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Summary

We consider topological and measure-theoretical approach to dynamical properties of a

solenoid. In general case there is no invariant measure for a solenoid, therefore one can not

say neither about a measure-theoretical entropy nor about a measure of maximal entropy of

a solenoid. Following R. Bowen, we define a homogeneous measure for a solenoid and study

its properties. We show that if a solenoid admits a homogeneous measure, the measure has

similar properties to measure of maximal entropy in classical dynamical systems.
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mogeneous measure

1. Introduction

In the late 1920s a solenoid was introduced to mathematics by L. Vietoris [26] as

inverse limit spaces over circle maps. It was an example of a continuum for which the

fundamental group, in the sense of Vietoris, depends on the base point. A solenoid can

be presented either in an abstract way as an inverse limits or in a geometric way as a

nested intersections of solid tori. For a given sequence of positive integers {kn}n∈N, a

solenoid can be described as the intersection of a sequence of tori {Tn}n∈N such that

Tn+1 is wrapped around inside Tn longitudinally kn times. Topological properties of

inverse limits on intervals are relatively good understood (see [14]).

The standard construction of a solenoid, presented by L. Vietoris [26], was gener-

alized and modified by C. McCord [20], R. Williams [29] and many other authors in

different contexts. In dynamical systems a solenoid was introduced by S. Smale [24] as

hyperbolic attractor of a diffeomorphism of a three-dimensional manifold. Solenoids

appeared in many branches of mathematics: in geometry, dynamical systems, theory

[21]



22 A. Bís and A. Namiecińska

of groups, continuum theory, foliations and so on.

For example, the inverse limit of a branched covering space mappings of Riemann

sphere admits an invariant subspace which is laminated by complex plane and admits

transverse invariant measure. The Riemann surface laminations were studied by D.

Sullivan [25], later by M. Lyubich and J. Minsky [18] and others.

In the paper we study a sequence f∞ = (fn : Xn → Xn−1)∞n=1 of continuous

epimorphisms of compact metric spaces Xn, called bonding maps. We assume that

all spaces Xn coincide with a compact metrizable space X. By solenoid determined

by f∞, we mean the inverse limit

X∞ = lim
←−

Xk = {(xk)∞k=0 : xk−1 = fk(xk)}.

Clearly, X∞ is a compact subset of the Hilbert cube ΠXk. A distance function

d∞ on X∞ is given by usual formula

d∞((xk), (uk)) =

∞∑
k=0

1

2k
dk(xk, uk).

Since X∞ is uniquely determined by f∞, we will often identify these two objects.

Solenoids are compact metrizable spaces that enjoy many pathological properties.

They are connected, but not locally connected or path connected. A solenoid is both

a metric space and a dynamical object of a complicated structure. Its complexity

yields from the dynamics of bonding maps and can be investigated from topological

or ergodic point of view.

Recall that the concept of entropy arose in physics in 19th centuary to decribe

the equilibria and the evolution of thermodynamics systems. In 1864 R. Clausius

used the word entropy in his book to describe quantity accompanying a change from

thermal to mechanical energy. Later, in 1877 L. Boltzmann introduced a concept

of entropy into the probabilistic setup of statistical mechanics and in 1932 J. von

Neumann generalized entropy to quantum mechanics.

C. Shannon [22] was the first who used this notion as the term in probability

and information theory to describe a measure of uncertainty and complexity of the

system, thus he provided foundations for information theory. Dynamical entropy in

dynamical systems was introduced in 1958 by A. Kolmogorov [16] and improved by

his student Y. Sinai [23], this mathematical notion is now known as Kolgomorov-Sinai

entropy.

Let X be a compact metric space and f : X → X be a continuous map or a

homeomorphism. The pair (X, f) is called a topological dynamical system. Topolog-

ical entropy is a main concept in topological dynamics, it is a nonnegative number

which measures disorder and complexity of the system (X, f). Positive entropy of the

dynamical system reflects its chaotic behaviour. For a more complete text on entropy

we refer to monographs [19], [11] and survey paper [15]. The classical topological en-

tropy of a single map was a very fruitful notion, therefore the concept of entropy
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was generalized to an action of algebraic structures (such as semigroups, groups and

pseudogroups) on topological spaces, and to geometric objects such as distributions,

laminations and foliations (see [27]). There are attempts (e.g. [17], [21]) to transfer

the notion of topological entropy to generalized topological and metric spaces in the

sense of Császár ([7], [8]).

In the paper we focus on dynamics of a solenoid. In general case there is no

invariant measure for a solenoid, therefore it is not clear how to define its measure-

theoretical entropy. Also, a notion of a measure of maximal entropy of a solenoid is

not defined.

R. Bowen [4] defined a notion of homogeneous measure for a classical dynamical

system determined by a continuous map f : X → X of a compact metric space

X. We modify Bowen’s ideas to introduce a notion of a homogeneous measure for

a solenoid and we provide examples of such measures. On the other hand a local

measure entropy, which was originally introduced by M. Brin and A. Katok [5] for

a dynamics of a single map, is also a powerful tool for investigations of dynamics of

solenoids.

In Theorem 4.6 we show that if a solenoid admits a homogeneous measure, then

its local measure entropy does not depend on a point of the solenoid. In Theorem 4.8

we prove that the topological entropy of a solenoid, with a homogeneous measure,

coincides with the local measure entropy. Moreover, we show that if a solenoid admits

a homogeneous measure, then this measure has similar properties to the measure of

maximal entropy in classical dynamical systems.

2. Measure-theoretical entropy and topological entropy of a
map

In mathematics, the study of a disrete dynamical system, determined by a continuous

map f : X → X of a compact metric space X, as a whole is primarily concerned

with the asymptotic behavior of such systems, that is how the system evolves after

repeated applications of f. Its complexity can be described by the topological entropy

htop(f) and the measure-theoretical entropy hµ(f) calculated with respect to an f-

invariant Borel probability measure µ. For convenience of the reader, we recall briefly

the basic definitions related to measure-theoretical entropy and topological entropy.

For more detailed introduction to dynamical systems we recommend [28].

2.1. Measure-theoretical entropy of a map

Let (X1, B1, µ1) and (X2, B2, µ2) be measure spaces. A map T : X1 → X2 is called

measurable if the preimage of any measurable set is measurable. A measurable trans-

formation T : X1 → X2 is measure preserving if µ1(T−1(A2)) = µ2(A2) for every

A2 ∈ B2.
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Assume now that f : X → X is a continuous map defined on a compact metric

space (X, d). The Krylov-Bogoliubov Theorem (see [28]) guarantees the existence

of a probability f-invariant measure µ defined on Borel σ-algebra generated by the

collection of open subsets of X. A partition of X is a finite family A = {A1, A2, ...An}
of pairwise disjoint measurable subsets of X such that A1 ∪ A2 ∪ ... ∪ An = X. For

partitions A and B of X we define the following partitions:

A ∨B = {Ai ∩Bj : Ai ∈ A and Bj ∈ B},

f−1(A) = {f−1(Ai) : Ai ∈ A},

A(n) = A ∨ f−1(A) ∨ ... ∨ f−(n−1)(A).

A measure entropy of a partition A of X with respect to the measure µ is defined by

Hµ(A) = −
∑
Ai∈A

µ(A) log(µ(A)).

It is known (for details see [28]) that for any partition A of X there exists a limit

Hµ(f,A) = lim
n→∞

1

n
Hµ(A(n)).

Definition 2.1. Kolmogorov-Sinai or measure-theoretical entropy of a measurable

map f : X → X with respect to an f-invariant measure µ is the quantity defined by

hµ(f) = sup{Hµ(f,A) : A is a partition of X}.

2.2. Topological entropy of a map

Topological entropy of a continuous map was first introduced in 1965 by R. Adler,

A. Konheim and M. McAndrew [1]. In metric spaces a different definition of entropy

was introduced by R. Bowen in 1971 in [2] and independently by E. Dinaburg in

1970 in [9]. Later R. Bowen [3] proved that both definitions are equivalent. Bowen’s

approach uses a notion of (n, ε)-separated points.

Again, let f : X → X be a continuous map defined on a compact metric space

(X, d). Following Bowen we say that a subset E ⊂ X is (n, ε)-separated (where n is

a positive integer and ε > 0) if the inequality

max{d(f i(x), f i(y)) : i = 0, 1, ..., n− 1} ≥ ε

holds for any distinct points x, y ∈ E. Since X is a compact space the cardinal-

ity card(A) of any (n, ε)-separated set A is finite. Let s(n, ε) = max{card(A) :

A is (n, ε)− separated subset of X}.

Definition 2.2. The topological entropy of a continuous map f : X → X defined on

a compact metric space (X, d) is defined as

htop(f) := lim
ε→0+

lim sup
n→∞

1

n
log s(n, ε).
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We recommend texbooks [28], [6] or [11] which treats properties of topological

and measure-theoretical entropies.

2.3. Variational Principle

Due to the Krilov-Bogoliubov Theorem for a continuous map f : X → X the set

M(f,X) of f-invariant Borel probability measures on X is not empty. The topological

entropy and measure-theoretical entropies of f are interrelated. The relation between

them is stated in the famous Variational Principle. One inequality in the Variational

principle was proved by E. Dinaburg [9], [10] and T. Goodman [12] the other by L.

Goodwyn [13].

Theorem 2.3 (Variational Principle). For a continuous map f : X → X defined

on a compact metric space (X, d)

htop(f) = sup{hµ(f) : µ ∈M(f,X)}

i.e., topological entropy equals the supremum of the Kolmogorov-Sinai entropies hµ(f)

of f, where µ ranges over the set M(f,X) all f-invariant Borel probability measures

on X.

Remark 2.4. If htop(f) = hµ(f) then the f-invariant measure µ is called the measure

of maximal entropy. In many cases a measure of maximal entropy exists.

3. Topological entropy of a solenoid

Let f∞ = (fn : Xn → Xn−1)∞n=1 be a sequence of continuous epimorphisms of

compact metric spaces Xn. We assume that all spaces Xn coincide with a compact

metrizable space X. Each space Xn is equipped with a metric dn. Recall that by

solenoid determined by f∞, we mean the inverse limit

X∞ = lim
←−

Xk = {(xk)∞k=0 : xk−1 = fk(xk)}.

In the case of a solenoid, which can be considered as a generalized dynamical

system, one can define its topological entropy. In general case there is no common

invariant measure and therefore it is not clear how to define a measure-theoretical en-

tropy of a solenoid. Following Bowen [2] we define a topological entropy of a solenoid

by (n, ε)-separated sets. For any positive integer n we define a new metric Dn on Xn

by

Dn(x, y) = max{di−1(fi ◦ fi+1 ◦ ... ◦ fn(x), fi ◦ fi+1 ◦ ... ◦ fn(y)) : i ∈ {1, ..., n}}

We say that a subset E ⊂ Xn is (n, ε)− separated if for any distinct points a1, a2 ∈ E
the inequality Dn(a1, a2) ≥ ε holds. Since (Xn, dn) is a compact metric space, then

any (n, ε)− separated set E is finite. Let

s(n, ε) := max{card(E) : E is (n, ε)− separated subset of Xn}.
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Definition 3.1. The quantity

htop(f∞) := lim
ε→0+

lim sup
n→∞

1

n
log s(n, ε)

is called the topological entropy of the solenoid f∞.

Remark The topological entropy of a solenoid also can be expressed in the

language of (n, ε)-spannings sets. A subset F ⊂ Xn is (n, ε)-spanning if for any

x ∈ Xn there exists f ∈ F such that Dn(x, f) < ε. Let

r(n, ε) := min{card(F ) : F is (n, ε)− spanning subset of Xn}.

Using standard arguments (e.g. [28]) we get an estimation

r(n, ε) ≤ s(n, ε) ≤ r(n, ε/2).

Consequently, passing to the suitable limits we obtain the equality

htop(f∞) = lim
ε→0+

lim sup
n→∞

1

n
log r(n, ε).

4. Homogeneous measures

In general case for a solenoid f∞ there exists no common fn- invariant measure,

for any n ∈ N. So, it is not clear how to define a measure-theoretical entropy of

f∞. If there exists a homogeneous measure a solenoid, then we are able to provide

estimation of topological entropy by local measure entropies calculated with respect

to this particular homogeneous measure.

The sequence of metrics Dn on Xn given by

Dn(x, y) := max{di−1(fi ◦ fi+1 ◦ ... ◦ fn(x), fi ◦ fi+1 ◦ ... ◦ fn(y)) : i ∈ {1, ..., n}}

determine a sequence of n-balls

Bn(x, r) :=

n⋂
i=1

(fi ◦ fi+1 ◦ ... ◦ fn)−1[Bdi−1(fi ◦ fi+1 ◦ ... ◦ fn(x), r)],

where Bdi(y, r) = {z ∈ Xi : di(z, y) < r} is a standard ball in (Xi, di) centered at y

and of radius r.

Definition 4.1. We say that a Borel measure µ on a metric space X is

f∞-homogeneous measure for a solenoid f∞ if:

(1) µ(K) <∞ for any compact K ⊂ X,

(2) there exists K0 ⊂ X with µ(K0) > 0 and

(3) for any ε > 0 there exist δ > 0 and c > 0 such that the inequality

µ(Bn(y, δ)) ≤ c · µ(Bn(x, ε))

holds for all n ∈ N and all x, y ∈ X.



Entropies for a solenoid 27

4.1. Examples of f∞-homogeneous measure

We provide two examples of homogeneous measures for solenoids.

Example 4.2. Choose a closed compact and oriented Riemannian manifold (M,d)

with volume form dV. Let (Xn, dn) = (M,d), for any n ∈ N, and f∞ = (fn : Xn →
Xn−1)∞n=1 be a sequence of isometries of M . The volume form induces a natural

measure µ on M :

µ(A) =

∫
A

1 · dV,

where A is a Borel subset of M. Notice that in this case

Bn(x, r) =

n⋂
i=1

(fi ◦ fi+1 ◦ ... ◦ fn)−1[Bdi−1
(fi ◦ fi+1 ◦ ... ◦ fn(x), r)] = Bd(x, r).

Since (Xn, dn) = (M,d) is compact space we get that for any ε > 0 the quantity

C(ε) =
sup{µ(Bn(z, ε)) : z ∈M}
inf{µ(Bn(z, ε)) : z ∈M}

=
sup{µ(Bd(z, ε)) : z ∈M}
inf{µ(Bd(z, ε)) : z ∈M}

<∞,

so for any 0 < δ < ε and arbitrary x, y ∈M we obtain

µ(Bn(y, δ)) ≤ C(ε) · µ(Bn(y, δ)).

Example 4.3. Let G be a compact topological group with a right invariant Haar

measure µ, then G admits a right invariant metric d. Fix an isomorphism (so a

homeomorphism and homomorphism) H : G → G of the topological group and

infinite sequence {gn}n∈N of elements of G. Define fi := Rgi ◦H, where Rgi(x) = x·gi
is a right multiplication for any x ∈ G. The sequence f∞ = {fn : Xn → Xn−1}n∈N,
where Xn = G, determines a solenoid.

Example 4.3 and the proof of Proposition 4.4 is based on Example 8 in [2], which

was written for a single map.

Proposition 4.4. The solenoid described in Example 4.3 admits a homogeneous

measure.

Proof. Let B(x, r) be a standard ball in G (with respect to metric d) and denote by

e the identity element of G.

First we claim that for for any x ∈ X and r > 0

f−1i [B(fi(x), r)] = H−1[B(e, r)] · x.

Indeed, for any x, y ∈ X and y1 = H−1(y) we get

H−1[y ·H(x)] = H−1[H(y1 · x)] = H−1(y) · x,

using the right invariance of metric d we obtain

f−1i [B(fi(x), r)] = H−1{R−1gi [B(H(x) · gi, r)]} = H−1[B(H(x), r)]
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and

H−1[B(H(x), r)] = H−1[B(H(x) ·H(e), r)] = H−1[B(H(e), r) ·H(x)] =

= H−1[B(H(e), r)] · x

which completes the proof of the first claim.

Our second claim is as follows: for any i ∈ N

(fi−1 ◦ fi)−1B(fi−1 ◦ fi(x), r) = H−2[B(e, r)] · x.

Indeed, due to the first claim we may write

(fi−1 ◦ fi)−1B(fi−1 ◦ fi(x), r) = (f−1i ◦ f−1i−1)B(fi−1(fi(x)), r) =

= f−1i {H
−1[B(e, r)] · fi(x)} = (H−1 ◦R−1gi ){H−1[B(e, r)] ·H(x) · gi} =

= H−1{H−1[B(e, r)] ·H(x)} = H−2[B(e, r)]x.

The proof of the second claim is done. By simple induction for any k ∈ N with k ≤ i
we arrive at the equality, which is our third claim

(fk ◦ fk+1 ◦ ... ◦ fi−1 ◦ fi)−1B(fk ◦ fk+1 ◦ ... ◦ fi−1 ◦ fi(x), r) =

= H−[(i−k)+1][B(e, r)] · x.

Now, using the third claim we are able to calculate the n-ball

Bn(x, r) =

n⋂
i=1

(fi ◦ fi+1 ◦ ... ◦ fn)−1[Bdi−1
(fi ◦ fi+1 ◦ ... ◦ fn(x), r)] =

=

n⋂
i=1

H−[(n−i)+1][B(e, r)] · x

Therefore, the right invariance of the Haar measure µ yields

µ[Bn(x, r)] = µ{
n⋂
i=1

H−[(n−i)+1][B(e, r)] · x} = µ{
n⋂
i=1

H−[(n−i)+1][B(e, r)]}.

So, for any x, y ∈ G we obtain equality µ[Bn(x, r)] = µ[Bn(y, r)], which completes

the proof. �

4.2. f∞-homogeneous measures and topological entropy

M.Brin and A.Katok [5] introduced a notation of the local measure entropy for a

single continuous map f : X → X. We adapt this notion of the local measure

entropy to a solenoid determined by f∞ = {fn : Xn → Xn−1}n∈N in the following

way:

Definition 4.5. For any x ∈ X and a Borel probability measure µ on X the quantity

hµf∞(x) = lim
ε→0

lim sup
n→∞

− 1

n
logµ(Bn(x, ε))
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is called a local upper µ-measure entropy at the point x, with respect to f∞, while

the quantity

hµ,f∞(x) = lim
ε→0

lim inf
n→∞

− 1

n
logµ(Bn(x, ε))

is called a local lower µ-measure entropy at the point x, with respect to f∞.

Theorem 4.6. If µ is a f∞-homogeneous measure on X, then the equalities

hµf∞(x) = hµf∞(y) and hµ,f∞(x) = hµ,f∞(y) hold for any x, y ∈ X.

Proof. By definition of a f∞-homogeneous measure, for ε > 0 there exist 0 <

δ(ε) < ε and c > 0 such that

µ(Bn(y, δ(ε))) ≤ c · µ(Bn(x, ε)).

Thus
1

n
logµ(Bn(y, δ(ε))) ≤ log(c)

n
+

1

n
logµ(Bn(x, ε)),

so

lim sup
n→∞

− 1

n
logµ(Bn(y, δ(ε))) ≥ lim sup

n→∞
− 1

n
logµ(Bn(x, ε))

and

lim inf
n→∞

− 1

n
logµ(Bn(y, δ(ε))) ≥ lim inf

n→∞
− 1

n
logµ(Bn(x, ε)).

Taking the limit as ε → 0 we arrive at hµf∞(y) ≥ hµf∞(x) and hµ,f∞(y) ≥ hµ,f∞(x).

Similarly, for ε′ > 0 there exist δ′(ε′) > 0 and c′ > 0 such that

µ(Bn(x, δ′(ε′))) ≤ c′ · µ(Bn(y, ε′)).

Applying the same arguments, we obtain the inequalities hµf∞(x) ≥ hµf∞(y) and

hµ,f∞(x) ≥ hµ,f∞(y), which completes the proof. �

Definition 4.7. If µ is a f∞-homogeneous measure on X, then the common value

of local upper measure entropies is denoted by hµf∞ .

Theorem 4.8. For a solenoid f∞ = {fn : Xn → Xn−1}∞n=1 admitting a f∞-

homogeneous measure µ on X, we have

htop(f∞) = hµf∞ .

Proof. Take an (n, ε)-separated subset E ⊂ X with maximal cardinality equal

to s(n, ε). Then

Bn(x, ε/2) ∩Bn(y, ε/2) = ∅,

for any distinct points x, y ∈ E. So

s(n, ε) · µ(Bn(x, ε/2)) ≤ µ(X).

The f∞-homogenity of the measure µ allows us to choose 0 < δ(ε) < ε/2 and c > 0

so that the inequality

µ(Bn(y, δ(ε))) ≤ c · µ(Bn(x, ε/2))



30 A. Bís and A. Namiecińska

holds for any n ∈ N and all x, y ∈ X. Thus

s(n, ε) · µ(Bn(y, δ(ε))) ≤ c · µ(X)

and

lim sup
n→∞

1

n
log s(n, ε) ≤ lim sup

n→∞
− 1

n
logµ(Bn(y, δ(ε))).

Taking the limit as ε→ 0 we obtain

htop(f∞) ≤ hµf∞(y) = hµf∞ .

Now take an (n, δ)-spanning subset F ⊂ X, with minimal cardinality equal to

r(n, δ). Notice that X ⊂
⋃
x∈F Bn(x, 2δ). Given ε > 0 choose 0 < δ(ε) < ε and c > 0

so that

µ(Bn(x, 2δ(ε))) ≤ c · µ(Bn(y, ε))

for all x, y ∈ X and n ∈ N. Then inequality

c · µ(Bn(y, ε)) · r(n, δ(ε)) ≥ µ(X) > 0

yields that

lim sup
n→∞

1

n
log r(n, δ(ε)) ≥ lim sup

n→∞
− 1

n
logµ(Bn(y, ε)).

Finally, as ε→ 0 we obtain

htop(f∞) ≥ hµf∞(y) = hµf∞ .

The proof is complete. �
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[29] R. F. Williams, Expanding attractors, Publ. Math. IHES 43 (1974), 169–203.

Faculty of Mathematics and Computer Science

University of  Lódź
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ENTROPIA TOPOLOGICZNA I MIARA JEDNORODNA

DLA SOLENOIDU

S t r e s z c z e n i e
Rozpatrujemy topologiczne i miarowe podej́scie do opisu dynamicznych w lasności sole-

noidu. W ogólnym przypadku solenoid nie posiada miary miezmienniczej, nie wiadomo jak
zdefiniować entropiȩ solenoidu wzglȩdem miary ani tym bardziej jego miarȩ o maksymal-
nej entropii. Uogólniamy definicje miary jednorodnej podanej przez R. Bowena dla po-
jedyńczego odwzorowania na przypadek solenoidu. Podajemy przyk lady miar jednorodnych
dla solenoidu i badamy ich w lasności.

S lowa kluczowe: entropia, lokalna entropia miarowa, solenoid, miara jednorodna


