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Summary

We strengthen some estimations of the local and global  Lojasiewicz exponent for poly-

nomial mappings on closed semialgebraic sets obtained by K. Kurdyka, S. Spodzieja and

A. Szlachcińska in [4].
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1. Introduction

 Lojasiewicz inequalities are important tools in many different areas of mathematics

such as singularity theory, differential analysis or dynamical systems (for example [2],

[6], [9]). They first appeared in works of Hörmander in 1958 [3] and independently

in those of  Lojasiewicz in 1958 [7] and 1959 [8].They were used to prove Schwartz

hypothesis that a division of a distribution by a polynomial [3] and by real analytic

function [7] [8] is always possible. Estimates of the  Lojasiewicz exponent are nowa-

days widely used in real and complex algebraic geometry. Kudryka, Spodzieja and

Szlachcińska in [5] have given an estimate of the  Lojasiewicz exponent at a point for

a continuous semialgebraic mapping on a closed semialgebraic set and an estimate

of the  Lojasiewicz exponent at infinity for a polynomial mapping on a semialgebraic

set. In this paper we show that in case of a polynomial mapping, at a point or at

infinity, it is possible to obtain slightly stronger results than they have.

[61]
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2.  Lojasiewicz Exponent at a point

Let X ⊂ RN be a closed semialgebraic set and let F : X → Rm be a polynomial

mapping, such that 0 ∈ X and F (0) = 0. Then, there exist positive constants C, η, ε

such that the following  Lojasiewicz inequality holds (see [7]):

|F (x)| ≥ C dist(x, F−1(0) ∩X)η for x ∈ X, |x| < ε, (1)

where | · | is the Euclidean norm and dist(x,A) is the distance of a point x to the set

A, i.e. the lower bound of |x− a| for a ∈ A. By convention dist(x, ∅) = 1.

Definition 2.1. The infimum of the exponents η in (1) is called the  Lojasiewicz

exponent of F on the set X at 0 and is denoted by L0(F |X).

Each closed semialgebraic set X ⊂ RN has a decomposition

X = X1 ∪ · · · ∪Xk

into the union of closed basic semialgebraic sets

Xi = {x ∈ RN : gi,1(x) ≥ 0, . . . , gi,ri(x) ≥ 0, hi,1(x) = · · · = hi,li(x) = 0},

i = 1, . . . , k, where gi,1, . . . gi,ri , hi,1, . . . , hi,li ∈ R[x1, . . . , xN ] (see [1]). Assume that

ri is the smallest possible number of inequalities gi,j(x) > 0 in the definition of Xi for

i = 1, . . . , k. Denote by r(X) the minimum of max{r1, . . . , rk} over all decompositions

into unions of sets of X. Obviously r(X) = 0 means that X is an algebraic set. Denote

by κ(X) the minimum of the numbers

max{deg g1,1, . . . ,deg gk,rk ,deg h1,1, . . . ,deg hk,lk}

over all decompositions of X into the union of sets, provided ri ≤ r(X). By degF we

mean the maximum of the degrees of the components of the mapping F.

First aim of this paper is to prove the following theorem:

Theorem 2.2. Let X ⊂ RN be a closed semialgebraic set such that 0 ∈ X and let

F : X → Rm be a nonzero polynomial mapping such that F (0) = 0. Set r = r(X)

and d = max{κ(X),degF}. Then:

L0(F |X) ≤ d(6d− 3)N+r+m−1. (2)

In [5, Corollary 2.2] Kurdyka, Spodzieja and Szlachcińska proved that:

L0(F |X) ≤ d(6d− 3)N+R+m−1

with R = r(X) + r(graphF ). Actually in [5] there is no m in the inequality but this

should be considered a typographical error. Thus in our theorem we do improve their

estimation by using r = r(X) instead of R = r(X) + r(graphF ). For this paper, to

be self-contained and more clear, we will have to repeat some of the argumentation

from [5] for polynomial mappings on semialgebraic sets.

In the proof of Theorem 1 we will use the result obtained in [4, Corollary 8]

regarding  Lojasiewicz exponent in the case of two algebraic sets. Let X and Y be
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algebraic subsets of RM described by polynomials of degree not greater than d. Let

a ∈ RM . Then there exists a positive constant C such that:

dist(x,X) + dist(x, Y ) ≥ C dist(x,X ∩ Y )d(6d−3)
M−1

(KS1)

in a neighbourhood U ⊂ RM of a. We will also use another result from [4, Corollary

6]. For a real polynomial mapping F : RN → Rm such that d = degF we have

L0(F ) ≤ d(6d− 3)M−1. (KS2)

Proof of Theorem 1. If d = 1 then the statement is obvious. Let us assume that

d ≥ 2. It suffices to consider the case when X is a basic semialgebraic set. The

set X was originally in RN but since we will operate in RN × Rm we need the set

X × {0} ⊂ RN × Rm. Not to overuse the notation from now on we will use X to

denote X × {0} ⊂ RN × Rm. So let:

X := {(x, z) ∈ RN × Rm : g1(x) ≥ 0, . . . , gr(X)(x) ≥ 0,

h1(x) = · · · = hl(x) = 0, z = 0}, (3)

Y := {(x, z) ∈ RN × Rm : g1(x) ≥ 0, . . . , gr(X)(x) ≥ 0,

h1(x) = · · · = hl(x) = 0, z = F (x)}.

Now, let us define a mapping G : RN × Rr → Rr by:

G(x, y1, . . . , yr) := {g1(x)− y21 , . . . , gr(x)− y2r},

and then sets:

A := {(x, z, y1, . . . , yr) ∈ RN × Rm × Rr :

G(x, y) = 0, h1(x) = · · · = hl(x) = 0, z = 0},

B := {(x, z, y1, . . . , yr) ∈ RN × Rm × Rr :

G(x, y) = 0, h1(x) = · · · = hl(x) = 0, z = F (X)}.

Then A and B are algebraic sets and π(A) = X,π(B) = Y , where

π : RN+m × Rr → RN+m, π(x, z, y1, . . . , yr) = (x, z).

From the definitions of A and B we obtain:

∀(x,0)∈X ∃z∈Rm ∃y∈Rr (x, 0, y) ∈ A ∧ (x, z, y) ∈ B. (4)

Since A and B are algebraic sets defined by polynomials of degree not greater than

d then by (KS1), for sets A,B there exists a positive constant C such that:

dist((x, 0, y), A) + dist((x, 0, y), B) ≥ C dist((x, 0, y), A ∩B)d(6d−3)
N+r+m−1

(5)

in some neighbourhood W of 0 ∈ RN+m+r. For any (x, z, y) ∈ RN+m+r we have:

dist((x, z, y), A ∩B) ≥ dist((x, z), X ∩ Y ). (6)
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We can now assume that gi,j(0) = 0 for any i, j. Indeed, if gi,j(0) < 0 for some

i, j then 0 /∈ X∩Y which contradicts the assumption. If gi,j(0) > 0 for some i, j then

it is safe to omit this inequality in the definition of X (and Y ) and the germ of 0 at

X or Y will not change. If gi,j(0) > 0 for any i, j, then we can reduce our assertion

to (KS2). So, there exists a neighbourhood V = V1 × V2 ⊂W of 0 ∈ RN+m+r where

V1 ⊂ RN+m and V2 ⊂ Rr such that:

∀(x,0,y)∈A: (x,0)∈RN+m, y∈Rr (x, 0) ∈ X ∩ V1 ⇒ y ∈ V2, (7)

and

∀(x,z,y)∈B: (x,z)∈RN+m, y∈Rr (x, z) ∈ Y ∩ V1 ⇒ y ∈ V2. (8)

Note, that since A and B were defined by N + r identical coordinates x, y and

differ only in m of them z. This explains why in (7) and in (8) we were able to

consider the same neighbourhood V2 ⊂ Rr.
Since F is a continuous mapping there exist neighbourhoods U1 ⊂ RN and U2 ⊂

Rm of the origin such that U1×U2 ⊂ V1 and for every x ∈ U1 we have z = F (x) ∈ U2.

Then (U1 × U2) × V2 ⊂ W . Consider some x ∈ U1. By (4) there exist z ∈ Rm and

y ∈ Rr such that (x, 0, y) ∈ A and (x, z, y) ∈ B. Then, by (7) and (8) we see that

(x, 0, y) ∈ V . Let us observe that:

|F (x)| = |(x, 0)− (x, z)| = |(x, 0, y)− (x, z, y)| ≥ dist((x, 0, y), B).

Since (x, z, y) ∈ B, and (x, 0, y) ∈ A then, from the above:

|F (x)| ≥ dist((x, 0, y), A) + dist((x, 0, y), B).

Since A,B ∈ RN+m+r, by (5) and by (6), we obtain :

|F (x)| ≥ dist((x, 0, y), A) + dist((x, 0, y), B)

≥ C dist((x, 0, y), A ∩B)d(6d−3)
N+r+m−1

≥ C dist((x, 0), X ∩ Y )d(6d−3)
N+r+m−1

.

Since X ∩ Y = (F−1(0)× 0) we obtain the assertion. �

3. The  Lojasiewicz exponent at infinity

The second result of this paper concerns the global  Lojasiewicz inequality and the

 Lojasiewicz exponent of a polynomial mapping at infinity.

Definition 3.1. Assume that a closed semialgebraic set X ⊂ RN is unbounded. By

the  Lojasiewicz exponent at infinity of a polynomial mapping F : X → Rm we mean

the supremum of the exponents η in the following inequality:

|F (x)| ≥ C|x|η for x ∈ X, |x| ≥ c
for some positive constants C, c. We denote it by L∞(F |X). In case X = RN we call

this exponent the  Lojasiewicz exponent at infinity and denote it by L∞(F ).
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In [4, Corollary 10] it is proved, that for a polynomial mapping F = (f1, . . . , fm) :

RN → Rm of degree d of a real algebraic set X we have:

|F (x)| ≥ C

(
dist(x, F−1(0) ∩X)

1 + |x|2

)d(6d−3)M−1

for x ∈ RM . (KS3)

Using this, in [5, Corollary 3.4] it has been shown that for a polynomial mapping F

on a closed semialgebraic set X the following inequality holds:

|F (x)| ≥ C

(
dist(x, F−1(0) ∩X)

1 + |x|2

)d(6d−3)N+R−1

for x ∈ RN ,

where R = 2r(X). We are again going to show that this estimate can be improved

by substituting R with r = r(X) and also by adding m.

Theorem 3.2. Let F : X → Rm be a polynomial mapping, where X ⊂ RN is a

closed semialgebraic set. If D = max{2, κ(X)}, d = max{degF,D} and r = r(X)

then:

|F (x)| ≥ C

(
dist(x, F−1(0) ∩X)

1 + |x|D

)d(6d−3)N+r+m−1

for x ∈ RM . (9)

If additionally X is unbounded set and F−1(0) ∩X is a compact set, then:

L∞(F |X) ≥ −D
2
d(6d− 3)N+r+m−1. (10)

Proof of Theorem 2. Again we shall repeat the argumentation from [5]. Also, as in

the previous proof we will consider the set X × {0} ⊂ RN ×Rm defined by (3), and

denote it simply by X to avoid overuse of notation. Let H : RN+r+m → Rr+m+l be

a polynomial mapping defined by:

H(x, z, y) = (F (x, z), G(x, y), h1,1(x), . . . , h1,l(x)), x ∈ RN , z ∈ Rm, y ∈ Rr

with G being defined as in the previous proof. Then degH ≤ d. Let V = F−1(0)∩X
and Z = H−1(0). Obviously Z is an algebraic set. By (KS3) for some positive

constant C we have:

|H(x, z, y)| ≥ C

(
dist((x, z, y), Z)

1 + |(x, 0, y)|2

)d(6d−3)N+r+m−1

for (x, 0, y) ∈ RN × Rm × Rr. Obviously dist((x, z, y), Z) ≥ dist((x, z), V ) and thus:

|H(x, z, y)| ≥ C

(
dist((x, z), V )

1 + |(x, 0, y)|2

)d(6d−3)N+r+m−1

(11)

for (x, 0, y) ∈ RN × Rm × Rr. It is easy to observe that there exist constants C1 ≥
0, R1 ≥ 1 such that for (x, 0, y) ∈ A with |(x, 0, y)| ≥ R1 we have C1|y|2 ≤ |(x, 0)|D.

Since D ≥ 2, for a constant C2 > 0 we have |(x, 0, y)| ≤ C2|(x, 0)|D/2 for (x, 0, y) ∈
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A, |(x, 0, y)| ≥ R1. Hence, from (11) we obtain (9) for (x, 0) ∈ X, |(x, 0)| > R1.

Again, by diminishing C, if necessary, we obtain (9) for all (x, 0) ∈ X.

Now, let us prove the second assertion of Theorem 2. To do this, we will need

yet another result from [4], namely [Corollary 11]. The authors have shown that if

F = (f1, . . . , fm) : RN → Rm is a polynomial mapping of degree d ≥ 1, and F−1(0)

is a compact set then:

L∞(F ) ≥ −d(6d− 3)n−1. (KS3)

Since X is unbounded we may assume that so is A. Since V is compact, so is H−1(0).

By (KS3) we have L∞(H) ≥ −d(6d− 3)N+r+m−1, in particular, for some constants

C,R > 0,

|H(x, 0, y)| ≥ C|(x, 0, y)−d(6d−3)
N+r+m−1

for (x, 0, y) ∈ A, |(x, 0, y)| ≥ R.

Since |(x, 0, y)| ≤ C2|(x, 0)|D/2 for (x, 0, y) ∈ A, |(x, 0, y)| ≥ R1, then for some

constant C3 > 0:

|F (x, 0)| = |H(x, 0, y)| ≥ C3|x|−
D
2 d(6d−3)

N+r+m−1

for (x, 0, y) ∈ A, |(x, 0, y)| ≥ R

and also LR
∞(F |X) ≥ −D2 d(6d− 3)N+r+m−1, which ends the proof. �
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PEWNE SZACOWANIA WYK LADNIKA  LOJASIEWICZA DLA

ODWZOROWAŃ WIELOMIANOWYCH NA ZBIORACH

SEMIALGEBRAICZNYCH

S t r e s z c z e n i e
Nierówności  Lojasiewicza sa̧ ważnymi narzȩdziami w wielu ga lȩziach matematyki takich

jak teoria osobliwości, analiza różniczkowa czy uk lady dynamiczne (patrz na przyk lad [2],
[6], [9]). Po raz pierwszy pojawi ly siȩ w pracach Hörmandera w 1958 [3] i niezależnie w pra-
cach  Lojasiewicza w 1958 [7] i 1959 [8]. Zosta ly użyte do udowodnienia hipotezy Schwartz
że dzielenie dystrybucji przez wielomian [3] i przez rzeczywista̧ funkcjȩ analityczna̧ [7], [8]
jest zawsze możliwe. Oszacowania wyk ladnika  Lojasiewicza sa̧ szeroko używane w rzeczy-
wistej i zespolonej geometrii. K. Kudryka, S. Spodzieja i A. Szlachcińska w [5] podali osza-
cowanie wyk ladnika  Lojasiewicza w punkcie dla cia̧g lego odwzorowania semialgebraicznego
na semialgebraicznym zbiorze domkniȩtym i wyk ladnika  Lojasiewicza w nieskończoności
dla odwzorowania wielomianowego. W tej pracy wykazano, że w przypadku odwzorowania
wielomianowego, czy to w punkcie czy nieskończoności można uzyskać trochȩ dok ladniejsze
szacunki.

S lowa kluczowe: wyk ladnik  Lojasiewicza, zbiór semialgenraiczny, odwzorowanie semialge-

braiczne, odwzorowanie wielomianowe




