DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE ŁÓDŹ 2017

Vol. LXVII
Recherches sur les déformations
no. 3
pp. 69-76

Bartosz Eanucha and Matgorzata Michalska

## WHEN IS AN ASYMMETRIC TRUNCATED HANKEL OPERATOR EQUAL TO THE ZERO OPERATOR?

## Summary

In this paper we introduce the class of asymmetric truncated Hankel operators. We then describe symbols of those asymmetric truncated Hankel operators which are equal to the zero operator.

Keywords and phrases: model space, truncated Toeplitz operator, truncated Hankel operator, asymmetric truncated Hankel operator

## 1. Introduction

Let $H^{2}$ denote the space of functions analytic in the unit disk $\mathbb{D}=\{z:|z|<1\}$ and such that their Maclaurin coefficients are square summable. The Hardy space $H^{2}$ can be identified via boundary values with the closed linear span of the analytic polynomials in $L^{2}:=L^{2}(\partial \mathbb{D})$. Additionally, let $P$ denote the orthogonal projection from $L^{2}$ onto $H^{2}$.

Let $\alpha \in H^{\infty}=H^{2} \cap L^{\infty}$ be such that $|\alpha|=1$ a.e. on $\partial \mathbb{D}$. Then $\alpha$ is called an inner function. The corresponding model space $K_{\alpha}$ is defined by

$$
K_{\alpha}=H^{2} \ominus \alpha H^{2}
$$

Since $K_{\alpha}$ is a closed subspace of $H^{2}$, the point evaluation functional $f \mapsto f(w)$ is bounded on $K_{\alpha}$ for every $w \in \mathbb{D}$. Moreover,

$$
f(w)=\left\langle f, k_{w}^{\alpha}\right\rangle,
$$

where the reproducing kernel $k_{w}^{\alpha}$ is given by

$$
k_{w}^{\alpha}(z)=\frac{1-\overline{\alpha(w)} \alpha(z)}{1-\bar{w} z}, \quad w, z \in \mathbb{D} .
$$

Since each $k_{w}^{\alpha}$ is bounded in $z$, the set $K_{\alpha}^{\infty}=K_{\alpha} \cap H^{\infty}$ is dense in $K_{\alpha}$.
For the last ten years the class of compressions of classical Toeplitz operators to model spaces has been extensively studied (see [9] for more references). Recall that for $\varphi \in L^{\infty}$ the classical Toeplitz operator $T_{\varphi}$ is defined on $H^{2}$ by

$$
T_{\varphi} f=P(\varphi f)
$$

If $\varphi \in L^{2}$, then the above definition gives a densely defined operator. It is known that $T_{\varphi}$ is bounded if and only if $\varphi \in L^{\infty}$.

A truncated Toeplitz operator (TTO) $A_{\varphi}^{\alpha}$ with symbol $\varphi \in L^{2}$ is the compression of $T_{\varphi}$ to the model space $K_{\alpha}$. More precisely,

$$
A_{\varphi}^{\alpha} f=P_{\alpha}(\varphi f), \quad f \in K_{\alpha}^{\infty}
$$

where $P_{\alpha}$ is the orthogonal projection from $L^{2}$ onto $K_{\alpha}$. The operator $A_{\varphi}^{\alpha}$ is densely defined but, unlike $T_{\varphi}$, it can be bounded for an unbounded symbol $\varphi$.

The study of truncated Toeplitz operators began in 2007 with D. Sarason's paper [11]. Recently, the authors in [4] and [5, 6] introduced a more general class of operators, the so-called asymmetric truncated Toeplitz operators.

Let $\alpha, \beta$ be two inner functions and let $\varphi \in L^{2}$. An asymmetric truncated Toeplitz operator (ATTO) $A_{\varphi}^{\alpha, \beta}$ is the operator from $K_{\alpha}$ into $K_{\beta}$ defined by

$$
A_{\varphi}^{\alpha, \beta} f=P_{\beta}(\varphi f), \quad f \in K_{\alpha}^{\infty}
$$

Closely related to Toeplitz operators are Hankel operators on $H^{2}$. A Hankel operator $H_{\varphi}, \varphi \in L^{\infty}$, can be defined on $H^{2}$ by

$$
H_{\varphi} f=J(I-P)(\varphi f)
$$

where $J$ is the ,flip" operator given by

$$
J f(z)=\bar{z} f(\bar{z}), \quad|z|=1
$$

For $\varphi \in L^{2}$ this definition produces a densely defined operator. Truncated versions of Hankel operators were introduced by C. Gu in [2]. Here we begin the study of asymmetric truncated Hankel operators.

Let $\alpha, \beta$ be two inner functions. An asymmetric truncated Hankel operator (ATHO) $B_{\varphi}^{\alpha, \beta}$ with symbol $\varphi \in L^{2}$ is the operator from $K_{\alpha}$ into $K_{\beta}$ defined by

$$
B_{\varphi}^{\alpha, \beta} f=P_{\beta} J(I-P)(\varphi f), \quad f \in K_{\alpha}^{\infty} .
$$

Let

$$
\mathcal{H}(\alpha, \beta)=\left\{B_{\varphi}^{\alpha, \beta}: \varphi \in L^{2} \text { and } B_{\varphi}^{\alpha, \beta} \text { is bounded }\right\}
$$

and respectively $\mathcal{H}(\alpha)=\mathcal{H}(\alpha, \alpha)$.
It is known that the classical Toeplitz operator is uniquely determined by its symbol. In other words, $T_{\varphi}=0$ if and only if $\varphi=0$. This is not the case for TTO's and ATTO's. Namely, $A_{\varphi}^{\alpha}=0$ if and only if $\varphi \in \overline{\alpha H^{2}}+\alpha H^{2}[11]$ and $A_{\varphi}^{\alpha, \beta}=0$ if and only if $\varphi \in \overline{\alpha H^{2}}+\beta H^{2}$ [10]. As for Hankel operators, $H_{\varphi}=0$ if and only if
$\varphi \in H^{2}$. By the result of $\mathrm{C} . \mathrm{Gu}[2], B_{\varphi}^{\alpha}=0$ if and only if $\varphi \in H^{2}+\overline{\alpha \alpha^{\#} H^{2}}$, where $\alpha^{\#}(z)=\overline{\alpha(\bar{z})}$. In this paper we show that $B_{\varphi}^{\alpha, \beta}=0$ if and only if $\varphi \in H^{2}+\overline{\alpha \beta^{\#} H^{2}}$, where $\beta^{\#}(z)=\overline{\beta(\bar{z})}$.

Note that if $\beta$ is an inner function, then so is $\beta^{\#}$. Moreover, the operator $J^{\#}$ : $L^{2} \rightarrow L^{2}$,

$$
J^{\#} f(z)=f^{\#}(z)=\overline{f(\bar{z})}, \quad|z|=1
$$

is an antilinear isometric involution on $L^{2}$ (an operator with these properties is called a conjugation) and it preserves $H^{2}$. Furthermore, the conjugation $J^{\#}$ transforms $K_{\alpha}$ onto $K_{\alpha \#}$ [7, Lem. 4.4]. Another conjugation on $L^{2}$, one that is associated with an inner function $\alpha$, can be defined by

$$
C_{\alpha} f(z)=\alpha(z) \overline{z f(z)}, \quad|z|=1
$$

It is easy to verify that $C_{\alpha}$ is an involutive isometry which preserves $K_{\alpha}$ (see [11, Subsection 2.3]).

Before we proceed, a short remark about the definition of ATHO's is in order. Some authors (see for example $[1,3]$ ) define a THO as the operator $\Gamma_{\varphi}^{\alpha}: K_{\alpha} \rightarrow \overline{z K_{\alpha}}$ as follows

$$
\Gamma_{\varphi}^{\alpha} f=P_{\bar{\alpha}}(\varphi f), \quad f \in K_{\alpha}^{\infty}
$$

where $P_{\bar{\alpha}}$ is the orthogonal projection from $L^{2}$ onto $\overline{z K_{\alpha}}=\left\{\overline{z f}: f \in K_{\alpha}\right\}$. So an ATHO could also be defined as the operator from $K_{\alpha}$ into $\overline{z K_{\beta}}$ given by

$$
\Gamma_{\varphi}^{\alpha, \beta} f=P_{\bar{\beta}}(\varphi f), \quad f \in K_{\alpha}^{\infty}
$$

However, if $\Gamma_{\varphi}^{\alpha, \beta}$ is as above, then $J \Gamma_{\varphi}^{\alpha, \beta}$ acts from $K_{\alpha}$ into $K_{\beta \#}$ and for each $f \in K_{\alpha}^{\infty}$, $g \in K_{\beta \#}^{\infty}$ (note that if $g \in K_{\beta \#}$, then $J g \in \overline{z K_{\beta}}$ ),

$$
\left\langle J \Gamma_{\varphi}^{\alpha, \beta} f, g\right\rangle=\left\langle P_{\bar{\beta}}(\varphi f), J g\right\rangle=\langle(I-P)(\varphi f), J g\rangle=\left\langle B_{\varphi}^{\alpha, \beta^{\#}} f, g\right\rangle .
$$

Thus $\Gamma_{\varphi}^{\alpha, \beta}=J B_{\varphi}^{\alpha, \beta^{\#}}$ and, in particular,

$$
\Gamma_{\varphi}^{\alpha}=J B_{\varphi}^{\alpha, \alpha^{\#}}
$$

These two definitions are therefore equivalent.

## 2. The symbols of zero ATHO's

Theorem 2.1. Let $\alpha, \beta$ be two nonconstant inner functions and let $B_{\varphi}^{\alpha, \beta}: K_{\alpha} \rightarrow K_{\beta}$ be a bounded asymmetric truncated Hankel operator with $\varphi \in L^{2}$. Then $B_{\varphi}^{\alpha, \beta}=0$ if and only if $\varphi \in H^{2}+\overline{\alpha \beta^{\#} H^{2}}$, where $\beta^{\#}(z)=\overline{\beta(\bar{z})}$.

We first prove the following.
Proposition 2.2. Let $\alpha, \beta$ be two nonconstant inner functions with $\alpha(0)=\beta(0)=0$ and let $B_{\varphi}^{\alpha, \beta}: K_{\alpha} \rightarrow K_{\beta}$ be a bounded asymmetric truncated Hankel operator with $\varphi \in L^{2}$. Then $B_{\varphi}^{\alpha, \beta}=0$ if and only if $\varphi \in H^{2}+\overline{\alpha \beta^{\#} H^{2}}$, where $\beta^{\#}(z)=\overline{\beta(\bar{z})}$.
Proof. We first prove that if $\varphi \in H^{2}+\overline{\alpha \beta^{\#} H^{2}}$, then $B_{\varphi}^{\alpha, \beta}=0$. Clearly, $B_{\varphi}^{\alpha, \beta}=0$ whenever $\varphi \in H^{2}$. Moreover, $B_{\varphi}^{\alpha, \beta}=0$ also for $\varphi \in \overline{\alpha \beta \# H^{2}}$. Indeed, if $\varphi=\overline{\alpha \beta \#} \psi$, $\psi \in H^{2}$, then for $f \in K_{\alpha}^{\infty}, g \in K_{\beta}^{\infty}$,

$$
\begin{aligned}
\left\langle B_{\varphi}^{\alpha, \beta} f, g\right\rangle & =\left\langle B \frac{\alpha, \beta}{\alpha \beta \# \psi} f, g\right\rangle=\langle\overline{\alpha \beta \#} \psi f, J g\rangle=\left\langle J\left(\overline{\alpha \beta^{\#} \psi} f\right), g\right\rangle \\
& =\left\langle\bar{z} \alpha^{\#} \beta \psi^{\#} \overline{f^{\#}}, g\right\rangle=\left\langle\beta \overline{z g} \cdot \alpha^{\#} \psi^{\#}, f^{\#}\right\rangle=\left\langle\alpha^{\#} \psi^{\#} \cdot C_{\beta} g, f^{\#}\right\rangle=0,
\end{aligned}
$$

since $\alpha^{\#} \psi^{\#} . C_{\beta} g \in \alpha^{\#} H^{2}$ and $f^{\#} \in K_{\alpha \#}$.
Note that this part of the proof did not use the assumption that $\alpha(0)=\beta(0)=0$.
For the converse assume that $B_{\varphi}^{\alpha, \beta}=0, \varphi \in L^{2}$. Let $\psi \in K_{\alpha \beta}$ be such that $\varphi-\bar{\psi} \in H^{2}+\overline{\alpha \beta^{\#} H^{2}}$. More precisely, $\psi=P_{\alpha \beta \#}[\overline{(I-P) \varphi}]$. By the first part of the proof $B_{\varphi}^{\alpha, \beta}=B_{\bar{\psi}}^{\alpha, \beta}=0$. Note that $\alpha(0) \beta^{\#}(0)=0$, and so $\psi(0)=0$. To complete the proof we show that $\psi=0$. Since $C_{\alpha} k_{0}^{\alpha}=\frac{\alpha(z)}{z} \in K_{\alpha}$, we have

$$
0=B_{\bar{\psi}}^{\alpha, \beta} C_{\alpha} k_{0}^{\alpha}=P_{\beta} J\left(\bar{\psi} \cdot \frac{\alpha}{z}\right)=P_{\beta}\left(\psi^{\#} \overline{\alpha^{\#}}\right)=P_{\beta} J^{\#}(\psi \bar{\alpha})=J^{\#} P_{\beta \#}(\bar{\alpha} \psi) .
$$

Hence $P_{\beta^{\#}}(\bar{\alpha} \psi)=0$, which means that $\bar{\alpha} \psi \perp K_{\beta \#}$ and $\psi \perp \alpha K_{\beta^{\#}}$. Since $\psi \in K_{\alpha \beta^{\#}}=$ $K_{\alpha} \oplus \alpha K_{\beta \#}$, we get that $\psi \in K_{\alpha}$. It can be easily verified that $\left(B_{\bar{\psi}}^{\alpha, \beta}\right)^{*}=B_{\psi^{\#}}^{\beta, \alpha}$. From this,

$$
0=B \overline{\psi^{\#}} k_{0}^{\beta}=P_{\alpha} J\left(\overline{\psi^{\#}}\right)=P_{\alpha}(\bar{z} \psi)
$$

and $\psi$ must be a constant function. But $\psi(0)=0$, so $\psi \equiv 0$.
Similarly to the proof of [10, Thm. 2.1], the proof of Theorem 2.1 will use the Crofoot transform. For an inner function $\alpha$ and $w \in \mathbb{D}$ the Crofoot transform is the multiplication operator $J_{w}^{\alpha}$ given by

$$
\begin{equation*}
J_{w}^{\alpha} f(z)=\frac{\sqrt{1-|w|^{2}}}{1-\bar{w} \alpha(z)} f(z) . \tag{1}
\end{equation*}
$$

The operator $J_{w}^{\alpha}$ is a unitary operator from $K_{\alpha}$ onto $K_{\alpha_{w}}$, where

$$
\begin{equation*}
\alpha_{w}(z)=\frac{w-\alpha(z)}{1-\bar{w} \alpha(z)} \tag{2}
\end{equation*}
$$

Moreover,

$$
\left(J_{w}^{\alpha}\right)^{*}=\left(J_{w}^{\alpha}\right)^{-1}=J_{w}^{\alpha_{w}}
$$

(the details can be found in [8] or [11]).

It was proved in [2] that $B \in \mathcal{H}(\alpha)$ if and only if $J_{w}^{\alpha} B\left(J_{w}^{\alpha}\right)^{-1} \in \mathcal{H}\left(\alpha_{w}\right)$.
Lemma 2.3. Let $\alpha, \beta$ be two inner functions. Let $a, b \in \mathbb{D}$ and let the functions $\alpha_{a}, \beta_{b}$ and the operators $J_{a}^{\alpha}, J_{b}^{\beta}$ be defined as in (2) and (1), respectively. If $B$ is a bounded linear operator from $K_{\alpha}$ into $K_{\beta}$, then $B \in \mathcal{H}(\alpha, \beta)$ if and only if $J_{b}^{\beta} B\left(J_{a}^{\alpha}\right)^{-1} \in$ $\mathcal{H}\left(\alpha_{a}, \beta_{b}\right)$. Moreover, if $B=B_{\varphi}^{\alpha, \beta}$, then $J_{b}^{\beta} B\left(J_{a}^{\alpha}\right)^{-1}=B_{\phi}^{\alpha_{a}, \beta_{b}}$ with

$$
\begin{equation*}
\phi=\frac{(1-\bar{a} \alpha)\left(1-b \beta^{\#}\right)}{\sqrt{1-|a|^{2}} \sqrt{1-|b|^{2}}} \cdot \varphi \tag{3}
\end{equation*}
$$

Proof. Assume first that $B=B_{\varphi}^{\alpha, \beta} \in \mathcal{H}(\alpha, \beta)$ with $\varphi \in L^{2}$. Then, for $f \in K_{\alpha_{a}}^{\infty}, g \in$ $K_{\beta_{b}}^{\infty}$,

$$
\begin{aligned}
\left\langle J_{b}^{\beta} B_{\varphi}^{\alpha, \beta}\left(J_{a}^{\alpha}\right)^{-1} f, g\right\rangle & =\left\langle B_{\varphi}^{\alpha, \beta}\left(J_{a}^{\alpha}\right)^{-1} f,\left(J_{b}^{\beta}\right)^{-1} g\right\rangle=\left\langle B_{\varphi}^{\alpha, \beta} J_{a}^{\alpha_{a}} f, J_{b}^{\beta_{b}} g\right\rangle \\
& =\left\langle P_{\beta} J(I-P)\left(\varphi \cdot J_{a}^{\alpha_{a}} f\right), J_{b}^{\beta_{b}} g\right\rangle=\left\langle\varphi \cdot J_{a}^{\alpha_{a}} f, J J_{b}^{\beta_{b}} g\right\rangle \\
& =\left\langle\varphi \cdot J_{a}^{\alpha_{a}} f, J\left(\frac{1-\bar{b} \beta}{\sqrt{1-|b|^{2}}} \cdot g\right)\right\rangle \\
& =\left\langle\varphi \cdot J_{a}^{\alpha_{a}} f, \frac{\left.J^{\#( }\left(\frac{1-\bar{b} \beta}{\sqrt{1-|b|^{2}}}\right) \cdot J g\right\rangle}{}\right. \\
& =\left\langle\varphi \cdot J_{a}^{\alpha_{a}} f \cdot J^{\#}\left(\frac{1-\bar{b} \beta}{\sqrt{1-|b|^{2}}}\right), J g\right\rangle \\
& =\left\langle\frac{1-\bar{a} \alpha}{\sqrt{1-|a|^{2}}} \cdot \frac{1-b \beta^{\#}}{\sqrt{1-|b|^{2}}} \cdot \varphi \cdot f, J g\right\rangle=\left\langle B_{\phi}^{\alpha_{a}, \beta_{b}} f, g\right\rangle,
\end{aligned}
$$

where

$$
\phi=\frac{(1-\bar{a} \alpha)\left(1-b \beta^{\#}\right)}{\sqrt{1-|a|^{2}} \sqrt{1-|b|^{2}}} \cdot \varphi
$$

Hence

$$
J_{b}^{\beta} B_{\varphi}^{\alpha, \beta}\left(J_{a}^{\alpha}\right)^{-1}=B_{\phi}^{\alpha_{a}, \beta_{b}}
$$

with $\phi$ as in (3).
Assume now that $B$ is a bounded linear operator from $K_{\alpha}$ into $K_{\beta}$ such that

$$
J_{b}^{\beta} B\left(J_{a}^{\alpha}\right)^{-1}=B_{\phi}^{\alpha_{a}, \beta_{b}} \in \mathcal{H}\left(\alpha_{a}, \beta_{b}\right)
$$

From the first part of the proof and the fact that $\left(\alpha_{a}\right)_{a}=\alpha,\left(\beta_{b}\right)_{b}=\beta$,

$$
B=J_{b}^{\beta_{b}}\left[J_{b}^{\beta} B\left(J_{a}^{\alpha}\right)^{-1}\right]\left(J_{a}^{\alpha_{a}}\right)^{-1}=B_{\varphi}^{\alpha, \beta}
$$

with

$$
\varphi=\frac{\left(1-\bar{a} \alpha_{a}\right)\left(1-b \beta_{b}^{\#}\right)}{\sqrt{1-|a|^{2}} \sqrt{1-|b|^{2}}} \cdot \phi
$$

(note that $\beta_{b}^{\#}$ denotes $J^{\#} \beta_{b}$ ). A simple calculation shows that

$$
\phi=\frac{(1-\bar{a} \alpha)\left(1-b \beta^{\#}\right)}{\sqrt{1-|a|^{2}} \sqrt{1-|b|^{2}}} \cdot \varphi
$$

Proof of Theorem 2.1. The proof of the fact that $B_{\varphi}^{\alpha, \beta}=0$ for $\varphi \in H^{2}+\overline{\alpha \beta^{\#} H^{2}}$ was already given in the the first part of the proof of Proposition 2.2.

Assume now that $B_{\varphi}^{\alpha, \beta}=0$ with $\varphi \in L^{2}$. If $\alpha(0)=\beta(0)=0$, then $\varphi \in H^{2}+$ $\overline{\alpha \beta^{\#} H^{2}}$ by Proposition 2.2.

If $\alpha(0) \neq 0$ or $\beta(0) \neq 0$, then put $a=\alpha(0), b=\beta(0)$ and define $\alpha_{a}, \beta_{b}$ as in (2). By Lemma 2.3,

$$
0=J_{b}^{\beta} B_{\varphi}^{\alpha, \beta}\left(J_{a}^{\alpha}\right)^{-1}=B_{\phi}^{\alpha_{a}, \beta_{b}}
$$

where

$$
\phi=\frac{(1-\bar{a} \alpha)\left(1-b \beta^{\#}\right)}{\sqrt{1-|a|^{2}} \sqrt{1-|b|^{2}}} \cdot \varphi
$$

Since $\alpha_{a}(0)=0$ and $\beta_{b}(0)=0$, Proposition 2.2 implies that $\phi \in H^{2}+\overline{\alpha_{a} \beta_{b}^{\#} H^{2}}$ and

$$
\phi=\frac{(1-\bar{a} \alpha)\left(1-b \beta^{\#}\right)}{\sqrt{1-|a|^{2}} \sqrt{1-|b|^{2}}} \cdot \varphi=h_{1}+\overline{\alpha_{a} \beta_{b}^{\#} h_{2}}
$$

for some $h_{1}, h_{2} \in H^{2}$ (as before, $\beta_{b}^{\#}=J^{\#} \beta_{b}$ ). Hence, on the unit circle,

$$
\begin{aligned}
\varphi & =\frac{\sqrt{1-|a|^{2}} \sqrt{1-|b|^{2}}}{(1-\bar{a} \alpha)\left(1-b \beta^{\#}\right)} \cdot h_{1}+\frac{\sqrt{1-|a|^{2}} \sqrt{1-|b|^{2}}}{(1-\bar{a} \alpha)\left(1-b \beta^{\#}\right)} \cdot \frac{\bar{a}-\bar{\alpha}}{1-a \bar{\alpha}} \cdot \frac{b-\overline{\beta \#}}{1-\overline{b \beta} \#} \cdot \overline{h_{2}} \\
& =\frac{\sqrt{1-|a|^{2}} \sqrt{1-|b|^{2}}}{(1-\bar{a} \alpha)\left(1-b \beta^{\#}\right)} \cdot h_{1}+\bar{\alpha} \overline{\beta^{\#}} \cdot \frac{\sqrt{1-|a|^{2}} \sqrt{1-|b|^{2}}}{(1-\bar{a} \alpha)\left(1-b \beta^{\#}\right)} \cdot h_{2} \in H^{2}+\overline{\alpha \beta^{\#} H^{2}} .
\end{aligned}
$$

Corollary 2.4. If $B \in \mathcal{H}(\alpha, \beta)$, then there exists $\psi \in K_{\alpha \beta} \#$ such that $B=B_{\bar{\psi}}^{\alpha, \beta}$. If $\psi$ is one such function, then the most general one is $\chi=\psi+c \cdot k_{0}^{\alpha \beta^{\#}}$, with $c$ a scalar.

Proof. Let $B \in \mathcal{H}(\alpha, \beta), B=B_{\varphi}^{\alpha, \beta}, \varphi \in L^{2}$. By Theorem 2.1,

$$
B_{\varphi}^{\alpha, \beta}=B_{\bar{\psi}}^{\alpha, \beta}
$$

with $\psi=P_{\alpha \beta}(\bar{\varphi})$. Since

$$
\overline{k_{0}^{\alpha \beta^{\#}}}=1-\alpha(0) \beta^{\#}(0) \overline{\alpha \beta^{\#}} \in H^{2}+\overline{\alpha \beta^{\#} H^{2}},
$$

we clearly have

$$
B_{\bar{\psi}}^{\alpha, \beta}=B^{\alpha, \beta} \frac{\psi+c k_{0}^{\alpha \beta} \#}{}
$$

for each complex number $c$. Moreover, if $\psi, \chi \in K_{\alpha \beta \#}$ and $B_{\bar{\psi}}^{\alpha, \beta}=B_{\bar{\chi}}^{\alpha, \beta}$, then $\overline{\psi-\chi} \in$ $H^{2}+\overline{\alpha \beta^{\#} H^{2}}$. Hence there are functions $h_{1}, h_{2} \in H^{2}$ such that $\overline{\psi-\chi}=h_{1}+\overline{\alpha \beta^{\#} h_{2}}$. From this $h_{1}$ must be a constant and

$$
\psi-\chi=c+\alpha \beta^{\#} h_{2}
$$

for some complex number $c$. Thus

$$
\psi-\chi=P_{\alpha \beta \#}(\psi-\chi)=P_{\alpha \beta \#}\left(c+\alpha \beta^{\#} h_{2}\right)=c \cdot k_{0}^{\alpha \beta^{\#}}
$$

## References

[1] R. V. Bessonov, Fredholmness and compactness of truncated Toeplitz and Hankel operators, Integr. Equ. Oper. Theory 82 no. 4 (2015), 451-467.
[2] C. Gu, Algebraic properties of truncated Hankel operators, preprint.
[3] C. Gu, D. Kang, Rank of Truncated Toeplitz Operators, Complex Anal. Oper. Theory 11 no. 4 (2017), 825-842.
[4] C. Câmara, J. Jurasik, K. Kliś-Garlicka, M. Ptak, Characterizations of asymmetric truncated Toeplitz operators, Banach J. Math. Anal. 11 no. 4 (2017), 899-922.
[5] M. C. Câmara, J. R. Partington, Asymmetric truncated Toeplitz operators and Toeplitz operators with matrix symbol, J. Operator Theory 77 no. 2 (2017), 455-479.
[6] M. C. Câmara, J. R. Partington, Spectral properties of truncated Toeplitz operators by equivalence after extension, J. Math. Anal. Appl. 433 no. 2 (2016), 762-784.
[7] J. A. Cima, S. R. Garcia, W. T. Ross, W. R. Wogen, Truncated Toeplitz operators: spatial isomorphism, unitary equivalence, and similarity, Indiana Univ. Math. J. 59 no. 2 (2010), 595-620.
[8] R. B. Crofoot, Multipliers between invariant subspaces of the backward shift, Pacific J. Math. 166 no. 2 (1994), 225-246.
[9] S. R. Garcia, W. T. Ross, Recent progress on truncated Toeplitz operators, in: J. Mashreghi, E. Fricain (eds.), Blaschke products and their applications, Fields Inst. Commun. 65, Springer, New York, 2013, 275-319.
[10] J. Jurasik, B. Lanucha, Asymmetric truncated Toeplitz operators equal to the zero operator, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 70 no. 2 (2016), 51-62.
[11] D. Sarason, Algebraic properties of truncated Toeplitz operators, Operators and Matrices 1 no. 4 (2007), 491-526.

Institute of Mathematics
Maria Curie-Skłodowska University
pl. M. Curie-Skłodowskiej 1, PL-20-031 Lublin
Poland
E-mail: bartosz.lanucha@poczta.umcs.lublin.pl malgorzata.michalska@poczta.umcs.lublin.pl

Presented by Andrzej Łuczak at the Session of the Mathematical-Physical Commission of the Łódź Society of Sciences and Arts on November 27, 2017.

## KIEDY ASYMETRYCZNY OBCIȨTY OPERATOR HANKELA RÓWNY JEST OPERATOROWI ZEROWEMU?

Streszczenie
W niniejszej pracy definiujemy klasȩ asymetrycznych obciętych operatorów Hankela. Nastȩpnie opisujemy symbole tych asymetrycznych obciȩtych operatorów Hankela, które równe są operatorowi zerowemu.

Stowa kluczowe: przestrzeń modelowa, obcięty operator Toeplitza, obciȩty operator Hankela, asymetryczny obciȩty operator Hankela

