Figure 9) is called the forbidden domain of

the triangle ∆(g1, g2, g3)S . In fact, the forbidden domain is a union of the interiors

of three spherical triangles ∆(−g1, g2, g3)S , ∆(g1,−g2, g3)S and ∆(g1, g2,−g3)S .

The set G ∨̂G =
⋃

g,g′∈G
g 6=−g′

[g, g′]S is called a spherical skeleton of G. Now,

we say that the set G has an internally intersecting skeleton if every point inter-

section of two great circle segments from the skeleton G ∨̂G is contained in the set G.

We formulate in the spherical situation a theorem analogous to Theorem 3.1.
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Fig. 8: Biangle C1.
Fig. 9: Forbidden domain of

∆(g1, g2, g3)S

Theorem 4.1. Let G be a finite subset of S2. The following conditions are equiva-

lent :

(i) The set G has an internally intersecting skeleton.

(ii) For any g1, g2, g3 ∈ G if the triangle ∆(g1, g2, g3)S contains no other point of G,

then the forbidden domain of this triangle contains no points of G.

Proof. (i)⇒ (ii) Let ∆(g1, g2, g3)S , g1, g2, g3 ∈ G be a triangle and let no other point

of G belong to the triangle. If a point g4 ∈ G lies in the forbidden domain of the

triangle then without loss of generality we can assume that g4 ∈ int ∆(g1, g2,−g3)S
(see Figure 10). Thus, by condition (i), a singleton {g5} = [g1, g2]S∩ [g3, g4]S is con-

tained in G. Then g5 ∈ [g1, g2]S ⊂ ∆(g1, g2, g3)S , which contradicts the assumption

of condition (ii).

Fig. 10: Point intersection

{g5} = [g1, g2]S ∩ [g3, g4]S .

Fig. 11: Point g4 belongs to forbidden

domain of the triangle ∆(g1, g2, g3)S .

(ii) ⇒ (i) Let us assume that the set G does not have an internally intersecting

skeleton. It implies that there exist four points g1, g2, g3, g4 ∈ G such that {h} =

[g1, g2]S ∩ [g3, g4]S , h /∈ G (see Figure 11). Since G is finite, we may assume that

the triangle ∆(g1, g2, g3)S does not contain any point of G other than its vertices.
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Then the point g4 belongs to the forbidden domain of the triangle ∆(g1, g2, g3)S ,

a contradiction. �

The next theorem is a spherical version of Theorem 3.2.

Theorem 4.2. A finite set G ⊂ S2 has an internally intersecting skeleton if and

only if there exists a great circle l such that one of the following conditions holds

true:

(a) The set G is contained in l.

(b) The set G \ l is a singleton.

(c) We have G \ l = {g, g′}, points g, g′ lie on the complementary hemispheres

determined by l and the point of intersection of l and the great circle segment [g, g′]S
belongs to G.

(c′) We have G \ l = {g, g′} and the points g and g′ are antipodal.

(d) We have G\l = {g, g′}, the points g and g′ lie on the complementary hemispheres

determined by l and G ∩ l is contained in some halfcircle which is disjointed with

the great circle segment [g, g′]S.

(e) We have G = {g1, g2, . . . , g6}, g2, g3, g4 ∈ l, g3 ∈ [g2, g4]S, g1 ∈ [g3, g5]S and

g2 ∈ [g1, g6]S.

The theorem states that the set G has an internally intersecting skeleton if and

only if one of the four following conditions holds true. (a) The set G is contained in

some great circle (see Figure 12a). In particular, a singleton and a pair of points

are sets contained in some great circle. (b) The set G, except one point, is contained

in some great circle (see Figure 12b). (c) All points of the set G except two points

belong to some great circle l and some point h of G lies between g and g′ (see Figure

12c). (c′) If g = −g′ then the great circle segment [g, g′]S does not exist, but Figure

12c well illustrates this case. (d) No point of G lies between g and g′, all other points

of the set G are contained in some half circle of l and this half circle does not contain

the point h of intersection of [g, g′]S and l (see Figure 12d). (e) The set G has six

points g1, . . . , g6. Points g1, g2 and g3 are vertices of spherical triangle ∆(g1, g2, g3)S
which contains no other point of G. The point g4 lies on the great circle segment

[g3,−g2]S , g5 lies on the great circle segment [g1,−g3]S and g6 lies on the great circle

segment [g2,−g1]S (see Figure 12e).

Proof. (⇐) It is easy to see, that a skeleton of a set contained in a great circle is

contained in this circle. If we add to this set one or two points in the way described

by the theorem then, obviously, the set has an internally intersecting skeleton.

(⇒) We assume that the set G has an internally intersecting skeleton. We may

also assume that not all points of G belong to some great circle. Let ∆(g1, g2, g3)S ,

g1, g2, g3 ∈ G be a spherical triangle with minimal surface among all spherical tri-

angles with vertices belonging to G. It implies that the closed triangle ∆(g1, g2, g3)S
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(a) (b)

(c) (d) (e)

Fig. 12: Five possible structures of the set G.

contains no other points of G. By Theorem 4.1, no point of G belongs to the forbidden

domain of the triangle ∆(g1, g2, g3)S .

(I) Let us consider a case when no one of the great circles g1g2, g2g3, g1g3 contains

another point of G. If the set G = {g1, g2, g3} then we obtain the situation from

Figure 12b. Otherwise, g4 ∈ int ∆(g3,−g1,−g2)S ∪ int ∆(g2,−g1,−g3)S ∪
∪ int ∆(g1,−g2,−g3)S ∪ int ∆(−g1,−g2,−g3)S .

(IA) Let g4 ∈ int ∆(g3,−g1,−g2)S . We can choose g4 in such a way that the

triangle ∆(g1, g2, g4)S , which contains the triangle ∆(g1, g2, g3)S , does not contain

points of G other than g1, g2, g3, g4. Notice, that none of the triangles ∆(g1, g2, g4)S ,

∆(g1, g3, g4)S and ∆(g2, g3, g4)S contains points of G other than the vertices. The

union of all forbidden domains of the triangles ∆(g1, g2, g3)S , ∆(g1, g3, g4)S and

∆(g2, g3, g4)S contains all the exterior of the triangle ∆(g1, g2, g4)S except three

great circle segments [g1,−g3]S , [g2,−g3]S and [g4,−g3]S . The great circle segments

[g1,−g3]S and [g2,−g3]S are subsets of the great circles g1g3 and g2g3, respectively.

Only the segment [g4,−g3]S may contain other points from G. This case leads us

to the situation from Figure 12d. If g4 ∈ ∆(g1,−g2,−g3)S or ∆(g2,−g1,−g3)S we

obtain analogous cases.

(IB) No point of G belongs to the union

int ∆(g3,−g1,−g2)S ∪ int ∆(g2,−g1,−g3)S ∪ int ∆(g1,−g2,−g3)S and

g4 ∈ ∆(−g1,−g2,−g3)S . Since no triangle with vertices in G is contained in the
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antipodal triangle ∆(−g1,−g2,−g3)S then all points g4, . . . , gn of G belong to one

of three great semicircles [g1, g4]S ∪ [g4,−g1]S , [g2, g4]S ∪ [g4,−g2]S or [g3, g4]S ∪
[g4,−g3]S . This case leads us to the situation from Figure 12d.

(II) One of the great circles g1g2, g2g3 or g1g3 contains exactly three points of G.

Without loss of generality we can assume that g4 ∈ great circle g2g3. Since the great

circle g2g3 is divided by points g2, −g2, g3 and −g3 into four great circle segments

[g2, g3]S , [−g2, g3]S , [g2,−g3]S and [−g2,−g3]S , the following subcases depend on the

location of g4.

(IIA) Let g4 = −g2. If the set G has only four points then we obtain the situation

from Figure 12b. Otherwise, a point g5 ∈ G may belong to one of the following

subsets of the unit sphere.

(IIA1) Let g5 ∈ int ∆(g1,−g3, g4)S . The point intersection [g3, g5]S ∩ [g1, g4]S is

contained in the set G. This case leads us to the situation from Figure 12c where

the great circle g1g2 is our great circle l.

(IIA2) Let g5 ∈ ∆(−g1, g2, g3)S ∪ ∆(−g1,−g2,−g3)S (biangle with vertices g2
and −g2 = g4). The great circle g1g2 is our great circle l. If [g3, g5]S ∩ l ∈ G then we

obtain the situation from Figure 12c. Otherwise, this case leads us to the situation

from Figure 12d.

(IIA3) Let g5 ∈ great circle g1g3. This case leads us to the situation from Figure

12c. If the great circle g1g3 contains no other points of G then one of the great circle

g1g2 or g2g3 is our great circle l. Otherwise, the great circle g1g3 is our great circle l.

The situation g4 = −g3 is analogous to the situation of g4 = −g2.

(IIB) Let g4 ∈ relint [−g2, g3]S . The triangle ∆(g1, g3, g4)S contains no points

of G except its vertices. If the set G contains no other points, then we obtain the

situation from Figure 12b. Otherwise, we have the three following possibilities.

(IIB1) The points g5 and g6 belong to spherical great circle segments [g1,−g3]S
and [g2,−g1]S . Then cardinality |G| is equal to six and we obtain the situation from

Figure 12e.

(IIB2) The point g5 ∈ G belongs to the great circle g1g3. This case leads us to

the situation from Figure 12c, where the great circle g1g3 is our great circle l.

(IIB3) The point g5 lies on a great circle g1g2 or g1g4, then we also obtain the

situation from Figure 12c and the great circle g2g3 is our great circle l. In this case

the set G has exactly five points.

(IIB4) The point g5 lies in the triangle ∆(g4,−g1,−g3)S or triangle

∆(g2,−g1,−g3)S , but not on the great circle g1g3. This case leads us to the situation

from Figure 12d. Also in this case the set G has exactly five points.

The situation g4 ∈ relint [g2,−g3]S is analogous to the situation of

g4 ∈ relint [−g2, g3]S .

(IIC) Let g4 ∈ relint [−g2,−g3]S . If the set G contains no other points, then we

obtain the situation from Figure 12b. Otherwise, since G has internally intersecting
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skeleton, the points g5, . . . , gn, n = |G| belong to [g2,−g1]S , [g3,−g1]S or [g1, g4]S ∪
[g4,−g1]S . These cases are represented by Figure 12d, where l is, respectively, the

great circle g1g2, g1g3 or g1g4.

(III) The great circle g2g3 contains exactly four consecutive points g2, g3, g4, g5
and neither great circle g1g2 nor g1g3 contain exactly three points of G. These circles

may contain two, four or more points of G.

(IIIA) The skeleton of {g2, g3, g4, g5} is equal to the great circle g2g3.

(IIIA1) If g4 = −g2 and g5 = −g3 then the point g6 = −g1 belongs to G. Other

points of G may belong to one of thegreat circles g1g2 or g1g3. Hence we obtain the

situation from Figure 12c, where the great circle l is either great circle g1g2 or g1g3.

(IIIA2) If g4 = −g2 and g5 6= −g3 then the great circle g1g2 contains some point

g6 of G other than g1, g2 or g4. This case leads us to the situation from Figure 12c,

where a great circle g1g2 is a great circle l.

(IIIA3) If g4 6= −g2 and g5 = −g3 then we have a case analogous to the previous

one.

(IIIA4) Let g4 6= −g2 and g5 6= −g3. By H(l, g) denote the hemisphere which

contains g and has great circle l as a boundary. Analysing forbidden domains we

obtain that the hemisphere H(great circle g2g3, g1) has no other points of G. The

set G may contain no more points (situation from Figure 12b) or one more point

g6 which lies on the segment [g4,−g1]S or [g5,−g1]S (situation from Figure 12c).

(IIIB) The skeleton of {g2, g3, g4, g5} is a proper subset of the great circle g2g3.

(IIIB1) If the set G has only five points then we obtain the situation from Figure

12b.

(IIIB2) Let g6 belong to one of the great circle segments [g2,−g1]S , [g3,−g1]S ,

[g4,−g1]S or [g5,−g1]S . If g6 ∈ [g2,−g1]S or g6 ∈ [g3,−g1]S then the point g4 or g5
has to be equal to, respectively, −g3 or −g2. In either case, we obtain the situation

from Figure 12c.

(IIIB3) If g6 does not belong to the segments mentioned above then the intersec-

tion of the skeleton of {g2, g3, g4, g5} and the great circle segment [g1, g6]S is empty.

We obtain the situation from Figure 12d.

(IV) The great circle g2g3 contains consecutive points g2, g3, g4, . . . , gn, n > 5 of

G and neither great circle g1g2 nor g1g3 contains exactly three or four points of G.

Then the great circle g2g3 is our great circle l. If the set |G| = n then we obtain the

situation from Figure 12b. Otherwise, |G| > n and we have one of the following

subcases.

(IVA) The skeleton of {g2, g3, g4, . . . , gn} is equal to the great circle g2g3. Then

the point gn+1 belongs to one of great circle segments [gi,−g1]S , i = 4, . . . , n. This

case leads us to the situation from Figure 12c.

(IVB) The skeleton of {g2, g3, g4, . . . , gn} is a proper subset of the great circle

g2g3.
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(IVB1) If the point gn+1 belongs to one of great circle segments [gi,−g1]S , i =

4, . . . , n then we obtain the situation from Figure 12c.

(IVB2) If gn+1 does not belong to the segments mentioned above then the inter-

section of the skeleton of {g2, g3, g4, g5} and the great circle segment [g1, gn+1]S is

empty. We obtain the situation from Figure 12d. �

Theorem 4.2 fully characterizes finite subsets G of unit sphere such that a fam-

ily of general polyhedra with normal vectors belonging to G is closed with respect

to Minkowski addition. Now we are going to characterize, more precisely than in

Theorem 2.1, the set G such that the family BG(R3) of all bounded intersections of

half-spaces with normal vectors belonging to G is closed with respect to Minkowski

addition.

Theorem 4.3. The family BG(R3) of all bounded intersections of half-spaces with

normal vectors belonging to G is closed with respect to Minkowski addition if and

only if for the finite set G and some great circle l one of the following conditions

(compare with Theorem 4.2) holds true:

(c) We have G \ l = {g, g′}, points g, g′ lie on the complementary hemispheres de-

termined by l and the point of intersection of l and the great circle segment [g, g′]S
belongs to G. Moreover, G ∩ l is contained in no semicircle.

(c′) We have G \ l = {g, g′} and the points g and g′ are antipodal. Moreover, G ∩ l
is contained in no semicircle.

(d) We have G\l = {g, g′}, the points g and g′ lie on the complementary hemispheres

determined by l and G ∩ l is contained in some semicircle which is disjointed with

the great circle segment [g, g′]S. Moreover, no semicircle containing G ∩ l contains

the singleton l ∩ [g, g′]S.

(e) We have G = {g1, g2, . . . , g6}, g2, g3, g4 ∈ l, g3 ∈ [g2, g4]S, g1 ∈ [g3, g5]S and

g2 ∈ [g1, g6]S. Moreover, the spherical triangle ∆(g1, g2, g3)S is not contained in the

spherical triangle ∆(g4, g5, g6)S.

In the case (c) the points g, g′ are not antipodal. A polyhedron with the set

of normal vectors equal to G is a truncated prism (see Figure 13c), i.e. a prism

with nonparallel bases. The shortest of lateral faces must be a parallelogram. In the

case (c′) the points g, g′ are antipodal. A corresponding polyhedron is a prism (see

Figure 13c′), i.e. a direct sum of a convex polygon and a line segment. In the case

(d) the subset G ∩ l is contained in some semicircle. A corresponding polyhedron is

a wedge (see Figure 13d), i.e. a truncated polyhedron with nonparallel bases which

have a common edge. Moreover, no segment parallel to this edge and contained in

the polyhedron is longer than the edge. In the case (e) the set G is contained in

three semicircles. A corresponding polyhedron is a skew cube (see Figure 13e), i.e.

a polyhedron with six quadrilateral faces, exactly three of them being trapezoids.
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(c) (c′) (d) (e)

Fig. 13: Four types of polyhedra from Theorem 4.3.

Proof. By Theorem 2.1 the family BG(R3) is closed with respect to Minkowski addi-

tion if and only if G is a set described in Theorem 4.2 and the intersection of a family

of half-spaces determined by all normal vectors from G is bounded. Any polyhedron

with normal vectors from G is bounded if and only if G is contained in no closed

hemisphere. Then the cases from Figure 12a and 12b are not suitable. Moreover,

in the cases (c), (c′) and (d) from Theorem 4.2 the set G is contained in no closed

hemisphere if and only if the set (G∩ l)∪ ([g, g′]S ∩ l) is contained in no semicircle. In

the case (e) the set G is contained in no closed hemisphere if and only if the spherical

triangle ∆(g1, g2, g3)S is not contained in the spherical triangle ∆(g4, g5, g6)S . �

5. Conclusions

Monocrystals can be modeled with the help of convex polyhedra in three dimensional

space and the growth of monocrystals can be described using Minkowski addition

and subtraction (detailed description in [5], [11] and [13]). Since Minkowski addition

may lead to crystals with new faces and new normal vectors that do not belong to

a fixed set of normal vectors, Reinhold and Briesen [13] limit their considerations

to a family of homothetic copies of summands of a given polyhedron. In general it

means that the class of polyhedra which they study is almost never a family BG(R3).

Having a set G of normal vector such that the family BG(R3) is closed with respect

to Minkowski addition we avoid similar limitations. In Theorem 4.3 we found all such

sets G.

From [5] we know that a uniformly growing crystal is a function of time variable

t and can be expressed as A(t) = t−t1
t2−t1A(t2)−̇ t−t2

t2−t1A(t1), t > t2 where A(t1) and

A(t2) are polyhedra representing crystal at times t1 and t2. Since A−̇B =
⋂
b∈B

(A−b)

a growing crystal belonging to BG(R3) at time t2 stays within the family of BG(R3)

afterward. In fact any change of a crystal with constant speed of growth (or recession)

of all its faces can be described by A(t) = A(0) + tB−̇tC where the pair (B,C) is

inclusion minimal [3, 4]. However, the sets B and C do not have to belong BG(R3).
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We believe it would be profitable to find out whether minimal pairs exist within

BG(R3).

We discovered that appropriate sets G (see Theorem 4.3) coincide with sets of nor-

mal vectors of monotypic polytopes (see (37) and (38) in [9]). A monotypic polytope

is such a convex polyhedron that the intersection of two translates of this polyhe-

dron is a homothetic copy of summand of it. As we see the only centrally symmetric

monotypic polytopes are prisms with centrally symmetric bases (see (36) in [9]) and

the only appropriate sets G such that elements of BG(R3) are centrally symmetric,

are represented by Figure (c′). There exist crystals that assume a shape of a prism.

In particular arfvedsonite Na3Fe2+4 Fe3+(Si8O22)(OH)2, aquamarine Be3Al2(SiO3)6,

tourmalines XY3Z6(T6O18)(BO3)3V3W (see [14]) and synthetic emeralds grown by

Richard Nacken (see [15]). In crystal of spodumene was found included tetrahedral

crystal – possibly pyrochlore (see Figure 41 in [14]). We noticed that some optic

crystals (e.g. synthetic quartz) are prisms. Moreover, we can see hexagonal prisms

in heterogeneous ice nucleation (see [8]).
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KLASY WIELOŚCIANÓW WYPUK LYCH ZAMKNIȨTE

ZE WZGLȨDU NA DODAWANIE MINKOWSKIEGO

S t r e s z c z e n i e
Powyższy artyku l dotyczy rozważań na temat klasy wielościanów wypuk lych, których

zbiór wektorów normalnych do ścian zawiera siȩ w zadanym, skończonym zbiorze wek-
torów G. Suma Minkowskiego A + B dwóch wielościanów może posiadać wektor normalny
do ściany, który nie jest wektorem normalnym żadnej ze ścian wielościanów A czy B,
sta̧d powyższa klasa może nie być zamkniȩta ze wzglȩdu na dodawanie Minkowskiego.
G lównym rezultatem artyku lu jest podanie warunków koniecznych i dostatecznych aby klasa
wielościanów wypuk lych o zadanym zbiorze wektorów normalnych do ścian by la zamkniȩta
ze wzglȩdu na dodawanie Minkowskiego.

S lowa kluczowe: stożek abstrakcyjny wielościanów wypuk lych, suma Minkowskiego, wzrost

kryszta lu, wielościan wypuk ly


