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Summary

The estimation of the heat transfer coefficient values for still air condition case is consid-

ered in this paper. The mentioned values are estimated using the analytical and numerical

methods. The numerical solutions have been obtained using the Newton-Raphson algo-

rithm, Levenberg-Marquardt algorithm and the conjugate gradient method. The obtained

results have been precisely discussed. Moreover, comparison of the evaluation time, number

of iterations and quality of solutions have been included. Apart from that, the accuracy of

yielded findings is also demonstrated.

Keywords and phrases: Newton-Raphson algorithm, Levenberg-Marquardt algorithm, con-

jugent gradient method, average heat transfer coefficient, thermal problems, air conditions,

compact thermal model

1. Introduction

The significant miniaturization of modern electronic structures and the meaningful

growth of the frequency of their operation have big influence on the increase of the

density of the power which is dissipated. Due to this fact the thermal management

and the modelling of modern integrated circuits and electronic devices are currently

one of the crucial issues in modern electronic designing, testing and using in daily life.

The mentioned miniaturization is the response to customers expectations related to

the utility, convenience, modernity and mobility of many useful electronic appliances.

Apart from that, customers require reliable operation of the devices which they use.

However, electronic equipment brakes down from time to time. Research has

shown that the major reason of that kind of appliances damages are caused by ther-

mal problems [1], [2]. Comparison of the main reasons of microelectronic systems

[101]
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malfunction is presented in Fig. 1. As it can be seen the most important factors

which have the biggest influence on the improper operation of electronic appliances

are temperature, vibrations, humidity and dust. It is clearly visible that the temper-

ature rise induced the 55% of the failures of the electronic systems. It means that

malfunctions caused by temperature reasons occur more often that the other failures

caused by the all other factors mentioned previously. Due to this fact the proper

estimation of the temperature rise in such kind of electronic devices is one of the

most significant development steps in modern electronic designing. Apart from that

such kind of analyses can be also useful for the modelling of heat distribution in

investigated structure as well as for the estimation of device operation conditions.

For example, they allow determining temperature dependences of the electronic ap-

pliances properties.

Fig. 1. Reasons of microelectronic systems malfunctions.

The parameter, which has the significant influence on the temperature distribu-

tion in the electronic structures is a heat transfer coefficient [3]. Determination of a

value of the heat transfer coefficient is very complicated and complex problem due

to the fact that the investigated coefficient value depends strongly on such factors

as surface temperature or its geometry [4].

The temperature rises are based on the experimental data prepared using a diode

made of silicon carbide. During the measurements, the mentioned diode was mounted
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Fig. 2. The cross-sectional view of the silicon carbide diode mounted in aluminum heat sink.

on an U-shaped heat sink with thick aluminum plate. The measurements have been

carried out in still air chamber. The schematic three-dimensional view of the de-

scribed heat sink with silicon carbide diode is presented in Fig. 2.

All dimensions of the diode and heat sink have been precisely measured and

their value are presented in Table 1. All measurements have been prepared in still

air conditions. The device has been heated as long as the thermal steady state has

been reached. After that, the temperature rises in the junction above the ambient

temperature have been calculated.

The main task in this paper is to determine a mathematical model of the heat

transfer coefficient which includes both the temperature rise values. The next sec-

tions of this paper include the following considerations. Firstly, the description of

the analytical and numerical methods, which have been employed in order to de-

termine the mathematical model describing the heat transfer coefficient values, are

presented in detail. Among the numerical methods, the Newton-Raphson algorithm,

the Levenberq-Marquardt algorithm and the conjugate gradient method have been

chosen. Secondly, the description of the simulations is demonstrated. Finally, the

simulation results are shown and carefully discussed.
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Table 1. Dimensions of the package.

Parameter name Parameter symbol Parameter value

Heat sink length L 25 mm

Heat sink width W 29 mm

Heat sink height H 12 mm

Heat sink area 4350 mm2

Heat sink volume 3500 mm2

Distance between fins in the mid-

dle part of the heat sink

D 12 mm

Thickness of the bottom part of

the heat sink

T 2.5 mm

Diode maximum length dl 15 mm

Diode width dw 10 mm

Diode maximum height dh 4.5 mm

2. Methodology

In order to obtain the heat transfer coefficient values based on measurements de-

scribed in the previous section, analytical and numerical methods have been pro-

posed. Firstly, values of the heat transfer coefficient have been determined analyt-

ically and numerically based on measurements described in the previous section of

this paper. Then, the dependences between the calculated heat transfer coefficient

values and temperature and air velocity values will be found numerically. Moreover,

the description of the chosen numerical methods will be demonstrated.

2.1. Analytical Determination of the Heat Transfer Coefficient

The first step in determination of the heat transfer coefficient value is to propose the

proper thermal model based on measurements results and structure used during the

measurement process. In this model two paths for the heat removing are considered.

The first one contains a heat sink, a heat slug, a semiconductor die and a heat

spreader. The generated heat is transferred into the ambient through the mentioned

heat sink. The second one consists of a semiconductor die, slim layer of the air and

a top part of the package. The proposed static thermal model is presented in Fig. 3

Explanation of the symbols presented in Fig. 3 are demonstrated in following Table

2.

In theoretical considerations, the heat removal paths containing the air layer

can be neglected due to the fact that the approximated thermal resistance of the

mentioned layer is huge. Moreover, the area of the surface of the top part of the
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Fig. 3. Equivalent RC thermal model.

Table 2. Parameters of equivalent RC thermal model.

Parameter Interpretation

RT Thermal resistances modelling the heat exchange with ambient

Ra Thermal resistance of heat conduction through the lid of the pack-

age

Rd Thermal resistance of the semiconductor die

RS Heat spreader resistance

Rc Thermal resistance of the heat diffusion through the heat slug to

the heat sink

RB Thermal resistances depend on the average heat transfer coef-

ficient value and the area of the surface exchanging heat with

ambient

Tj Temperature rise in the junction where the heat is generated

P Generated power

package is only a small percentage of the total surface area. However, in order to make

the analysis more detailed, both heat removal paths are taken into consideration.

Values of the thermal resistances related to the heat slug, the heat spreader, the

semiconductor die and the air are constant and they can be calculated according to

formula 1.

R =
d

k · S
. (1)

Symbols in the equation above have the meanings explained in Table 3.

However, the thermal resistances of the top and the bottom part of the package

depend on the value of the average heat transfer coefficient, so they vary for different

values of the mentioned coefficient. The mentioned thermal resistance values can be

estimated using the following dependence (2)
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Table 3. Parameters of thermal resistance formula.

Parameter Interpretation

R Thermal resistances

S Surface area

d Thickness of the analyzed layer

k Thermal condactivity of the material

R =
1

h · S
. (2)

The parameter h reflects the value of the heat transfer coefficient. Considering equa-

tion 2 and proposed static thermal model, it is possible to obtain the value of the

thermal resistance in junction Rj using the formula presented below:

Rj =
(Ra +RT (haverage)) · (Rd +RS +Rc +RB (haverage))

(Ra +RT (haverage)) + (Rd +RS +Rc +RB (haverage))
. (3)

Parameter haverage means the average heat transfer coefficient.

Assuming that ST , SB are respectively the top and the bottom surface area of

the package and that the constants A, B, C are described by expressions 4, 5, 6:

A = (ST · SB)
−1
, (4)

B = (ST )
−1 · (Rd +RS +Rc −Rj) + (SB)

−1 · (Ra −Rj) , (5)

C = Ra · (Rd +RS +Rc)−Rj · (Ra +Rd +RS +Rc) . (6)

and doing some algebraic transformations, the value of the average heat transfer

coefficient can be obtained analytically directly from equation 7 as its positive root.

A ·
(

1

haverage

)2

+B ·
(

1

haverage

)
+ C = 0. (7)

2.2. The Newton-Raphson Method

The Newton-Raphson method is numerical method which finds approximations of

the roots of the real-valued functions [5], [6]. Each successive approximation is better

than that one which has been found in the previous iteration. It means that in

each successive iteration it reflects the coordinates of the zero of a function more

accurately. In the classical Newton-Raphson method the following assumptions are

needed:
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• the function f and its first and second derivatives, f
′

and f
′′

respectively, are

continuous inside the interval [a, b], a, b ∈ R, a < b,

• the function f has exactly one root inside the interval [a, b],

• the starting point belongs to the interval [a, b],

• the value of the first derivative of the analyzed function f in the starting point

is not equal to zero,

• the first and the second derivatives of the analyzed function f do not change

their signs inside the interval [a, b],

• values of the analyzed function f in the left and in the right end of the interval

[a, b] have different signs, what means that f(a) · f(b) < 0.

The iterative formula used in the Newton-Raphson method is presented below:{
x0 = p, p ∈ R
xn+1 = xn − f(xn)

f ′ (xn)
, n ∈ N ∪ {0}. (8)

In order to obtain the simulation results, related to the heat transfer coefficient

values determination, an objective function f has to be defined. Thus, formulas

describing the equivalent thermal resistances RE1 and RE2 have been proposed and

presented below:

RE1 (haverage) =
1

haverage · ST
+

da
ka · Sa

, (9)

RE2 (haverage) =
dd

kd · Sd
+

ds
ks · Ss

+
dc

kc · Sc

1

haverage · SB
. (10)

New symbols, which have been used in equations above, have the meanings presented

in Table 4.

Then, the objective function f depended on the value of the variable h has been

formulated according to the following expression:

f (haverage) =

(
∆T − RE1 (haverage) ·RE2 (haverage)

RE1 (haverage) +RE2 (haverage)
· P
)2

. (11)

After that, the iterative Newton-Raphson formula can be used in order to heat

transfer coefficient determination. However, the simulation results will be presented

in the next chapter.

2.3. The Levenberg-Marquardt Method

The second numerical method, which can be helpful in the heat transfer coefficient

determination, is the Levenberq-Marquardt method [5], [6]. The presented algorithm

is called the Damped Least-Squares method. This method is usually employed to ob-

tain the solutions of non-linear problems, especially of the least squares problems.
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Table 4. Equivalent thermal resistance parameters interpretation.

Parameter Interpretation

da Thicknes of the air layer

ka Thermal conductivity of the air

Sa Surface of the air layer

dd Thicknes of the semiconductor die

kd Thermal conductivity of the semiconductor die

Sd Surface of the semiconductor die

ds Thicknes of the heat spreader

ks Thermal conductivity of the heat spreader

Ss Surface of the heat spreader

dc Thicknes of the heat slug

kc Thermal conductivity of the heat slug

Sc Surface of the heat slug

Moreover, the investigated Levenberq-Marquardt algorithm can be also used for fit-

ting of the least squares curves. The mentioned algorithm can find the local minimum

only. The valuable feature of the Levenberq-Marquardt algorithm is its robustness.

It is reflected in solution finding even in the case of the ill-conditioned problems.

It is assumed that the set of the empirical data (X,Y ) is known. Both X and

Y are the vectors consisting of n elements, n ∈ N \ {0}. Thus, X = {x1, . . . , xn}
and Y = {y1, . . . , yn}. The main task is to find the fitting ŷ = f (x | (p1, . . . , pm)),

m ∈ N\{0}. It is also assumed that the best fitting minimizes the following functional:

fit (p1, . . . , pm) =

n∑
i=1

(yi − f (xi | (p1, . . . , pm)))
2
. (12)

In general case, the Levenberq-Marquard algorithm can find the solution of non-

linear optimization problem. Thus, it can be written in the following form:

F (s1, . . . , sn) =
1

2

m∑
i=1

d2i (s1, . . . , sn) , m ≤ n. (13)

Assuming that s = (s1, . . . , sn), the functional F can be minimized using the formula

presented below:

sn+1 ≈ sn −
(
∇2F (sn) +

1

λ
· I
)−1

· (∇F (sn)) , n ∈ N \ {0} (14)
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The parameter λ, λ > 0, is called the damping factor and it is adjusted in every

iteration. The symbol I means the identity matrix. In the case when the parameter

λ is large, the problem can be approximated using the following quadratic form:

sn+1 ≈ sn −
(
∇2F (sn)

)−1 · (∇F (sn)) . (15)

On the other hand, in the case when the value of the parameter λ is close to zero,

the problem of the minimization of the functional F can be solved using the steepest

descent method. The mentioned method can be described according to the following

formula:

sn+1 ≈ sn − λ · (∇F (sn)) . (16)

For the heat transfer coefficient determination problem, the presented previously

function f , which has to be fitted, is formulated as follows:

f (haverage) =

(
1

haverage·ST
+ da

ka·Sa

)
·
(

dd

kd·Sd
+ ds

ks·Ss
+ dc

kc·Sc
+ 1

haverage·SB

)
(

1
haverage·ST

+ da

ka·Sa

)
+
(

dd

kd·Sd
+ ds

ks·Ss
+ dc

kc·Sc
+ 1

haverage·SB

) · P.
(17)

Similarly, to the previous algorithm, the simulation results related to determina-

tion of heat transfer coefficient value will be demonstrated in the next chapter.

2.4. The Conjugate Gradient Method

The conjugate gradient algorithm is the numerical method for solving some kinds

of linear equations systems [5], [6]. The investigated method allows finding solutions

of these systems of equations whose matrices are positively defined and symmetric.

The conjugate gradient method is the iterative method and it can be used to find

solution of the optimization problem.

The description of the conjugate method can be presented in the following way.

Firstly, the proper system of linear equations has to be defined. It can be formulated

in the form presented below:

Mx = b. (18)

The symbol M represents the matrix of n rows and n columns which is positively

defined, symmetric and real-valued. The vector x = [x1, . . . , xn]T is the vector of

variables and symbol T means transposition. On the other hand, b = [b1, ·, bn]T is

the vector of intercepts. The solution of the presented system of equations is expressed

by x̂. Secondly, the conjugate vectors pk, where k denotes the number of iteration,

have to be selected. These vectors will be helpful in approximation of the solution

of systems of equations x̂. Then the start point xstart is chosen. In order to make
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the analyses easier, it is assumed that xstart = ([0, . . . , 0]1×n)
T

. The solution of x̂

minimizes the quadratic form presented below:

F (x) =
1

2
xTMx− bTx. (19)

After that, the residual in kth step resk is defined as:

resk = b−Mxk. (20)

It leads to formulate the expression described the conjugate vectors p in the next

iteration:

pk = resk −
∑
i<k

pTi Mresi
pTi Mpi

pi. (21)

It allows approximating the optimal location in the next iteration. This location can

be described using the formula below:

xk+1 = xk + λkpk, (22)

where

λk =
pTi resk−1
pTi Mpk

. (23)

In order to determine the heat transfer coefficient values, the presented conjugate

gradient method has to be adjusted. Firstly, a vector of measured values of the tem-

perature rise above the ambient temperature has to be constructed. Its construction

is presented in equation (24):

Y = [Y1, . . . , Yn]T . (24)

Parameter m means the number of measurements and Yi, i ∈ {1, . . . , n}, is the

temperature rise measured in the ith measurement. Then, a vector of unknown pa-

rameters has been defined:

P = [h1, . . . , hm]T , n ≥ m. (25)

Considering the problem presented in this paper, it can be assumed that n = m,

because number of unknown parameters is related to the number of measurements.

Moreover, only one value of the heat transfer coefficient is appropriate to the one

measurement. Thus, in further analysis, the vector P will be equivalently written as

h = [h1, . . . , hn]T . Therefore, the objective function can be written in the following

form:
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S (h) =

n∑
i=1

[Yi − Ti (hi)]
T . (26)

Vector T (h) = [T (h1) , . . . , T (hn)]T is the vector of estimated temperatures de-

pended on the values of the unknown parameters. The next step is related to the

sensitivity matrix J (h) determination according to the following expression:

J (h) =

[
∂TT (h)

∂h

]T
=


∂T1

∂h1

∂T1

∂h2

∂T1

∂h3
. . . ∂T1

∂hn
∂T2

∂h1

∂T2

∂h2

∂T2

∂h3
. . . ∂T2

∂hn

...
...

...
...

∂Tn

∂h1

∂Tn

∂h2

∂Tn

∂h3
. . . ∂Tn

∂hn

 . (27)

Thus, the gradient of the objective function S is calculated and the possible local

minimum is found as follows:

−2JT (h) [Y − T (h)] = 0. (28)

Therefore, the gradient direction ∇S (h) is obtained using the formula presented

below:

∇S (h) = −2JT (h) [Y − T (h)] . (29)

It means that the jth component of the gradient direction can be determined as

follows:

[∇S (h)]j = −2

n∑
i=1

∂Ti
∂hj

[Yi − Ti (hi)] , j = 1, . . . , n. (30)

The conjugate coefficients in kth iteration γk are computed using the Polak-

Ribiere iterative formula presented below: γ0 = 0, k = 0

γk =

∑n
j=1

[
[∇S(hk)]

j
[∇S(hk)−∇S(hk−1)]

j

]
∑n

j=1[∇S(hk−1)]2j
, k ∈ N \ {0}

. (31)

Thus, the direction of the descent in kth iteration dk can be obtained using the

following expression:

dk = ∇S
(
hk
)

+ γkdk−1, k ∈ N \ {0}, (32)

where d0 is the gradient of the objective function calculated using equation (29).

Moreover, the step size in kth iteration βk has to be also computed:
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βk =

[
Jkdk

]T [
T
(
hk
)
− Y

]
[hkdk]

T
[hkdk]

, k ∈ N \ {0}. (33)

Then, the new estimation is calculated as follows:

hk+1 = hk − βkdk, k ∈ N \ {0}. (34)

The algorithm is stopped after fixed number of iterations or when the demanded

accuracy is obtained. The main simulation results will be demonstrated in the next

section.

3. Simulations and Results

This section includes description of the simulation process. Moreover, all simulations

results are presented in detail. All simulations are carried out in Matlab environ-

ment. The computational unit used during the simulations contains the four-cores

and eight-threads Intel R©CoreTM i7 CPU (2.5 GHz nominally, 3.5 GHz using turbo

mode), 16 GB RAM DDR3 memory and Microsoft Windows operating system. Apart

from that, all the algorithms use the sparse matrices implementation.

3.1. Simulation Description

During simulations the parameters values shown in Table 5 have been used. Moreover,

the measured values of the temperature of the junction Tj , temperature rise in the

junction 4T and the generated power P have been taken into consideration. These

values are demonstrated in Table 6. Simulations results are presented in the next

subsections.

Table 5. Parameters values used during simulations.

Parameter Value/Expression Parameter Value/Expression

ST 100.0000 mm2 SB 4350.0000 mm2

RT RT = 1
h·ST

RB RB = 1
h·SB

da 4.0000 mm ds 0.2600 mm

ka 0.1000 W
m·K ks 140.0000 W

m·K
Sa 5.1529 mm2 Ss 5.1529 mm2

Ra 77626.0000 K
W Rs 0.3604 K

W

dd 0.3865 mm dc 1.1250 mm

kd 220.0000 W
m·K kc 240.0000 W

m·K
Sd 5.1529 mm2 Sc 5.1529 mm2

Rd 0.3409 K
W Rc 0.9097 K

W
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Table 6. Measured values of the temperature and the generated power.

Number of Generated Junction Junction temp.

measurement Power P [W ] temp. Tj [K] rise 4T [K]

1. 0.099 23.3448 3.5448

2. 0.204 26.1331 6.3331

3. 0.312 29.0844 9.2844

4. 0.425 31.4849 11.6849

5. 0.542 34.2885 14.4885

6. 0.662 36.9479 17.1479

7. 0.786 40.0547 20.2547

8. 0.916 42.5716 22.7716

9. 1.049 45.8152 26.0152

10. 1.187 47.7529 27.9529

11. 1.331 50.3522 30.5522

12. 1.481 53.0508 33.2508

13. 1.635 55.7636 35.9636

14. 1.797 58.6007 38.8007

15. 1.967 61.9732 42.1732

16. 2.142 65.2134 45.4134

17. 2.327 68.4293 48.6293

18. 2.519 71.4793 51.6793

19. 2.717 74.1120 54.3120

20. 2.935 79.1753 59.3753

3.2. Simulation Results

All results demonstrated in this chapter have been obtained based on the parameters

values presented in subsection 3.1. The heat transfer coefficient values have been

obtained analytically using the method described in subsection 2.1. The simulation

results are plotted in Figure 4.

On the other hand, based on the Newton-Raphson method description presented

in subsection 2.2, and using the parameters values demonstrated in subsection 3.1,

the results plotted in Figure 5 have been yielded. Moreover, the start point h0 = 5

has been chosen. Then, the Levenberg-Marquardt method has been used in order to

receive the heat transfer coefficient values. The starting point h0 has been fixed and

its values is equal to 5. Considering the Levenberg-Marquardt method, presented in

subsection 2.3, the results demonstrated in Figure 6 have been received. Finally, the

simulation results, related to the conjugate gradient method, have been obtained.
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Fig. 4. Heat transfer coefficient values obtained for the analytical method.

Fig. 5. Heat transfer coefficient values obtained for the Newton-Raphson method.

They are demonstrated in Figure 7. Accordingly to the previous cases, the start

value of the heat transfer coefficient h0 has been equated to 5. Table 7 includes the

heat transfer coefficient values determined using all investigated methods.
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Fig. 6. Heat transfer coefficient values obtained for the Levenberg-Marquardt method.

Fig. 7. Heat transfer coefficient values obtained for the conjugate gradient method.

As it can be seen, the results obtained using all the mentioned methods are similar.

Moreover, results yielded using employed numerical methods coincide with these ones

which have been calculated analytically. Apart from that, the differences between the

heat transfer coefficient values obtained using the direct and numerical formulas are

irrelevant. This situation indicates that all the presented numerical methods are
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Table 7. Heat transfer coefficient values comparison.

Num. Junc. Estimated heat transfer coefficient values
[

W
m2·K

]
of temp. Analytical Newton- Levenberg- Conjugate

meas. rise [K] method -Raphson -Marquardt gradient

1. 3.5448 6.719518 6.719117 6.719518 6.718535

2. 6.3331 7.807035 7.806283 7.807035 7.806434

3. 9.2844 8.164184 8.164184 8.164184 8.164093

4. 11.6849 8.878489 8.878472 8.878489 8.878522

5. 14.4885 9.147993 9.147828 9.147993 9.148051

6. 17.1479 9.460037 9.460037 9.460037 9.459941

7. 20.2547 9.512457 9.512457 9.512457 9.512477

8. 22.7716 9.884705 9.884705 9.884705 9.884692

9. 26.0152 9.910199 9.910199 9.910199 9.910183

10. 27.9529 10.475383 10.475382 10.475383 10.475385

11. 30.5522 10.767441 10.767441 10.767441 10.767432

12. 33.2508 11.027259 11.027259 11.027259 11.027283

13. 35.9636 11.273734 11.273734 11.273734 11.273701

14. 38.8007 11.501820 11.501776 11.501820 11.501882

15. 42.1732 11.589751 11.589750 11.589751 11.589784

16. 45.4134 11.731151 11.731145 11.731151 11.731144

17. 48.6293 11.915853 11.915853 11.915853 11.915854

18. 51.6793 12.156714 12.156714 12.156714 12.156734

19. 54.3120 12.504787 12.504787 12.504787 12.504764

20. 59.3753 12.343296 12.343286 12.343296 12.343307

convergent and they can be used to heat transfer coefficient determination. It is very

important, especially in very big and complex heat transfer problems which cannot

be solved analytically.

It is also worth analysing which algorithm demands the lowest computational

power or which one estimates the heat transfer coefficient values in the shortest

time. Table 8 includes information about the number of iterations and times spent

for heat transfer coefficient values evaluations using each of the numerical algorithms

presented in this paper. As it can be seen, number of iterations is not related with the

time spent for heat transfer coefficient values determination. It is a result of the algo-

rithms specifications. The conjugate gradient method demands the lowest number of

iterations, however each loop contains a big number of multiplication and summation
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Table 8. Evaluation times and number of iterations of the algorithms.

Number Number of iterations of the algorithm

of Newton- Levenberg- Conjugate

measurement -Raphson -Marquardt gradient

1. 4 4

2. 3 4

3. 3 5

4. 3 5

5. 2 5

6. 3 5

7. 2 5

8. 3 5

9. 2 5

10. 3 5

11. 3 5

12. 3 5

13. 3 5

14. 2 6

15. 2 6

16. 2 6

17. 2 6

18. 3 6

19. 3 6

20. 2 6

Sum 53 105 37

Evaluated time [s] 5.838789 0.501296 22.451791

operations. Moreover, due to the fact that all the parameters are evaluated at the

same time, it is not possible to calculate the number of iterations demanded for eval-

uation each of them separately. On the other hand, the biggest number of iterations

has been received for the Levenberg-Marquardt method. However, the heat trans-

fer coefficient values have been calculated in the shortest time, because the smallest

number of summations and multiplications has been needed. It can be stated that for

the investigated heat transfer problem the Levenberg-Marquardt algorithm is char-

acterized by the lowest computational complexity among the presented numerical

algorithms.
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4. Conclusions

The analytical and numerical approaches to determination of the heat transfer co-

efficient are presented in this paper. Comparing the solutions obtained using differ-

ent numerical algorithms, it can be stated that the best method is the Levenberq-

Marquardt algorithm. The mentioned algorithm is characterized by the shortest eval-

uation time.

The estimation of the heat transfer coefficient is very important because its value

has a big influence on the temperature of every electronic device. This issue is also

significant for development of the newest electronic integrated circuits. Precise de-

termination of the temperature distribution in these structures is crucial for the

proper operation of the entire electronic systems. Moreover, it can help in further

optimization and can reduce a number of failures caused by thermal problems.

Acknowledgment

The presented research was supported by the Polish National Science Centre project

2013/11/B/ST7/01678.

References

[1] V. Maudgal, Computer-aided thermal analysis, Hybrid Circuit Technology, 19–21,

1991.

[2] M. Janicki, Inverse heat transfer problems in electronics, Zeszyty Naukowe nr 1110,

Rozprawy naukowe z. 418, Wydawnictwo Politechniki  Lódzkiej,  Lódź 2012, postdoc-
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NUMERYCZNE I ANALITYCZNE WYZNACZANIE PARAMETRÓW

KOMPAKTOWYCH MODELI TERMICZNYCH

S t r e s z c z e n i e
Niniejszy artyku l dotyczy estymacji wartości wspó lczynnika wymiany ciep la w przy-

padku naturalnych, niewymuszonych warunków ch lodzenia. Wartości ww. wspó lczynnika
szacowane sa̧ z wykorzystaniem metod analitycznych i numerycznych. Numeryczne
rozwia̧zanie opisywanego problemu zosta lo otrzymane przy użyciu algorytmu Newtona-
Raphsona, algorytmu Levenberga-Marquardta i metody gradientu sprzȩżonego. Uzyskane
wyniki zosta ly szczegó lowo omówione w artykule. Ponadto, artyku l zawiera również
porównanie czasu, liczby iteracji i dok ladności poszczególnych serii wyników.

S lowa kluczowe: algorytm Newtona-Raphsona, algorytm Levenberga-Marquardta, metoda

gradientu sprzȩżonego, średnia wartość wspó lczynnika wymiany ciep la, problemy termiczne,

warunki ch lodzenia, kompaktowy model termiczny




