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Summary

In this paper we introduce the class of asymmetric truncated Hankel operators. We then

describe symbols of those asymmetric truncated Hankel operators which are equal to the

zero operator.
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1. Introduction

Let H2 denote the space of functions analytic in the unit disk D = {z : |z| < 1}
and such that their Maclaurin coefficients are square summable. The Hardy space

H2 can be identified via boundary values with the closed linear span of the analytic

polynomials in L2 := L2(∂D). Additionally, let P denote the orthogonal projection

from L2 onto H2.

Let α ∈ H∞ = H2 ∩ L∞ be such that |α| = 1 a.e. on ∂D. Then α is called an

inner function. The corresponding model space Kα is defined by

Kα = H2 	 αH2.

Since Kα is a closed subspace of H2, the point evaluation functional f 7→ f(w) is

bounded on Kα for every w ∈ D. Moreover,

f(w) = 〈f, kαw〉,

where the reproducing kernel kαw is given by

kαw(z) =
1− α(w)α(z)

1− wz
, w, z ∈ D.

[69]
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Since each kαw is bounded in z, the set K∞α = Kα ∩H∞ is dense in Kα.

For the last ten years the class of compressions of classical Toeplitz operators to

model spaces has been extensively studied (see [9] for more references). Recall that

for ϕ ∈ L∞ the classical Toeplitz operator Tϕ is defined on H2 by

Tϕf = P (ϕf).

If ϕ ∈ L2, then the above definition gives a densely defined operator. It is known

that Tϕ is bounded if and only if ϕ ∈ L∞.

A truncated Toeplitz operator (TTO) Aαϕ with symbol ϕ ∈ L2 is the compression

of Tϕ to the model space Kα. More precisely,

Aαϕf = Pα(ϕf), f ∈ K∞α ,

where Pα is the orthogonal projection from L2 onto Kα. The operator Aαϕ is densely

defined but, unlike Tϕ, it can be bounded for an unbounded symbol ϕ.

The study of truncated Toeplitz operators began in 2007 with D. Sarason’s pa-

per [11]. Recently, the authors in [4] and [5, 6] introduced a more general class of

operators, the so-called asymmetric truncated Toeplitz operators.

Let α, β be two inner functions and let ϕ ∈ L2. An asymmetric truncated Toeplitz

operator (ATTO) Aα,βϕ is the operator from Kα into Kβ defined by

Aα,βϕ f = Pβ(ϕf), f ∈ K∞α .

Closely related to Toeplitz operators are Hankel operators on H2. A Hankel

operator Hϕ, ϕ ∈ L∞, can be defined on H2 by

Hϕf = J(I − P )(ϕf),

where J is the ,,flip” operator given by

Jf(z) = zf(z), |z| = 1.

For ϕ ∈ L2 this definition produces a densely defined operator. Truncated versions

of Hankel operators were introduced by C. Gu in [2]. Here we begin the study of

asymmetric truncated Hankel operators.

Let α, β be two inner functions. An asymmetric truncated Hankel operator

(ATHO) Bα,βϕ with symbol ϕ ∈ L2 is the operator from Kα into Kβ defined by

Bα,βϕ f = PβJ(I − P )(ϕf), f ∈ K∞α .

Let

H(α, β) = {Bα,βϕ : ϕ ∈ L2 and Bα,βϕ is bounded},

and respectively H(α) = H(α, α).

It is known that the classical Toeplitz operator is uniquely determined by its

symbol. In other words, Tϕ = 0 if and only if ϕ = 0. This is not the case for TTO’s

and ATTO’s. Namely, Aαϕ = 0 if and only if ϕ ∈ αH2 + αH2 [11] and Aα,βϕ = 0 if

and only if ϕ ∈ αH2 + βH2 [10]. As for Hankel operators, Hϕ = 0 if and only if
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ϕ ∈ H2. By the result of C. Gu [2], Bαϕ = 0 if and only if ϕ ∈ H2 + αα#H2, where

α#(z) = α(z). In this paper we show that Bα,βϕ = 0 if and only if ϕ ∈ H2 +αβ#H2,

where β#(z) = β(z).

Note that if β is an inner function, then so is β#. Moreover, the operator J# :

L2 → L2,

J#f(z) = f#(z) = f(z), |z| = 1,

is an antilinear isometric involution on L2 (an operator with these properties is called

a conjugation) and it preserves H2. Furthermore, the conjugation J# transforms Kα

onto Kα# [7, Lem. 4.4]. Another conjugation on L2, one that is associated with an

inner function α, can be defined by

Cαf(z) = α(z)zf(z), |z| = 1.

It is easy to verify that Cα is an involutive isometry which preserves Kα (see [11,

Subsection 2.3]).

Before we proceed, a short remark about the definition of ATHO’s is in order.

Some authors (see for example [1, 3]) define a THO as the operator Γαϕ : Kα → zKα

as follows

Γαϕf = Pα(ϕf), f ∈ K∞α ,
where Pα is the orthogonal projection from L2 onto zKα = {zf : f ∈ Kα}. So an

ATHO could also be defined as the operator from Kα into zKβ given by

Γα,βϕ f = Pβ(ϕf), f ∈ K∞α .
However, if Γα,βϕ is as above, then JΓα,βϕ acts from Kα into Kβ# and for each f ∈ K∞α ,

g ∈ K∞β# (note that if g ∈ Kβ# , then Jg ∈ zKβ),〈
JΓα,βϕ f, g

〉
=
〈
Pβ(ϕf), Jg

〉
=
〈

(I − P )(ϕf), Jg
〉

=
〈
Bα,β

#

ϕ f, g
〉
.

Thus Γα,βϕ = JBα,β
#

ϕ and, in particular,

Γαϕ = JBα,α
#

ϕ .

These two definitions are therefore equivalent.

2. The symbols of zero ATHO’s

Theorem 2.1. Let α, β be two nonconstant inner functions and let Bα,βϕ : Kα → Kβ

be a bounded asymmetric truncated Hankel operator with ϕ ∈ L2. Then Bα,βϕ = 0 if

and only if ϕ ∈ H2 + αβ#H2, where β#(z) = β(z).
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We first prove the following.

Proposition 2.2. Let α, β be two nonconstant inner functions with α(0) = β(0) = 0

and let Bα,βϕ : Kα → Kβ be a bounded asymmetric truncated Hankel operator with

ϕ ∈ L2. Then Bα,βϕ = 0 if and only if ϕ ∈ H2 + αβ#H2, where β#(z) = β(z).

Proof. We first prove that if ϕ ∈ H2 + αβ#H2, then Bα,βϕ = 0. Clearly, Bα,βϕ = 0

whenever ϕ ∈ H2. Moreover, Bα,βϕ = 0 also for ϕ ∈ αβ#H2. Indeed, if ϕ = αβ#ψ,

ψ ∈ H2, then for f ∈ K∞α , g ∈ K∞β ,〈
Bα,βϕ f, g

〉
=
〈
Bα,β
αβ#ψ

f, g
〉

=
〈
αβ#ψf, Jg

〉
=
〈
J
(
αβ#ψf

)
, g
〉

=
〈
zα#βψ#f#, g

〉
=
〈
βzg · α#ψ#, f#

〉
=
〈
α#ψ# · Cβg, f#

〉
= 0,

since α#ψ# · Cβg ∈ α#H2 and f# ∈ Kα# .

Note that this part of the proof did not use the assumption that α(0) = β(0) = 0.

For the converse assume that Bα,βϕ = 0, ϕ ∈ L2. Let ψ ∈ Kαβ# be such that

ϕ− ψ ∈ H2 + αβ#H2. More precisely, ψ = Pαβ# [(I − P )ϕ]. By the first part of the

proof Bα,βϕ = Bα,β
ψ

= 0. Note that α(0)β#(0) = 0, and so ψ(0) = 0. To complete the

proof we show that ψ = 0. Since Cαk
α
0 = α(z)

z ∈ Kα, we have

0 = Bα,β
ψ

Cαk
α
0 = PβJ

(
ψ · α

z

)
= Pβ

(
ψ#α#

)
= PβJ

#
(
ψα
)

= J#Pβ#

(
αψ
)
.

Hence Pβ#

(
αψ
)

= 0, which means that αψ⊥Kβ# and ψ⊥αKβ# . Since ψ ∈ Kαβ# =

Kα ⊕ αKβ# , we get that ψ ∈ Kα. It can be easily verified that
(
Bα,β
ψ

)∗
= Bβ,α

ψ#
.

From this,

0 = Bβ,α
ψ#

kβ0 = PαJ(ψ#) = Pα(zψ),

and ψ must be a constant function. But ψ(0) = 0, so ψ ≡ 0. �

Similarly to the proof of [10, Thm. 2.1], the proof of Theorem 2.1 will use the

Crofoot transform. For an inner function α and w ∈ D the Crofoot transform is the

multiplication operator Jαw given by

Jαwf(z) =

√
1− |w|2

1− wα(z)
f(z). (1)

The operator Jαw is a unitary operator from Kα onto Kαw , where

αw(z) =
w − α(z)

1− wα(z)
. (2)

Moreover, (
Jαw

)∗
=
(
Jαw

)−1
= Jαww

(the details can be found in [8] or [11]).
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It was proved in [2] that B ∈ H(α) if and only if JαwB
(
Jαw

)−1
∈ H(αw).

Lemma 2.3. Let α, β be two inner functions. Let a, b ∈ D and let the functions αa, βb
and the operators Jαa , J

β
b be defined as in (2) and (1), respectively. If B is a bounded

linear operator from Kα into Kβ, then B ∈ H(α, β) if and only if Jβb B
(
Jαa

)−1
∈

H(αa, βb). Moreover, if B = Bα,βϕ , then Jβb B
(
Jαa

)−1
= Bαa,βbφ with

φ =
(1− aα)(1− bβ#)√

1− |a|2
√

1− |b|2
· ϕ. (3)

Proof. Assume first that B = Bα,βϕ ∈ H(α, β) with ϕ ∈ L2. Then, for f ∈ K∞αa , g ∈
K∞βb ,〈

Jβb B
α,β
ϕ

(
Jαa

)−1
f, g
〉

=
〈
Bα,βϕ

(
Jαa

)−1
f, (Jβb )−1g

〉
=
〈
Bα,βϕ Jαaa f, Jβbb g

〉
=
〈
PβJ(I − P )

(
ϕ · Jαaa f

)
, Jβbb g

〉
=
〈
ϕ · Jαaa f, JJβbb g

〉
=
〈
ϕ · Jαaa f, J

(
1−bβ√
1−|b|2

· g
)〉

=
〈
ϕ · Jαaa f, J#

(
1−bβ√
1−|b|2

)
· Jg

〉
=
〈
ϕ · Jαaa f · J#

(
1−bβ√
1−|b|2

)
, Jg

〉
=
〈

1−aα√
1−|a|2

· 1−bβ#√
1−|b|2

· ϕ · f, Jg
〉

=
〈
Bαa,βbφ f, g

〉
,

where

φ =
(1− aα)(1− bβ#)√

1− |a|2
√

1− |b|2
· ϕ.

Hence

Jβb B
α,β
ϕ

(
Jαa

)−1
= Bαa,βbφ ,

with φ as in (3).

Assume now that B is a bounded linear operator from Kα into Kβ such that

Jβb B
(
Jαa

)−1
= Bαa,βbφ ∈ H(αa, βb).

From the first part of the proof and the fact that (αa)a = α, (βb)b = β,

B = Jβbb

[
Jβb B

(
Jαa

)−1](
Jαaa

)−1
= Bα,βϕ ,

with

ϕ =
(1− aαa)(1− bβ#

b )√
1− |a|2

√
1− |b|2

· φ
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(note that β#
b denotes J#βb). A simple calculation shows that

φ =
(1− aα)(1− bβ#)√

1− |a|2
√

1− |b|2
· ϕ.

�

Proof of Theorem 2.1. The proof of the fact that Bα,βϕ = 0 for ϕ ∈ H2 + αβ#H2

was already given in the the first part of the proof of Proposition 2.2.

Assume now that Bα,βϕ = 0 with ϕ ∈ L2. If α(0) = β(0) = 0, then ϕ ∈ H2 +

αβ#H2 by Proposition 2.2.

If α(0) 6= 0 or β(0) 6= 0, then put a = α(0), b = β(0) and define αa, βb as in (2).

By Lemma 2.3,

0 = Jβb B
α,β
ϕ

(
Jαa

)−1
= Bαa,βbφ ,

where

φ =
(1− aα)(1− bβ#)√

1− |a|2
√

1− |b|2
· ϕ.

Since αa(0) = 0 and βb(0) = 0, Proposition 2.2 implies that φ ∈ H2 + αaβ
#
b H

2 and

φ =
(1− aα)(1− bβ#)√

1− |a|2
√

1− |b|2
· ϕ = h1 + αaβ

#
b h2

for some h1, h2 ∈ H2 (as before, β#
b = J#βb). Hence, on the unit circle,

ϕ =

√
1−|a|2

√
1−|b|2

(1−aα)(1−bβ#)
· h1 +

√
1−|a|2

√
1−|b|2

(1−aα)(1−bβ#)
· a−α1−aα ·

b−β#

1−bβ#
· h2

=

√
1−|a|2

√
1−|b|2

(1−aα)(1−bβ#)
· h1 + αβ# ·

√
1−|a|2

√
1−|b|2

(1−aα)(1−bβ#)
· h2 ∈ H2 + αβ#H2.

�

Corollary 2.4. If B ∈ H(α, β), then there exists ψ ∈ Kαβ# such that B = Bα,β
ψ

.

If ψ is one such function, then the most general one is χ = ψ + c · kαβ
#

0 , with c a

scalar.

Proof. Let B ∈ H(α, β), B = Bα,βϕ , ϕ ∈ L2. By Theorem 2.1,

Bα,βϕ = Bα,β
ψ

,

with ψ = Pαβ#(ϕ). Since

kαβ
#

0 = 1− α(0)β#(0)αβ# ∈ H2 + αβ#H2,

we clearly have

Bα,β
ψ

= Bα,β

ψ+ckαβ
#

0
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for each complex number c. Moreover, if ψ, χ ∈ Kαβ# and Bα,β
ψ

= Bα,βχ , then ψ − χ ∈
H2 +αβ#H2. Hence there are functions h1, h2 ∈ H2 such that ψ − χ = h1 +αβ#h2.

From this h1 must be a constant and

ψ − χ = c+ αβ#h2

for some complex number c. Thus

ψ − χ = Pαβ#(ψ − χ) = Pαβ#(c+ αβ#h2) = c · kαβ
#

0 .

�
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Presented by Andrzej  Luczak at the Session of the Mathematical-Physical Commis-

sion of the  Lódź Society of Sciences and Arts on November 27, 2017.

KIEDY ASYMETRYCZNY OBCIȨTY OPERATOR HANKELA

RÓWNY JEST OPERATOROWI ZEROWEMU?

S t r e s z c z e n i e
W niniejszej pracy definiujemy klasȩ asymetrycznych obciȩtych operatorów Hankela.

Nastȩpnie opisujemy symbole tych asymetrycznych obciȩtych operatorów Hankela, które
równe sa̧ operatorowi zerowemu.

S lowa kluczowe: przestrzeń modelowa, obciȩty operator Toeplitza, obciȩty operator Hankela,

asymetryczny obciȩty operator Hankela


