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Summary

Let f : C → C be a locally one-to-one, continuous function defined on a convex domain

C in the complex plain C. In this paper we study topological properties of the image f(B),

where B is a suitably chosen convex subset of C, to provide certain necessary and sufficient

condition for f to be globally one-to-one in C. In fact, the main result, can be seen as a

generalization of the well-known univalence criterion for analytic functions due to Noshiro

and Warschawski. We also obtain a sufficient condition for the univalence of a locally one-

to-one, continuous function defined on an arbitrary starlike domain in the complex plane

as a corollary of the main result.
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1. Introduction

Let D be a domain in the complex plane C and let f be a function mapping D into

C, f : D → C for short. It is clear that if f is one-to-one in D, then f is locally

one-to-one in D. If f is holomorphic in D, then f is locally one-to-one if and only

if f ′(z) 6= 0 for all z ∈ D. Still, even a holomorphic f that is locally one-to-one in

D does not have to be one-to-one in D. However, it was proved independently by

Noshiro [6] and Warschawski [10] (see also Wolff [11]) that a function f : D → C
holomorphic in a convex domain D ⊂ C is one-to-one in D provided Re f ′(z) > 0 for

all z ∈ D.

There were several attempts to generalize the Noshiro-Warchawski theorem. Tims

[9] proved that the theorem fails for every simply connected non-convex domain. Her-
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zog and Piranian [3] pointed out that although there exist (multiply connected)

non-convex domains for which the theorem holds they do not ”fall far short of

being convex”. The possibility of weakening the condition on the derivative was

also studied, see for example [2, 8]. One interesting result of this kind was given

by Janiec [4] who showed that if f is holomorphic in a convex domain D and

Re f ′(z) + ϕ(Im f(z)) Im f ′(z) > 0, z ∈ D for some continuous function ϕ : R → R,

then f is one-to-one in D.

In this paper we replace the condition Re f ′(z) > 0, z ∈ D, by a purely topological

one combined with the natural assumption that f is locally one-to-one. A precise

statement of our main result is given in Theorem 2.2. Moreover, as its application

we obtain a sufficient condition for a locally one-to-one continuous function defined

in a starlike domain to be globally one-to-one. The idea of this paper comes from

our investigations concerning local homeomorphisms (see [5, ?]). As the main tool

to prove our result we use the theorem of Ortel and Smith [7, Theorem 1].

2. Main result

Let R be the family of all open and non-empty rectangles in the complex plane

C. Denote by diamR the diameter of a rectangle R ∈ R. For a fixed positive real

number d we define Rd to be the family of all R ∈ R such that diamR = d.

Lemma 2.1. Fix R ∈ R and let f : R → C be a locally one-to-one, continuous

function such that the image of every rectangle contained in R is simply connected.

Then f is one-to-one in R if and only if there exists d ∈ (0,diamR] such that f is

one-to-one in each T ∈ Rd contained in R.

Proof. If f is one-to-one in R then it is clearly one-to-one in each rectangle T con-

tained in R.

Conversely, assume f is not one-to-one in R and there exists d ∈ (0,diamR]

such that f is one-to-one in each T ∈ Rd contained in R. Observe that we can

construct two rectangles P1 and Q1, both of the same length as R and both of the

width equal to 2/3 of the width of R, such that P1 ∩ Q1 6= ∅ and P1 ∪ Q1 = R.

Moreover, if f is one-to-one in P1 and one-to-one in Q1 then f takes on every value

in f(P1)∪f(Q1) once or twice and every value in f(P1∩Q1) exactly once. Therefore,

f is one-to-one in P1 ∪Q1 by the theorem of Ortel and Smith [7, Theorem 1]. This

leads to a contradiction with the assumption that f is not one-to-one in R. Thus we

deduce that f is not one-to-one in P1 or is not one-to-one in Q1. Without any loss of

generality we can assume that f is not one-to-one in P1. Next, we can construct two

rectangles P̃1 and Q̃1, both of the same width as P1 and both of the length equal

to 2/3 of the length of P1, such that P̃1 ∩ Q̃1 6= ∅ and P̃1 ∪ Q̃1 = P1. Again, by

the theorem of Ortel and Smith [7, Theorem 1], f is not one-to-one in P̃1 or is not

one-to-one in Q̃1. Set R1 := P̃1 if f is not one-to-one in P̃1 and R1 := Q̃1 otherwise.
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Clearly, R1 ⊂ R and the length, the width and the diameter of R1 are equal to 2/3

of the length, 2/3 of the width and 2/3 of the diameter of R, respectively.

The above procedure repeated with R1 in place ofR produces a rectangle R2 ⊂ R1

such that f is not one-to-one in R2 and the length, the width and the diameter of

R2 are equal to (2/3)2 of the length, (2/3)2 of the width and (2/3)2 of the diameter

of R, respectively. Repeating this procedure again and again we get a descending

sequence of rectangles n 7→ Rn ⊂ R, n ∈ N, such that f is not one-to-one in each

Rn and diamRn = (2/3)n diamR. Since diamRn tends to 0 as n → ∞ we have a

contradiction with the assumption that there exists d ∈ (0,diamR] such that f is

one-to-one in each T ∈ Rd contained in R, which completes the proof. �

Theorem 2.2. Let C be a fixed convex domain in the complex plane C and let

f : C → C be a continuous function. Then f is one-to-one in C if and only if f is

locally one-to-one in C and f(R) is a simply connected set for each rectangle R ∈ R
contained in C.

Proof. If f is one-to-one in C then it is clearly one-to-one in each rectangle R ∈ R
contained in C and hence f(R) is simply connected.

Conversly, assume that f is not one-to-one in C, that is, there exist two points

z0, w0 ∈ C such that f(z0) = f(w0) and z0 6= w0. Since C is a convex set, it is clear

that there exists a rectangle R ∈ R such that the closure R of R is contained in C

and z0, w0 ∈ R. Denote by r := diamR. Observe that for each n ∈ N there exists

a rectangle Rn ∈ Rr/n, Rn ⊂ R, in which f is not one-to-one by Lemma 2.1. That

is, for each n ∈ N there exist two points zn, wn ∈ Rn such that f(zn) = f(wn) and

zn 6= wn. Consider the sequence n 7→ zn, n ∈ N. Clearly, the set {zn : n ∈ N} ⊂ R and

hence the sequence n 7→ zn is bounded, which yields that there exists a convergent

subsequence k 7→ znk
, k ∈ N. Denote its limit by z and observe that z ∈ R ⊂ C.

Next consider the sequence k 7→ znk
− wnk

, k ∈ N, which is convergent to 0 since

0 < |znk
− wnk

| < r/k. Therefore the sequence k 7→ wnk
, k ∈ N, is also convergent

to the point z. This means that in each disk centered at z and contained in C the

function f is not one-to-one. But by the assumption f is locally one-to-one in C and

there exists an open disk centered at z in which f is one-to-one. Thus we have a

contradiction and the proof is completed. �

Corollary 2.3. Let S be a fixed starlike domain in the complex plane C and

f : S → C be a locally one-to-one, continuous function such that f(R) is a convex

set for each rectangle R ∈ R contained in S. Then f is one-to-one in S.

Proof. Assume that f is not one-to-one in S, that is, there exist two points z, w ∈ S
such that f(z) = f(w). Since S is a starlike set, it is clear that there exist two

rectangles Rz, Rw ∈ R contained in S and there exists a point ζ ∈ S such that

z, ζ ∈ Rz and w, ζ ∈ Rw. Obviously, Rz ∪Rw is simply connected and f(Rz)∪f(Rw)

is also simply connected as a union of two convex sets. Hence f is not one-to-one in
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Rz or it is not one-to-one in Rw by the theorem of Ortel and Smith [7, Theorem 1].

This leads to a contradiction with Theorem 2.2. �

Remark 2.4. It should be mentioned that in the statement of Lemma 2.1, the

rectangles can be replaced by another suitably chosen family of convex sets. For

example the analog of Lemma 2.1 (also Theorem 2.2 and Corollary 2.3) for triangles

holds true and the proof is analogous to the presented one. The main difference is

a little bit more complicated procedure of constructing a sequence of triangles such

that the corresponding sequence of their diameters tends to 0. However, there seems

to be no analog of the proof of Lemma 2.1 in the case when rectangles are replaced

by the family of disks.
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TOPOLOGICZNY ODPOWIEDNIK TWIERDZENIA

NOSHIRO-WARSCHAWSKIEGO DLA FUNKCJI ZESPOLONYCH

S t r e s z c z e n i e
Niech f : C → C bȩdzie lokalnie różnowartościowa̧ oraz cia̧g la̧ funkcja̧ określona̧ na

pewnym obszarze wypuk lym C zawartym w p laszczyźnie zespolonej C. W niniejszej pracy
badamy topologiczne w lasności obrazu f(B), gdzie B jest pewnym szczególnym podzbiorem
wypuk lym zbioru C, aby uzyskać warunek konieczny i dostateczny różnowartościowości
funkcji f w C. Uzyskany rezultat jest uogólnieniem znanego kryterium różnowartościowo-
ści funkcji analitycznych, które podali Noshiro i Warschawski. Dodatkowo, jako wniosek,
formu lujemy warunek dostateczny różnowartościowości dowolnej lokalnie różnowartościowej
i cia̧g lej funkcji określonej na pewnym obszarze gwiaździstym zawartym w p laszczyźnie
zespolonej.

S lowa kluczowe: kryterium różnowartościowości, twierdzenie Noshiro-Warschawskiego, lo-

kalny homeomorfizm




