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Summary

A mathematical model based on system of partial differential equations describing in-

hibition of tumor growth by GM-CSF treatment was created in [1]. It was assumed that

tumor is a spherical model, the injection regimen was not optimized. In this paper we as-

sume that tumor is a ball (but velocity vector ~v = [v1, v1]) so we can compare results with

[1]. Moreover we construct dual dynamic programming approach and formulate a sufficient

ε-optimality condition for the treatment.
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1. Introduction

In recent times many experiments concerning cancer treatment were conducted and

some mathematical models were created to numerically simulate tumor growth. Some

of these experiments measured the effect of inhibiting tumor growth by GM-CSF

treatment on mice with HIF-1α deficient or HIF-2α deficient macrophages (see e.g.

[2], [3], [4], [12], [13]). Basing on them a mathematical model consisting of a sys-

tem of partial differential equations was created and presented in the paper [1].

More precisely paper [1] contains a mathematical model of a tumor that includes

the interactions between live and dead tumor cells, macrophages, endothelial cells

and the cytokines, such as M-CSF, GM-CSF, VEGF, sVEGFR-1, MCP-1/CCL2,

and oxygen. The paper also includes the effects of HIF-1α and HIF-2α factors in

GM-CSF-treated and untreated tumor growth. The model is used to predict the

tumor volume growth under partial blocking of HIF-1α or stabilization of HIF-2α,

with injection of GM-CSF and to compare it with the growth without injection.

[33]
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For simplicity, in [1], the tumor is assumed to be a spheroid. The boundary of the

tumor moves with the velocity ~v in the direction of the normal. For this model the

sensitivity analysis was carried out with respect to the parameter list to choose the

most important of them. Numerical simulations for different parameters were pro-

ceeded using Matlab, results were compared to the experimental facts. The model

was used to examine the effect of different GM-CSF dosing regimens, degradation of

HIF-1α, and/or stabilization of HIF-2α on tumor reduction. In the paper [1] different

GM-CSF dosing protocols are compared but optimization problem is not considered

at all. Moreover no verification theorem was presented so the numerical simulations

do not guarantee that the calculated results (given in the form of figures) are really

proper approximate solutions at least from mathematical point of view.

The main aim of this paper is to extend the approach to the GM-CSF treatment

presented in [1]. In [1] tumor was assumed to be a spheroid and calculations were

conducted in R1 so only one velocity v was used and tumor size was calculated using

its radius. As a computational tool we are using FreeFem++, which demands at least

2 dimensions to build triangular finite element. For this reason we conduct calcula-

tions in R2 but assume that velocity vector ~v = [v1, v1] so results can be quite easy

compared with these presented in [1]. We don’t just repeat previous calculations.

Due to different tool and different approach to building new boundary actually we

construct different computational method so in a consequence results can be differ-

ent. Moreover first we formulate the problem of GM-CSF dosing protocols as optimal

control problem for simplified model, next basing on ideas presented in [6] we con-

struct dual dynamic programming methodology for created optimal control problem

and we formulate verification theorem for approximate minimum. Basing on this ver-

ification theorem we build a numerical algorithm looking for an approximate optimal

solution for treatment by GM-CSF. So we have the formulae which allows us to check

whether the calculated functions realize approximate optimal control problem with

given ε > 0. It means that we know that the calculated treatment of GM-CSF is

really ε−optimal accordingly to the mathematical model what is the most significant

development comparing to the [1].

1.1. Mathematical model

The mathematical model focuses on major cells such as live and dead tumor cells,

macrophages, endothelial cells (EC) and the cytokines including M-CSF, MCP-

1/CCL2, GM-CSF, VEGF, sVEGFR-1, as well as oxygen molecules. Two-phase

free boundary model was created where the tumor is modeled as a growing con-

tinuum Ω(t) with boundary ∂Ω(t), both evolved in time. The tumor region Ω(t)

is included in a fixed domain D ⊂ R2 where the region D \ Ω(t) represents the

healthy tissue. Live and dead tumor cells are assumed to be only in Ω(t) while

macrophages, endothelial cells, cytokines and oxygen molecules are assumed to be
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in both, tumor and healthy tissue; cytokines and oxygen molecules due to their size

can diffuse throughout the whole domain D. A macroscopic velocity field v exists

in Ω(t), while v = 0 in D \Ω(t). Following [1] we use below notations of densities for

defining cell species and cytokines in the system of ten equations.
Cells

c(r, t) live tumor cell density (cell/cm3)

b(r, t) dead tumor cell density (cell/cm3)

m(r, t) macrophage density (cell/cm3)

e(r, t) endothelial cell density (cell/cm3)

Cytokines

q(r, t) M-CSF (macrophage colony-stimulating factor)

density (g/cm3)

p(r, t) MCP-1/CCL2 (monocyte chemoattractant protein)

density (g/cm3)

g(r, t) GM-CSF (granulocyte-macrophage colony-stimulating factor)

density (g/cm3)

h(r, t) VEGF (vascular endothelial growth factor)

density (g/cm3)

s(r, t) sVEGFR-1 (soluble VEGF receptor-1) density (g/cm3)

Oxygen

w(r, t) density (g/cm3)
Due to FreeFem++ demands all equations must be written in their weak form.

For this reason we introduce test functions o1, ..., o11 where o1, o2,o11 are Sobolev

space functions H1(Ω(t)), while o3,. . . ,o10 are Sobolev space functions H1(D) and

t ∈ [1, T ], where T ∈ N.

Live tumor cells density is set up as∫
Ω(t)

∂c

∂t
o1dxdy +

∫
Ω(t)

5(c−→v )o1dxdy =

∫
Ω(t)

λ1(w)c(1− c

c∗
)o1dxdy

−
∫

Ω(t)

λ2(w)co1dxdy −
∫

Ω(t)

µcco1dxdy, (1)

where c* is the carrying capacity of the cells, proliferation and necrosis directly

depend on oxygen level thus these dependencies are described by piecewise linear

approximations

λ1(w) =


0 if w < wh,

λ1(w − wh)/(w0 − wh) if wh ≤ w ≤ w0,

λ1 if w > w0,

 ,

λ2(w) =


λ2 if w < wn,

λ2(wh − w)/(wh − wn) if wn ≤ w ≤ wh,

0 if w > wh,

 ,

where w0 is the normal oxygen level, while [0, wn] , (wn, wh] and (wh, wo] are oxygen
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levels in necrosis, extreme hypoxia and hypoxia, respectively.

The equation of dead tumor cells is written as∫
Ω(t)

∂b

∂t
o2dxdy +

∫
Ω(t)

5(b−→v )o2dxdy =

∫
Ω(t)

λ2(w)co2dxdy

+

∫
Ω(t)

µcco2dxdy −
∫

Ω(t)

µb

w

w0
mbo2dxdy. (2)

Two first terms of the right side (cells death due to necrosis and apoptosis) are

obtained from previous equation. The last term means clearing cells by macrophages.

The equation∫
D

∂m

∂t
o3dxdy +

∫
Ω(t)

5(m−→v )o3dxdy = −
∫
D

5(kpm5 p)o3dxdy

−
∫
D

5(kgm5 g)o3dxdy, (3)

describes macrophage density. Chemotactic coefficients kp and kg are assumed to be

constant.

The evolution equation for density of EC is∫
D

∂e

∂t
o4dxdy +

∫
Ω(t)

5(e−→v )o4dxdy = −
∫
D

5(khe5 h)o4dxdy. (4)

The chemotactic coefficient kh is assumed to be constant as well. Diffusion was

neglected in all above equations due to its not significant value.

The equation of M-CSF density is∫
D

∂q

∂t
o5dxdy +

∫
Ω(t)

5(q−→v )o5dxdy = −
∫
D

(Dq 5 q)5 o5dxdy

+

∫
Γ2

Dq

(
N.x

∂q

∂x
+N.y

∂q

∂y

)
o5dxdy + λ3

∫
Ω(t)

co5dxdy − µq

∫
D

qo5dxdy, (5)

where constant λ3 is a secretion rate of M-CSF by tumor cells, decay rate µq is also

constant.

The MCP-1/CCL2 is secreted by macrophages in a response to binding M-CSF

by receptors∫
D

∂p

∂t
o6dxdy +

∫
Ω(t)

5(p−→v )o6dxdy = −
∫
D

(Dp 5 p)5 o6dxdy

+

∫
Γ2

Dp

(
N.x

∂p

∂x
+N.y

∂p

∂y

)
o6dxdy+

∫
D

λ4(w)
q

q + q
0

mo6dxdy−
∫
D

µppo6dxdy,

(6)

decay rate µp is also constant. The second term of the right side of the equation

depends on oxygen level being piecewise linear function λ4 such as:
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λ4(w) =


0 if w < wn,

0.4λ4 if wn ≤ w ≤ wh,

λ4 if w > wh.

 .

The VEGF density is described with constant decay rate µh by∫
D

∂h

∂t
o7dxdy +

∫
Ω(t)

5(h−→v )o7dxdy = −
∫
D

(Dh 5 h)5 o7dxdy

+

∫
Γ2

Dp

(
N.x

∂h

∂x
+N.y

∂h

∂y

)
o7dxdy +

∫
Ω(t)

λ5(w)co7dxdy

+ θ1

∫
D

λ6(w)
q

q + q
0

mo7dxdy − µs

∫
D

sho7dxdy − µh

∫
D

ho7dxdy, (7)

where λ5(w) = λ5φ(w) and

Φ(w) =


0 if w < wn,

(w − wn)/(w∗ − wn) if wn ≤ w < w∗,

1− 0.7(w − w∗)/(w0 − w∗) if w∗ < w ≤ w0,

0.3 if w > w0,

,

where w∗ ∈ (wh, w0) refers to the threshold at which the hypoxic effect is maximal.

The equation for sVEGFR-1 density is∫
D

∂s

∂t
o8dxdy +

∫
Ω(t)

5(s−→v )o8dxdy = −
∫
D

(Ds 5 s)5 o8dxdy

+

∫
Γ2

Ds

(
N.x

∂s

∂x
+N.y

∂s

∂y

)
o8dxdy + θ2λ7

∫
D

g + vg0

g + g0
mo8dxdy

− µh

∫
D

sho8dxdy − µs

∫
D

so8dxdy, (8)

where coefficient θ2 equals 1 for normal mice whereas it is much smaller than 1 for

mice with HIF-2α deficient macrophages. Small factor v was added because nor-

mally macrophages secret relatively small amount of this cytokine. Coefficient g0 is

a saturation, the last term µs is a constant decay rate.

All main elements influencing oxygen level are described in∫
D

∂w

∂t
o9dxdy +

∫
Ω(t)

5(w−→v )o9dxdy = −
∫
D

(Dw 5 w)5 o9dxdy

+

∫
Γ2

Dw

(
N.x

∂w

∂x
+N.y

∂w

∂y

)
o9dxdy + λ8

∫
D

eo9dxdy

− λ9

∫
D

mwo9dxdy − λ10

∫
D

cwo9dxdy. (9)

Oxygen is diffused from the vascularate (first term of the right side) and delivered

by endothelial cells (second term of the right side), it is consumed by macrophages

(third term of the right side) and live tumor cells (fourth term of the right side) at

the same time.
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The last equation∫
D

∂g

∂t
o10dxdy +

∫
Ω(t)

5(g−→v )o10dxdy = −
∫
D

(Dg 5 g)5 o10dxdy

+

∫
Γ2

Dg

(
N.x

∂g

∂x
+N.y

∂g

∂y

)
o10dxdy +

∫
D

u(t)o10dxdy − µg

∫
D

go10dxdy, (10)

describes GM-CSF density. It depends mainly on injection (control) u(t), being pe-

riodic function. Decay rate µg is constant just like in case of previous equations.

We take that c + b + m + e = θ3c
∗, where θ3 represents the volume fraction

of the cells in the tumor. We initiate the tumor as a ball with radius R0 = 0, 625

mm what constitutes volume 1mm3 i.e. Ω(0) = B(0, R0) (ball with center at zero

and radius R0). We also set up following initial conditions: c(r, 0) = c0, b(r, 0) = 0,

if r ∈ Ω(0), m(r, 0) = m0, e(r, 0) = e0
1+e(5R0−r)/ε , w(r, 0) = w∗ + r̃2

L̃2
(w0 − w∗), if

r ∈ D, where ε > 0 is small, r̃ = ‖r‖, L̃ = volD and parameters c0,m0, e0, w0

are average densities of cells in tumor, macrophages, EC and oxygen in healthy

issue. All cytokines are assumed to have zero initial conditions: q(r, 0) = p(r, 0) =

s(r, 0) = h(r, 0) = g(r, 0) = 0, if r ∈ D. Zero flux boundary conditions are assumed as

boundary conditions for: q, p, s, h, g on ∂D, i.e. q = p = s = h = g = 0 if r ∈ ∂D and

w = w0 if r ∈ ∂D and t ∈ [0, T ]. In [1] the above model for simplicity is considered

to be a spherical model so D is a closed, fixed spherical domain with radius r = L

and Ω(t) is a spheroid with time-dependent radius r = R(t).

We assume that tumor is a two-dimensional ball during whole calculations. We

derive two vector components (v1 = v1) from the algebraic equation c+ b+m+ e =

θ3c
∗ and equations (1)-(4) and we get:

θ3c
∗∇ · [v1, v1] = λ1(w)c(1− c

c∗
)− µb

w

w0
mb

−5 · (kpm5 p)−5 · (kgm5 g)−5 · (khe5 h). (11)

And its weak form

θ3c
∗
∫

Ω(t)

[v1, v1]5o11dxdy =

∫
Ω(t)

λ1(w)c(1− c

c∗
)o11dxdy−

∫
Ω(t)

µb

w

w0
mbo11dxdy

−
∫

Ω(t)

5(kpm5p)o11dxdy−
∫

Ω(t)

5(kgm5g)o11dxdy−
∫

Ω(t)

5(khe5h)o11dxdy.

(12)

For simplicity let us denote by:

x the vector of ten variables x = (c, b,m, e, q, p, h, s, w, g) , by ∇ · (xv) = (∇ · (cv),

∇·(bv), ∇·(mv), ∇·(ev), ∇·(qv), ∇·(pv), ∇·(hv), ∇·(sv), ∇·(wv), ∇·(gv)), ∆x =

(0, 0, 0, 0, 5 · (Dq 5 q), 5 · (Dp 5 p), 5 · (Dh 5 h), 5 · (Ds 5 s), 5 · (Dw 5 w),

5·(Dg5g)) and by f(t, r, x, u) the vector consisting of right hand sides of the above

ten equations (1)-(10), having in mind that the function c in (5) and (7) equations
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is restricted only to the domain Ω(t), i.e.

f(t, r, x, u) = (f1(t, r, c), f2(t, r, b), f3(t, r,m), f4(t, r, e), f5(t, r, q),

f6(t, r, p), f7(t, r, h), f8(t, r, s), f9(t, r, w), f10(t, r, g, u))

and for equation (11) we denote

R = λ1(w)c(1− c

c∗
)− µb

w

w0
mb−5 · (kpm5 p)−5 · (kgm5 g)−5 · (khe5 h),

and we put R = (R1, R1), v = (v1, v1).

As we consider equations in weak form we also introduce vector of test functions

o = (o1, o2, o3, o4, o5, o6, o7, o8, o9, o10) and o11 where o1,o2,o11 ∈ H1(Ω(t)), while

o3,. . . ,o10 ∈ H1(D) and t ∈ [1, T ], where T ∈ N.

Then we can rewrite system of (1)-(11) equations as∫
D

(
∂x

∂t
o+∇ · (xv)o+ (5x5 o))dr −

∫
∂D

(5 · (x10))(o10)dr (13)

=

∫
D

f(t, r, x, u)odr, t ∈ [0, T ],

θ3c
∗
∫

Ω(t)

(v5 o11))dr =

∫
Ω(t)

(Ro11))dr, t ∈ [0, T ].

The cost functional for our control problem should minimize the quantity of

injection and minimize the tumor size. Thus our optimal control problem takes the

form: minimize the functional

J(x, u) =
1

I

∫ T

0

u(t)dt+

∫
Ω(T )

c(r, T )dr (14)

subject to (13) where u ∈ U = L∞(0, T ; [0, I]), I > 0.

We tell that a pair (x, u) is admissible if u ∈ U and there exists corresponding to

it solution x to (13) satisfying mentioned above initial and boundary conditions.

In [6] theory applied to the above control problem was presented for two- dimen-

sional space, with two independent velocity vectors. In the next section we present

the most important notions from mentioned dual dynamic programming theory to

derive verification theorem: sufficient ε-optimality conditions for approximate solu-

tion of problem (14)-(13). The aim of the verification theorem is to give conditions

formulated in terms of dual dynamic programming method which allow to verify

that the (uε, xε) is an approximate (ε-optimal) pair for J . We should keep in mind

that in general we are not able to solve (1)-(10) with described boundary conditions.

What is more we do not even know if that system has any solution at all. This is

one of the reasons why we use verification theorem. The approximate approach to

our optimal control problem allows us to create numerical algorithm ensuring con-

struction of ε-optimal pair so also building optimal control treatment resulting in
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minimizing tumor size. In the last subsection of section 4 we present several exam-

ples demonstrating the value of the algorithm - finding injection regime resulting in

tumor shrinking using relatively small quantity of drugs. Moreover we compare our

results with these presented in [1].

2. Dual Formulation of Control Problem

In this paper we present dual dynamic programming theory for the control problem

(14). Dual approach for dynamic programming was introduced and developed in

several papers ([5], [8], [9], [10], [11]) describing different optimal control problems.

In [6] that theory was applied to the our control problem but for two-dimensional

space, with two independent velocity vectors. We use this theory for simplified model.

In this section we present just main theory notions.

Using this approach we assume that we do not cope with a value function directly,

instead of it we use some auxiliary function defined in a dual set satisfying dual

dynamic equation. Then we derive sufficient optimality conditions for primal value

function. Thus, let introduce the definition of a dual set first. Let P ⊂ R14 be an open

set of the variables (t, r, p) = (t, r, y0, y), y ∈ R10, y0 ≤ 0, (t, r) ∈ Q = [0, T ] × D.

Denote by P its projection on the space of variables (y0, y). We shall also use the set

PΓ = {(t, r, p) : t ∈ (0, T ), r ∈ Γ = ∂D, (y0, y) ∈ P}, (15)

PΓ(t) = {(t, r, p) : t ∈ (0, T ), r ∈ Γ(t) = ∂Ω(t) (y0, y) ∈ P}. (16)

Denote by W 1:2(P ) the specific Sobolev space of functions of three variables (t, r, p)

having the first order weak or generalized derivative with respect to t, r and up to

the second order weak derivatives with respect to the variable p. Our notation for

the function space is used for the functions of time t and depending on the primal

variable x, and the dual variable p. The primal and dual variables are independent

and the functions in the space W 1:2(P ) have different properties with respect to t, r

and p. Let V (t, r, p) of W 1:2(P ) be an auxiliary function defined on P and satisfying

the following condition:

V (t, r, p) = y0Vy0(t, r, p) + yVy(t, r, p) = pVp(t, r, p), (17)

for (t, r, p) ∈ P . Vy0 , Vy and Vp denote the partial derivatives with respect to the dual

variables y0, y and p = (y0, y), respectively. Now, we denote by p(t, r), (t, r) ∈ Q, the

dual trajectory, while x(t, r), (t, r) ∈ Q mean the primal trajectory. Let us put

x(t, r, p) = −Vy(t, r, p), for (t, r, p) ∈ P. (18)

Using the function x it is possible to come back from the dual trajectories p(t, r) ly-

ing in P to the primal function x(t, r), (t, r) ∈ Q. Further, we delimit ourselves only

to these admissible trajectories x(·) for which exist functions p(t, r) = (y0, y(t, r)),
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(t, r, p(t, r)) ∈ P , y(·) ∈ H1(Q), y(T, r) = 0, (T ,r) ∈ Q, such that x(t, r) =

x(t, r, p(t, r)), for (t, r) ∈ Q. Thus, denote

Adx = {(x, u) ∈ Ad : there exist p(t, r) = (y0, y(t, r)),

y(·) ∈ H1(Q), y(T, r) = 0, (T, r) ∈ Q, (T, r, p(T, r)) ∈ P ,

(T, r) ∈ Q,ψ : R3 7→ R10, y(0, r) = ψ(r), (0, r, y0, ψ(r)) ∈ P , r ∈ D,
ψ(·) ∈ H1(Ω)− fixed, such that x(t, r) = x(t, r, p(t, r)), (t, r) ∈ Q}.

Actually, it means that we are going to study problem (14) in smaller set Adx de-

termined by the functions (18).

Next for any fixed ȳ0 < 0 we define a dual optimal value Sx,ȳ0

D for problem (14)

by the formula:

Sx,ȳ0

D = inf
(x,u)∈Adx

−ȳ0J(x, u). (19)

Each value S
x,y0

ε

εD satisfying inequality:

Sx,ȳ0

D ≤ S
x,y0

ε

εD ≤ Sx,ȳ0

D − εy0
ε

for any fixed y0
ε < 0 will be called dual ε-optimal value for problem (14).

The above means that we are looking for such control uε which will bring on the

state xε to give the number of tumor cells
∫

Ω(T )
cε(r, T )dr under sum of injections∫ T

0
uε(t)dt such a value that

J(xε, uε) ≤ J(x, u) + ε

for all (x, u) ∈ Adx. In order to prove the verification theorem we require that the

auxiliary function V (t, r, p) satisfies the second order partial differential inequality

of dual dynamic programming in a weak form with any fixed y0
ε < 0:

εy0
ε ≤ sup

u∈U
{〈 ∂
∂t
V (t, ·, p), v(t, ·)〉L2(D)

+〈5 · (V (t, ·, p)v)v(t, ·)〉L2(D) + 〈5V (t, ·, p),5v(t, ·)〉L2(D)

−
∫

Γ

(−Vy10
(t, r, p))(y10(t, r))v(t, r)dr

+〈yf(t, ·,−Vy(t, ·, p), u(t)), v(t, ·)〉L2(Ω)

+y0
ε〈u(t)v(t, ·)〉L2(D)} ≤ 0, t ∈ [0, T ], p ∈ P, (20)

for all v ∈ L2((0, T );H1(D)), with end and boundary conditions in below form:

Vy0(T, r, p) = −Vy1
(T, r, p), r ∈ Ω(T ), (T, r, p) ∈ P , (21)

Vy0(T, r, p) = 0, r ∈ D\Ω(T ), (T, r, p) ∈ P .

Vyi(t, r, p) = 0, i = 1, 2, 3, 4, 5, 6, 7, 8, 9, (t, r, p) ∈ PΓ, (22)
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where for v we assume v = (v1, v1) and

v1 = (λ1(Vy9
)Vy1

(1− Vy1

c∗
))− µb

Vy9

w0
Vy3

Vy2
−∇ · (kp(Vy3

)∇Vy6
)

−∇ · (kg(Vy3
)∇Vy10

)−∇ · (kh(Vy4
)∇Vy7

)

−kg(−Vy3)
∂(−Vy10)

∂r1
− kh(−Vy4)

∂(−Vy7)

∂r1
),

We have a relation between both systems having V we calculate x by formula

x(t, r) = −Vy(t, r, p(t, r)).

Define the set

P = {p(t, r) = (y0
ε , y(t, x)), (t, r) ∈ Q; (t, r, p(t, r)) ∈ P ,

y(·) ∈ H1(Q), exist (u, x) ∈ Adx, x(t, r) = −Vy(t, r, p(t, r)),

(t, r) ∈ Q, y(T, r) = 0, (T, r) ∈ Q}.

Having the above notions and inequality, in the next section we present main theorem

(formulated in [6]) so called verification theorem being in fact sufficient ε-optimality

conditions for our problem (14).

3. Sufficient ε-optimality conditions

In order to formulate verification theorem regarding ε -optimality conditions we

consider a solution V to dual dynamic programming inequality (20) and the set Adx
defined by −Vy. Thus, lets assume that we have any solution V ∈ W 1:2(P ) of (20)

with (22) satisfying (17). Next define xε(t, r, p) = −Vy(t, r, p) , (t, r, p) ∈ P and

denote

Adxε = {(x, u) ∈ Ad : there exist p(t, r) = (y0, y(t, r)),

y(·) ∈ H1(Q), y(T, r) = 0, (T, r) ∈ Q, (T, r, p(T, r)) ∈ P ,

(T, r) ∈ Q,ψ : R3 7→ R10, y(0, r) = ψ(r), (0, r, y0, ψ(r)) ∈ P , r ∈ D,
ψ(·) ∈ H1(D)− fixed, such that x(t, r) = xε(t, r, p(t, r)), (t, r) ∈ Q}.

Theorem 1 Let (xε, uε) ∈ Adxε and pε(t, r)= (y0
ε , yε(t, r)), yε(·) ∈ H1(Q),

pε ∈ P, yε(T, r) = 0, (T, r) ∈ Q, be a function such that xε(t, r) = −Vy(t, r, pε(t, r)),

(t, r) ∈ Q. Suppose that

εy0
ε ≤ 〈

∂

∂t
V (t, ·, pε(t, ·)), v(t, ·)〉L2(D) (23)

+ 〈5 · (V (t, ·, pε(t, ·))v), v(t, ·)〉L2(D) + 〈5V (t, ·, pε(t, ·)),5v(t, ·)〉L2(D)

− 〈−Vy10
(t, ·, pε)y10(t, ·), v(t, ·)〉L2(Γ)

+ 〈yε(t, ·)f(t, ·,−Vy(t, ·, pε(t, ·)), uε(t)), v(t, ·)〉L2(Ω) + y0
ε〈u(t)v(t, ·)〉L2(D)

Vy0(T, r, (y0
ε , yε(T, r))) = x1ε(r, T ), r ∈ Ω(T ).
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Then (xε, uε) is an optimal pair relative to all (x, u) ∈ Adxε .
Proof for above theorem can be found in [6]. From the proof we infer that knowing

the auxiliary function V satisfying (20 ) and (23) we can give the explicit formula

for optimal value of J in term of Vy0 and pε(0, x) = (y0
ε , ψ(0, x)) i.e. we have the

following

Corollary 1 Assume the same as in the above Theorem. Then optimal value of

the functional J is expressed as

−y0
εJ(xε, uε) = −y0

ε

∫
D

Vy0(0, r, y0
ε , ψ(r))dr.

4. Numerical algorithm

We use numerical algorithm presented in [6] based on verification theorem described

in previous section to calculate suboptimal pair (uε, xε) such that J satisfies

J(uε, xε) ≤ J(u, x) + ε for all (u, x) ∈ Adxε in fixed time T . Below we present the

algorithm ensuring that we find ε−optimal pair in finite number of steps.

Algorithm:

1. Fix ε > 0 and calculate auxiliary function V from (20 )-(22).

2. Form Adxε as a finite family of N pairs (u(·), x(·)) :

a) Define controls un, n = 1, . . . , N , in the interval [0, T ].

b) For each given un calculate xn, n = 1, . . . , N solving equations (1)-(10).

3. Find minimal value of J(un), n = 1, . . . , N and corresponding to it pair denote

by (û, x̂).

4. Assume y0
ε = −1 and determine ŷ(·) from the relation

x̂(t, r) = −Vy(t, r,−1, ŷ(t, r)).

5. For V and (û(·), ŷ(·)) check the inequalities (23)

a) If V and (û(·), ŷ(·)) satisfy (23) then (û(·), x̂(·) is an ε-optimal pair and

J(û, x̂) is an ε -optimal value.

b) If V and (û(·), ŷ(·)) do not satisfy (23) then go to 2.

4.1. Numerical calculations

In order to illustrate our numerical method and to compare results we use the same

values of parameters as in [1].
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Parameter Dimensionless value

µc 1.2

µb 2.4

µq 12

µp 5

µs 4.97

µs 29.7

µh 31.6

µh 89.3

µg 4

kp 0.006

kg, kh 0.001

Dp, Dq 2

Dh, Ds 1

Parameter Dimensionless value

Dw 20

Dg 3

λ3 57.6

λ4 960

λ5 272

λ6 915

λ7 543

λ8 30

λ9 28.11

λ10 72

θ3 0.9

c∗ 1.28

To make calculations we used FreeFem++-cs 14.3 package from the site

https://www.ljll.math.upmc.fr/lehyaric/ffcs/install.php (with implemented engine

FreeFem++ version 3.26-3). We used analogous algorithm as presented in [6]. The

crucial difference can be found in new boundary building. Thanks to the simplifi-

cation and using just one vector v no issues occurred when building new boundary.

Moreover program execution time decreased almost 10 times comparing to the full

two-dimensional model.

We implemented following steps:

1. Build meshes Th1, Th2 (with appropriate triangulation) in spaces

V h1, V h2 with boundaries Γ1 = ∂Ω(t) and Γ2 = ∂D

We build two meshes Th1, Th2. Mesh Th1(Ω(0)) representing a tumor is a circle

of radius r = 0, 625. Mesh Th2 representing the healthy tissue is a region D \ Ω(0).

In the Figure 1 we present triangular finite elements created by FreeFem++ in both

regions.

2. Choose several controls (injection regimes)

We examine below injection regimes. For each of them we go through the whole

algorithm.

• u(t) = 1 where t ∈ [0, 20];

• u(t) = 5 where t ∈ [0, 20];

• u(t) = 10 where t ∈ [0, 20];

• u(t) = 15 where t ∈ [0, 20];

• u(t) = 20 where t ∈ [0, 20];

• u(t) = 25 where t ∈ [0, 20];

• u(t) = 30 where t ∈ [0, 20];

• u(t) = 35 where t ∈ [0, 20];

• u(t) = 50 where t ∈ [0, 20];
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Fig. 1. Meshes Th1, Th2 in t=1 with triangulation.

• u(t) = 100 where t ∈ [0, 20];

• if t < 5 then u(t) = 100 else u(t) = 10 where t ∈ [0, 20];

• if t < 5 then u(t) = 200 else u(t) = 50 where t ∈ [0, 20];

• if t < 5 then u(t) = 50 else u(t) = 10 where t ∈ [0, 20];

• if t < 5 then u(t) = 20 else u(t) = 10 where t ∈ [0, 20];

• if cos(π ∗ t) < 0 then u(t) = 100 else u(t) = 1 where t ∈ [0, 20];

• if cos(π ∗ t) < 0 then u(t) = 10 else u(t) = 1 where t ∈ [0, 20];

• if cos(π ∗ t) < 0 then u(t) = 20 else u(t) = 0 where t ∈ [0, 20];

• if sin(π ∗ t) < 0 then u(t) = 10 else u(t) = 1 where t ∈ [0, 20];

• if sin(π ∗ t) < 0 then u(t) = 10 else u(t) = 0 where t ∈ [0, 20];

• if sin(π ∗ t) < 0 then u(t) = 20 else u(t) = 0 where t ∈ [0, 20].

3. Solve equations (1)-(11) with defined boundary and initial conditions

We set up the following initial conditions: c = b = m = e = q = p = s = h =

g = w = 1 if r ∈ D in numerical calculations. As boundary conditions we assume

zero flux boundary conditions for: q = p = s = h = g = 0 and w = w0 if r ∈ ∂D,

where w0 = 1. We consider a free boundary problem hence we assume no boundary

conditions on ∂Ω(t).

4. Find new boundary Γ1(t) = ∂Ω(t+ 1)

As boundary Γ1(t) is a circle we use its radius r to calculate its size in each

following time step. In each step t > 0 we calculate average velocity on the boundary

vbavg (by checking v1 values in each point of border Γ1(t)). New boundary Γ1(t+ 1)

is created by summing radius r and average velocity vbavg in current step t. Positive

vbavg value means tumor increase while negative value its shrinking.
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5. Build meshes Th1(t+ 1), Th2(t+ 1)

6. Repeat steps 2-5 in 20 time steps for each control

From all considered solutions we choose the optimal one using verification theorem

and algorithm described in previous section. Among all checked injection regimes the

one minimizing functional J (14) was u(t) = 10 where t ∈ [0, 20]. For this injection

functional value equals J = 2.1184. The verification theorem was fulfilled with ε

= 0.0009 so it means that we found ε−optimal state S
x,y0

ε

εD such that Sx,ȳ0

D ≤ S
x,y0

ε

εD ≤
Sx,ȳ0

D − εy0
ε . Figure 2 compares integral of c values (live tumor cells density) with

and without treatment. We can notice that tumor volume increase rapidly without

treatment while its growth is stopped by using chosen ε−optimal injection. In [1]

such a small dosage (10ng) was not presented, the smallest used in calculations was

25ng while the majority of calculations was conducted for 100ng. We also tested

dosage 100ng however this value was not optimal as tumor size was smaller on only

3% while total amount of used GM-CSF was bigger 10 times comparing to the chosen

dosage. For this reason we cannot compare exact values just results trends.

Fig. 2. Integral of c value with and without injection.

GM-CSF treatment has the major impact on tumor size but we cannot forget

about influence of HIF-1α and HIF-2α factors. In numerical calculations HIF-1α

deletion and HIF-2α deletion or stabilization are simulated by modification of θ1

and θ2 parameters values. Experimental data suggests that HIF-1α deficiency signif-

icantly reduces tumor growth by reducing VEGF production. Figure 3 shows integral

of c values including HIF-1α deletion.

We can notice that its deficiency additionally reduces tumor size (even without

GM-CSF treatment), what confirms both experimental and computational [1] data.

As tumor size modification observed in case of HIF-1α deletion is actually caused

by VEGF production reduction we should analyze its density as well. Figure 4

presents average VEGF densities including GM-CF treatment/or not and HIF-1α
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Fig. 3. Integral of c value with and without injection, including HIF-1α deletion.

Fig. 4. Average VEGF density. Comparison of values including GM-CSF and HIF-1α vari-
ability.

deletion/or not. Application of GM-CSF injection leads to VEGF density reduction.

This effect is additionally reinforced by HIF-1α deletion. HIF-1α deficiency signif-

icantly reduces VEGF production even without any injection. Similar results were

achieved in [1], just the difference in VEGF density under treatment and not was

higher, what can be caused by higher dose.

Experimental data suggests also that HIF-2α deletion significantly reduces the

production of sVEGFR-1, but has no effect on VEGF production. Figure 5 presents

average sVEGFR-1 density depending on treatment and HIF-1α or HIF-2α modifi-

cations. Just like in previous case in [1] we can find analogous results but with higher

differences in sVEGFR-1 density depending on using or not GM-CSF treatment.
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Fig. 5. Average sVEGFR-1 density. Comparison of values including GM-CSF and HIF-1α
variability.

5. Conclusions

We study mathematical model of tumor growth presented in [1] where model was

simplified to one-dimensional sphere. We use two-dimensional model but assume that

tumor shape is a ball so results can be easily compared. The main advantage of our

paper is that we formulate an optimal control problem to predict ε−optimal GM-CSF

treatment to reduce the tumor volume. To study the optimal control problem, we

developed approximate dual dynamic programming approach. Using this approach,

we formulate the verification theorem resulting in sufficient ε−optimal conditions

for the considered problem. That theorem was a basis to build numerical algorithm

calculating approximate minimum of the functional containing volume of the tumor

under chosen injection of GM-CSF (being the problem control). Using chosen set

of controls, we calculate corresponding states x and found minimal value of the

functional J for this set. For the suspected suboptimal pair (u, x) and corresponding

to its dual trajectory y we checked verification condition (29) with ε = 0.0009. The

inequality was fulfilled what means that for the injection u(t) = 10, t ∈ [0, 20] the

value of the functional J = 2.1184 and it differs from the optimal value on ε = 0.0009.

However, we should remember that received ε−optimal control doesn’t mean that the

tumor volume is the smallest among all checked injection regimens, it’s ε− optimal

including also drug usage. Drug dosage (100ng of GM-CSF) used in the majority

of numerical calculations in [1] also in our case cause higher tumor size decrease

than chosen injection (10ng). However, tumor size is smaller on only 3% while total

amount of used GM-CSF is bigger 10 times, so such dosage cannot be called the

optimal.
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Poland

E-mail: krawczyk@math.uni.lodz.pl



50 A. Krawczyk

Presented by Zbigniew Jakubowski at the Session of the Mathematical-Physical Com-
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HAMOWANIA WZROSTU GUZA NOWOTWOROWEGO

PRZY ZASTOSOWANIU LECZENIA GM-CSF,

WARUNKI WYSTARCZAJA̧CE ε-OPTYMALNOŚCI

W PRZESTRZENI JEDNOWYMIAROWEJ

S t r e s z c z e n i e
Rozważany w pracy matematyczny model rozwoju guza nowotworowego przy zastosowa-

niu leczenia GM-CSF zosta l zaczerpniȩty z [1]. Sk lada siȩ on z dzieciȩciu równań różniczko-
wych cza̧stkowych z których cztery pierwsze sa̧ nieliniowe pierwszego rzȩdu, a pozosta le
nieliniowe typu parabolicznego. W czȩści obliczeniowej [1] model teoretyczny sprowadzono
do jednowymiarowego modelu sferycznego. Dawkowanie zastrzyków GM-CSF nie zosta lo
zoptymalizowane. W niniejszym artykule zak ladamy, że guz jest kula̧, jednocześnie wektor
prȩdkoci steruja̧cy zmianami brzegu przyjmuje postać: ~v = [v1, v1], w zwia̧zku z czym
wyniki moga̧ być odnoszone do cytowanej pracy. Równanie opisuja̧ce wektor prȩdkości
zosta lo wyprowadzone z czterech pierwszych równań modelu oraz zależności algebraicznej.
W niniejszym artykule nie powtarzamy jednak tylko poprzednich obliczeń, ponieważ podob-
nie jak w [6] formu lujemy zadanie optymalizacji. Co wiȩcej, w oparciu o dualne programowa-
nie dynamiczne stosujemy ε - optymalne warunki wystarczaja̧ce dla zadania, a także wyko-
rzystujemy algorytm numeryczny zaproponowany w [6], stosuja̧c jednak wektor prȩdkości
odpowiedni do kuli reprezentuja̧cej guz. Obliczenia prezentowane w artykule dokonywane
by ly przy użyciu pakietu FreeFem++, w zwia̧zku z czym wszystkie równania zosta ly przed-
stawione w postaci wariacyjnej. Zmiany rozmiaru guza reprezentowane sa̧ poprzez zmiany
obszaru siatki elementw skończonych wygenerowanej w pakiecie.

S lowa kluczowe: matematyczny model rozwoju guza, hamowania wzrostu guza, warunki

wystarczaja̧ce ε-optymalności


