BULLETIN

Recherches sur les déformations									$\mathrm{no.}3$	
2017									Vol. LXVII	
DE	LA	SOCIÉTÉ	DES	SCIENCES	\mathbf{ET}	DES	LETTRES	DE	ŁÓDŹ	

pp. 69-76

Bartosz Lanucha and Małgorzata Michalska

WHEN IS AN ASYMMETRIC TRUNCATED HANKEL OPERATOR EQUAL TO THE ZERO OPERATOR?

Summary

In this paper we introduce the class of asymmetric truncated Hankel operators. We then describe symbols of those asymmetric truncated Hankel operators which are equal to the zero operator.

Keywords and phrases: model space, truncated Toeplitz operator, truncated Hankel operator, asymmetric truncated Hankel operator

1. Introduction

Let H^2 denote the space of functions analytic in the unit disk $\mathbb{D} = \{z : |z| < 1\}$ and such that their Maclaurin coefficients are square summable. The Hardy space H^2 can be identified via boundary values with the closed linear span of the analytic polynomials in $L^2 := L^2(\partial \mathbb{D})$. Additionally, let P denote the orthogonal projection from L^2 onto H^2 .

Let $\alpha \in H^{\infty} = H^2 \cap L^{\infty}$ be such that $|\alpha| = 1$ a.e. on $\partial \mathbb{D}$. Then α is called an inner function. The corresponding model space K_{α} is defined by

$$K_{\alpha} = H^2 \ominus \alpha H^2.$$

Since K_{α} is a closed subspace of H^2 , the point evaluation functional $f \mapsto f(w)$ is bounded on K_{α} for every $w \in \mathbb{D}$. Moreover,

$$f(w) = \langle f, k_w^\alpha \rangle$$

where the reproducing kernel k_w^{α} is given by

$$k^{\alpha}_w(z)=\frac{1-\alpha(w)\alpha(z)}{1-\overline{w}z}, \quad w,z\in\mathbb{D}.$$

Since each k_w^{α} is bounded in z, the set $K_{\alpha}^{\infty} = K_{\alpha} \cap H^{\infty}$ is dense in K_{α} .

For the last ten years the class of compressions of classical Toeplitz operators to model spaces has been extensively studied (see [9] for more references). Recall that for $\varphi \in L^{\infty}$ the classical Toeplitz operator T_{φ} is defined on H^2 by

$$T_{\varphi}f = P(\varphi f).$$

If $\varphi \in L^2$, then the above definition gives a densely defined operator. It is known that T_{φ} is bounded if and only if $\varphi \in L^{\infty}$.

A truncated Toeplitz operator (TTO) A^{α}_{φ} with symbol $\varphi \in L^2$ is the compression of T_{φ} to the model space K_{α} . More precisely,

$$A^{\alpha}_{\varphi}f = P_{\alpha}(\varphi f), \quad f \in K^{\infty}_{\alpha},$$

where P_{α} is the orthogonal projection from L^2 onto K_{α} . The operator A_{φ}^{α} is densely defined but, unlike T_{φ} , it can be bounded for an unbounded symbol φ .

The study of truncated Toeplitz operators began in 2007 with D. Sarason's paper [11]. Recently, the authors in [4] and [5, 6] introduced a more general class of operators, the so-called asymmetric truncated Toeplitz operators.

Let α , β be two inner functions and let $\varphi \in L^2$. An asymmetric truncated Toeplitz operator (ATTO) $A^{\alpha,\beta}_{\omega}$ is the operator from K_{α} into K_{β} defined by

$$A^{\alpha,\beta}_{\varphi}f = P_{\beta}(\varphi f), \quad f \in K^{\infty}_{\alpha}.$$

Closely related to Toeplitz operators are Hankel operators on H^2 . A Hankel operator $H_{\varphi}, \varphi \in L^{\infty}$, can be defined on H^2 by

$$H_{\varphi}f = J(I - P)(\varphi f),$$

where J is the ,,flip" operator given by

$$Jf(z) = \overline{z}f(\overline{z}), \quad |z| = 1.$$

For $\varphi \in L^2$ this definition produces a densely defined operator. Truncated versions of Hankel operators were introduced by C. Gu in [2]. Here we begin the study of asymmetric truncated Hankel operators.

Let α , β be two inner functions. An asymmetric truncated Hankel operator (ATHO) $B_{\varphi}^{\alpha,\beta}$ with symbol $\varphi \in L^2$ is the operator from K_{α} into K_{β} defined by

$$B^{\alpha,\beta}_{\varphi}f = P_{\beta}J(I-P)(\varphi f), \quad f \in K^{\infty}_{\alpha}.$$

Let

$$\mathcal{H}(\alpha,\beta) = \{ B_{\varphi}^{\alpha,\beta} : \varphi \in L^2 \text{ and } B_{\varphi}^{\alpha,\beta} \text{ is bounded} \},\$$

and respectively $\mathcal{H}(\alpha) = \mathcal{H}(\alpha, \alpha)$.

It is known that the classical Toeplitz operator is uniquely determined by its symbol. In other words, $T_{\varphi} = 0$ if and only if $\varphi = 0$. This is not the case for TTO's and ATTO's. Namely, $A_{\varphi}^{\alpha} = 0$ if and only if $\varphi \in \overline{\alpha H^2} + \alpha H^2$ [11] and $A_{\varphi}^{\alpha,\beta} = 0$ if and only if $\varphi \in \overline{\alpha H^2} + \beta H^2$ [10]. As for Hankel operators, $H_{\varphi} = 0$ if and only if

 $\varphi \in H^2$. By the result of C. Gu [2], $B_{\varphi}^{\alpha} = 0$ if and only if $\varphi \in H^2 + \overline{\alpha \alpha^{\#} H^2}$, where $\alpha^{\#}(z) = \overline{\alpha(\overline{z})}$. In this paper we show that $B_{\varphi}^{\alpha,\beta} = 0$ if and only if $\varphi \in H^2 + \overline{\alpha \beta^{\#} H^2}$, where $\beta^{\#}(z) = \overline{\beta(\overline{z})}$.

Note that if β is an inner function, then so is $\beta^{\#}$. Moreover, the operator $J^{\#}$: $L^2 \to L^2$,

$$J^{\#}f(z) = f^{\#}(z) = \overline{f(\overline{z})}, \quad |z| = 1,$$

is an antilinear isometric involution on L^2 (an operator with these properties is called a conjugation) and it preserves H^2 . Furthermore, the conjugation $J^{\#}$ transforms K_{α} onto $K_{\alpha^{\#}}$ [7, Lem. 4.4]. Another conjugation on L^2 , one that is associated with an inner function α , can be defined by

$$C_{\alpha}f(z) = \alpha(z)\overline{zf(z)}, \quad |z| = 1.$$

It is easy to verify that C_{α} is an involutive isometry which preserves K_{α} (see [11, Subsection 2.3]).

Before we proceed, a short remark about the definition of ATHO's is in order. Some authors (see for example [1, 3]) define a THO as the operator $\Gamma_{\varphi}^{\alpha}: K_{\alpha} \to \overline{zK_{\alpha}}$ as follows

$$\Gamma^{\alpha}_{\varphi}f = P_{\overline{\alpha}}(\varphi f), \qquad f \in K^{\infty}_{\alpha},$$

where $P_{\overline{\alpha}}$ is the orthogonal projection from L^2 onto $\overline{zK_{\alpha}} = \{\overline{zf}: f \in K_{\alpha}\}$. So an ATHO could also be defined as the operator from K_{α} into $\overline{zK_{\beta}}$ given by

$$\Gamma^{\alpha,\beta}_{\varphi}f = P_{\overline{\beta}}(\varphi f), \qquad f \in K^{\infty}_{\alpha}.$$

However, if $\Gamma_{\varphi}^{\alpha,\beta}$ is as above, then $J\Gamma_{\varphi}^{\alpha,\beta}$ acts from K_{α} into $K_{\beta^{\#}}$ and for each $f \in K_{\alpha}^{\infty}$, $g \in K_{\beta^{\#}}^{\infty}$ (note that if $g \in K_{\beta^{\#}}$, then $Jg \in \overline{zK_{\beta}}$),

$$\left\langle J\Gamma_{\varphi}^{\alpha,\beta}f,g\right\rangle = \left\langle P_{\overline{\beta}}(\varphi f), Jg\right\rangle = \left\langle (I-P)(\varphi f), Jg\right\rangle = \left\langle B_{\varphi}^{\alpha,\beta^{\#}}f,g\right\rangle.$$

Thus $\Gamma_{\varphi}^{\alpha,\beta} = JB_{\varphi}^{\alpha,\beta^{\#}}$ and, in particular,

$$\Gamma^{\alpha}_{\varphi} = JB^{\alpha,\alpha^{\#}}_{\varphi}.$$

These two definitions are therefore equivalent.

2. The symbols of zero ATHO's

Theorem 2.1. Let α, β be two nonconstant inner functions and let $B_{\varphi}^{\alpha,\beta} : K_{\alpha} \to K_{\beta}$ be a bounded asymmetric truncated Hankel operator with $\varphi \in L^2$. Then $B_{\varphi}^{\alpha,\beta} = 0$ if and only if $\varphi \in H^2 + \overline{\alpha\beta^{\#}H^2}$, where $\beta^{\#}(z) = \overline{\beta(\overline{z})}$. We first prove the following.

Proposition 2.2. Let α, β be two nonconstant inner functions with $\alpha(0) = \beta(0) = 0$ and let $B_{\varphi}^{\alpha,\beta} : K_{\alpha} \to K_{\beta}$ be a bounded asymmetric truncated Hankel operator with $\varphi \in L^2$. Then $B_{\varphi}^{\alpha,\beta} = 0$ if and only if $\varphi \in H^2 + \overline{\alpha\beta^{\#}H^2}$, where $\beta^{\#}(z) = \overline{\beta(\overline{z})}$.

Proof. We first prove that if $\varphi \in H^2 + \overline{\alpha \beta^{\#} H^2}$, then $B_{\varphi}^{\alpha,\beta} = 0$. Clearly, $B_{\varphi}^{\alpha,\beta} = 0$ whenever $\varphi \in H^2$. Moreover, $B_{\varphi}^{\alpha,\beta} = 0$ also for $\varphi \in \overline{\alpha \beta^{\#} H^2}$. Indeed, if $\varphi = \overline{\alpha \beta^{\#} \psi}$, $\psi \in H^2$, then for $f \in K_{\alpha}^{\infty}$, $g \in K_{\beta}^{\infty}$,

$$\left\langle B^{\alpha,\beta}_{\varphi}f,g\right\rangle = \left\langle B^{\alpha,\beta}_{\alpha\beta^{\#}\psi}f,g\right\rangle = \left\langle \overline{\alpha\beta^{\#}\psi}f,Jg\right\rangle = \left\langle J\left(\overline{\alpha\beta^{\#}\psi}f\right),g\right\rangle$$
$$= \left\langle \overline{z}\alpha^{\#}\beta\psi^{\#}\overline{f^{\#}},g\right\rangle = \left\langle \beta\overline{z}\overline{g}\cdot\alpha^{\#}\psi^{\#},f^{\#}\right\rangle = \left\langle \alpha^{\#}\psi^{\#}\cdot C_{\beta}g,f^{\#}\right\rangle = 0,$$

since $\alpha^{\#}\psi^{\#} \cdot C_{\beta}g \in \alpha^{\#}H^2$ and $f^{\#} \in K_{\alpha^{\#}}$.

Note that this part of the proof did not use the assumption that $\alpha(0) = \beta(0) = 0$. For the converse assume that $B_{\varphi}^{\alpha,\beta} = 0$, $\varphi \in L^2$. Let $\psi \in K_{\alpha\beta^{\#}}$ be such that $\varphi - \overline{\psi} \in H^2 + \overline{\alpha\beta^{\#}H^2}$. More precisely, $\psi = P_{\alpha\beta^{\#}}[\overline{(I-P)\varphi}]$. By the first part of the proof $B_{\varphi}^{\alpha,\beta} = B_{\overline{\psi}}^{\alpha,\beta} = 0$. Note that $\alpha(0)\beta^{\#}(0) = 0$, and so $\psi(0) = 0$. To complete the proof we show that $\psi = 0$. Since $C_{\alpha}k_0^{\alpha} = \frac{\alpha(z)}{z} \in K_{\alpha}$, we have

$$0 = B_{\overline{\psi}}^{\alpha,\beta} C_{\alpha} k_0^{\alpha} = P_{\beta} J\left(\overline{\psi} \cdot \frac{\alpha}{z}\right) = P_{\beta} \left(\psi^{\#} \overline{\alpha^{\#}}\right) = P_{\beta} J^{\#} \left(\psi \overline{\alpha}\right) = J^{\#} P_{\beta^{\#}} \left(\overline{\alpha} \psi\right).$$

Hence $P_{\beta^{\#}}(\overline{\alpha}\psi) = 0$, which means that $\overline{\alpha}\psi \perp K_{\beta^{\#}}$ and $\psi \perp \alpha K_{\beta^{\#}}$. Since $\psi \in K_{\alpha\beta^{\#}} = K_{\alpha} \oplus \alpha K_{\beta^{\#}}$, we get that $\psi \in K_{\alpha}$. It can be easily verified that $\left(B_{\overline{\psi}}^{\alpha,\beta}\right)^* = B_{\overline{\psi}^{\#}}^{\beta,\alpha}$. From this,

$$0 = B^{\beta,\alpha}_{\overline{\psi^{\#}}} k_0^{\beta} = P_{\alpha} J(\overline{\psi^{\#}}) = P_{\alpha}(\overline{z}\psi)$$

and ψ must be a constant function. But $\psi(0) = 0$, so $\psi \equiv 0$.

Similarly to the proof of [10, Thm. 2.1], the proof of Theorem 2.1 will use the Crofoot transform. For an inner function α and $w \in \mathbb{D}$ the Crofoot transform is the multiplication operator J_w^{α} given by

$$J_w^{\alpha}f(z) = \frac{\sqrt{1-|w|^2}}{1-\overline{w}\alpha(z)}f(z).$$
(1)

The operator J_w^{α} is a unitary operator from K_{α} onto K_{α_w} , where

$$\alpha_w(z) = \frac{w - \alpha(z)}{1 - \overline{w}\alpha(z)}.$$
(2)

Moreover,

$$\left(J_w^\alpha\right)^* = \left(J_w^\alpha\right)^{-1} = J_w^{\alpha_w}$$

(the details can be found in [8] or [11]).

It was proved in [2] that $B \in \mathcal{H}(\alpha)$ if and only if $J_w^{\alpha} B(J_w^{\alpha})^{-1} \in \mathcal{H}(\alpha_w)$.

Lemma 2.3. Let α, β be two inner functions. Let $a, b \in \mathbb{D}$ and let the functions α_a, β_b and the operators $J_a^{\alpha}, J_b^{\beta}$ be defined as in (2) and (1), respectively. If B is a bounded linear operator from K_{α} into K_{β} , then $B \in \mathcal{H}(\alpha, \beta)$ if and only if $J_b^{\beta} B(J_a^{\alpha})^{-1} \in$ $\mathcal{H}(\alpha_a, \beta_b)$. Moreover, if $B = B_{\varphi}^{\alpha, \beta}$, then $J_b^{\beta} B(J_a^{\alpha})^{-1} = B_{\phi}^{\alpha_a, \beta_b}$ with

$$\phi = \frac{(1 - \bar{a}\alpha)(1 - b\beta^{\#})}{\sqrt{1 - |a|^2}\sqrt{1 - |b|^2}} \cdot \varphi.$$
 (3)

Proof. Assume first that $B = B_{\varphi}^{\alpha,\beta} \in \mathcal{H}(\alpha,\beta)$ with $\varphi \in L^2$. Then, for $f \in K_{\alpha_a}^{\infty}$, $g \in K_{\beta_b}^{\infty}$,

$$\begin{split} \left\langle J_{b}^{\beta}B_{\varphi}^{\alpha,\beta}\left(J_{a}^{\alpha}\right)^{-1}f,g\right\rangle &= \left\langle B_{\varphi}^{\alpha,\beta}\left(J_{a}^{\alpha}\right)^{-1}f,(J_{b}^{\beta})^{-1}g\right\rangle = \left\langle B_{\varphi}^{\alpha,\beta}J_{a}^{\alpha_{a}}f,J_{b}^{\beta_{b}}g\right\rangle \\ &= \left\langle P_{\beta}J(I-P)\left(\varphi\cdot J_{a}^{\alpha_{a}}f\right),J_{b}^{\beta_{b}}g\right\rangle = \left\langle \varphi\cdot J_{a}^{\alpha_{a}}f,JJ_{b}^{\beta_{b}}g\right\rangle \\ &= \left\langle \varphi\cdot J_{a}^{\alpha_{a}}f,J\left(\frac{1-\overline{b}\beta}{\sqrt{1-|b|^{2}}}\cdot g\right)\right\rangle \\ &= \left\langle \varphi\cdot J_{a}^{\alpha_{a}}f,\overline{J^{\#}\left(\frac{1-\overline{b}\beta}{\sqrt{1-|b|^{2}}}\right)}\cdot Jg\right\rangle \\ &= \left\langle \varphi\cdot J_{a}^{\alpha_{a}}f\cdot J^{\#}\left(\frac{1-\overline{b}\beta}{\sqrt{1-|b|^{2}}}\right),Jg\right\rangle \\ &= \left\langle \frac{1-\overline{a}\alpha}{\sqrt{1-|a|^{2}}}\cdot\frac{1-b\beta^{\#}}{\sqrt{1-|b|^{2}}}\cdot\varphi\cdot f,Jg\right\rangle = \left\langle B_{\phi}^{\alpha_{a},\beta_{b}}f,g\right\rangle, \end{split}$$

where

$$\phi = \frac{(1 - \overline{a}\alpha)(1 - b\beta^{\#})}{\sqrt{1 - |a|^2}\sqrt{1 - |b|^2}} \cdot \varphi.$$

Hence

$$J_b^{\beta} B_{\varphi}^{\alpha,\beta} \left(J_a^{\alpha} \right)^{-1} = B_{\phi}^{\alpha_a,\beta_b},$$

with ϕ as in (3).

Assume now that B is a bounded linear operator from K_{α} into K_{β} such that

$$J_b^{\beta} B \left(J_a^{\alpha} \right)^{-1} = B_{\phi}^{\alpha_a, \beta_b} \in \mathcal{H}(\alpha_a, \beta_b).$$

From the first part of the proof and the fact that $(\alpha_a)_a = \alpha$, $(\beta_b)_b = \beta$,

$$B = J_b^{\beta_b} \left[J_b^{\beta} B \left(J_a^{\alpha} \right)^{-1} \right] \left(J_a^{\alpha_a} \right)^{-1} = B_{\varphi}^{\alpha,\beta},$$

with

$$\varphi = \frac{(1 - \overline{a}\alpha_a)(1 - b\beta_b^{\#})}{\sqrt{1 - |a|^2}\sqrt{1 - |b|^2}} \cdot \phi$$

(note that $\beta_b^{\#}$ denotes $J^{\#}\beta_b$). A simple calculation shows that

$$\phi = \frac{(1 - \bar{a}\alpha)(1 - b\beta^{\#})}{\sqrt{1 - |a|^2}\sqrt{1 - |b|^2}} \cdot \varphi.$$

Proof of Theorem 2.1. The proof of the fact that $B_{\varphi}^{\alpha,\beta} = 0$ for $\varphi \in H^2 + \overline{\alpha\beta^{\#}H^2}$ was already given in the first part of the proof of Proposition 2.2.

Assume now that $B^{\alpha,\beta}_{\varphi} = 0$ with $\varphi \in L^2$. If $\alpha(0) = \beta(0) = 0$, then $\varphi \in H^2 + \alpha\beta^{\#}H^2$ by Proposition 2.2.

If $\alpha(0) \neq 0$ or $\beta(0) \neq 0$, then put $a = \alpha(0)$, $b = \beta(0)$ and define α_a , β_b as in (2). By Lemma 2.3,

$$0 = J_b^{\beta} B_{\varphi}^{\alpha,\beta} \left(J_a^{\alpha} \right)^{-1} = B_{\phi}^{\alpha_a,\beta_b},$$

where

$$\phi = \frac{(1 - \overline{a}\alpha)(1 - b\beta^{\#})}{\sqrt{1 - |a|^2}\sqrt{1 - |b|^2}} \cdot \varphi.$$

Since $\alpha_a(0) = 0$ and $\beta_b(0) = 0$, Proposition 2.2 implies that $\phi \in H^2 + \overline{\alpha_a \beta_b^{\#} H^2}$ and

$$\phi = \frac{(1 - \overline{a}\alpha)(1 - b\beta^{\#})}{\sqrt{1 - |a|^2}\sqrt{1 - |b|^2}} \cdot \varphi = h_1 + \overline{\alpha_a \beta_b^{\#} h_2}$$

for some $h_1, h_2 \in H^2$ (as before, $\beta_b^{\#} = J^{\#}\beta_b$). Hence, on the unit circle,

$$\begin{split} \varphi &= \frac{\sqrt{1-|a|^2}\sqrt{1-|b|^2}}{(1-\overline{a}\alpha)(1-b\beta^{\#})} \cdot h_1 + \frac{\sqrt{1-|a|^2}\sqrt{1-|b|^2}}{(1-\overline{a}\alpha)(1-b\beta^{\#})} \cdot \frac{\overline{a}-\overline{\alpha}}{1-a\overline{\alpha}} \cdot \frac{b-\overline{\beta^{\#}}}{1-b\overline{\beta^{\#}}} \cdot \overline{h_2} \\ &= \frac{\sqrt{1-|a|^2}\sqrt{1-|b|^2}}{(1-\overline{a}\alpha)(1-b\beta^{\#})} \cdot h_1 + \overline{\alpha}\overline{\beta^{\#}} \cdot \overline{\frac{\sqrt{1-|a|^2}\sqrt{1-|b|^2}}{(1-\overline{a}\alpha)(1-b\beta^{\#})}} \cdot h_2 \in H^2 + \overline{\alpha}\beta^{\#}H^2. \end{split}$$

Corollary 2.4. If $B \in \mathcal{H}(\alpha, \beta)$, then there exists $\psi \in K_{\alpha\beta^{\#}}$ such that $B = B_{\overline{\psi}}^{\alpha,\beta}$. If ψ is one such function, then the most general one is $\chi = \psi + c \cdot k_0^{\alpha\beta^{\#}}$, with c a scalar.

Proof. Let $B \in \mathcal{H}(\alpha, \beta), B = B^{\alpha, \beta}_{\varphi}, \varphi \in L^2$. By Theorem 2.1,

$$B^{\alpha,\beta}_{\varphi} = B^{\alpha,\beta}_{\overline{\psi}},$$

with $\psi = P_{\alpha\beta^{\#}}(\overline{\varphi})$. Since

$$\overline{k_0^{\alpha\beta^{\#}}} = 1 - \alpha(0)\beta^{\#}(0)\overline{\alpha\beta^{\#}} \in H^2 + \overline{\alpha\beta^{\#}H^2},$$

we clearly have

$$B^{\alpha,\beta}_{\overline{\psi}} = B^{\alpha,\beta}_{\overline{\psi} + c k_0^{\alpha\beta^\#}}$$

for each complex number c. Moreover, if $\psi, \chi \in K_{\alpha\beta^{\#}}$ and $B_{\overline{\psi}}^{\alpha,\beta} = B_{\overline{\chi}}^{\alpha,\beta}$, then $\overline{\psi - \chi} \in H^2 + \overline{\alpha\beta^{\#}H^2}$. Hence there are functions $h_1, h_2 \in H^2$ such that $\overline{\psi - \chi} = h_1 + \overline{\alpha\beta^{\#}h_2}$. From this h_1 must be a constant and

$$\psi - \chi = c + \alpha \beta^{\#} h_2$$

for some complex number c. Thus

$$\psi - \chi = P_{\alpha\beta^{\#}}(\psi - \chi) = P_{\alpha\beta^{\#}}(c + \alpha\beta^{\#}h_2) = c \cdot k_0^{\alpha\beta^{\#}}.$$

References

- R. V. Bessonov, Fredholmness and compactness of truncated Toeplitz and Hankel operators, Integr. Equ. Oper. Theory 82 no. 4 (2015), 451–467.
- [2] C. Gu, Algebraic properties of truncated Hankel operators, preprint.
- C. Gu, D. Kang, Rank of Truncated Toeplitz Operators, Complex Anal. Oper. Theory 11 no. 4 (2017), 825–842.
- [4] C. Câmara, J. Jurasik, K. Kliś-Garlicka, M. Ptak, Characterizations of asymmetric truncated Toeplitz operators, Banach J. Math. Anal. 11 no. 4 (2017), 899–922.
- [5] M. C. Câmara, J. R. Partington, Asymmetric truncated Toeplitz operators and Toeplitz operators with matrix symbol, J. Operator Theory 77 no. 2 (2017), 455–479.
- [6] M. C. Câmara, J. R. Partington, Spectral properties of truncated Toeplitz operators by equivalence after extension, J. Math. Anal. Appl. 433 no. 2 (2016), 762–784.
- [7] J. A. Cima, S. R. Garcia, W. T. Ross, W. R. Wogen, Truncated Toeplitz operators: spatial isomorphism, unitary equivalence, and similarity, Indiana Univ. Math. J. 59 no. 2 (2010), 595–620.
- [8] R. B. Crofoot, Multipliers between invariant subspaces of the backward shift, Pacific J. Math. 166 no. 2 (1994), 225–246.
- [9] S. R. Garcia, W. T. Ross, Recent progress on truncated Toeplitz operators, in: J. Mashreghi, E. Fricain (eds.), Blaschke products and their applications, Fields Inst. Commun. 65, Springer, New York, 2013, 275–319.
- [10] J. Jurasik, B. Lanucha, Asymmetric truncated Toeplitz operators equal to the zero operator, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 70 no. 2 (2016), 51–62.
- [11] D. Sarason, Algebraic properties of truncated Toeplitz operators, Operators and Matrices 1 no. 4 (2007), 491–526.

Institute of Mathematics

Maria Curie-Skłodowska University

pl. M. Curie-Skłodowskiej 1, PL-20-031 Lublin

Poland

E-mail: bartosz.lanucha@poczta.umcs.lublin.pl malgorzata.michalska@poczta.umcs.lublin.pl Presented by Andrzej Łuczak at the Session of the Mathematical-Physical Commission of the Łódź Society of Sciences and Arts on November 27, 2017.

KIEDY ASYMETRYCZNY OBCIĘTY OPERATOR HANKELA RÓWNY JEST OPERATOROWI ZEROWEMU?

Streszczenie

W niniejszej pracy definiujemy klasę asymetrycznych obciętych operatorów Hankela. Następnie opisujemy symbole tych asymetrycznych obciętych operatorów Hankela, które równe są operatorowi zerowemu.

Słowa kluczowe: przestrzeń modelowa, obcięty operator Toeplitza, obcięty operator Hankela, asymetryczny obcięty operator Hankela