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Pomorska 149/153, PL-90-236  Lódź, Pologne
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CLONING AND ENTROPY IN VON NEUMANN ALGEBRAS

Summary
Under quantum measurement, the state of the system changes from the initial state

into the final state. We investigate cloning property of final states of a quantum instrument
associated with a minimal state entropy measurement.

Keywords and phrases: von Neumann algebra, entropy, cloning

Introduction

Cloning and broadcasting of quantum states have recently become important topics
in Quantum Information Theory. Since its first appearance in [6,10] in the form of a
no-cloning theorem it has been investigated in various settings, e.g. [1,3,7]. Another
concept important from the point of quantum statistics is the state entropy. The
definition we employ comes from Segal [9], and properties of entropy of measurement
was presented in [8]. The entropy of the final state of the system after measurement
is bounded and it attends its lower bound for the "minimal entropy measuremant".
This paper presents results of reasearch on correlations between such measurement
and possibility of broadcasting the final state.

1. Preliminaries and notation

Let M be an arbitrary von Neumann algebra with identity 1 acting on a Hilbert
space H. The predual M∗ of M is a Banach space of all normal, i.e. continuous in
the σ-weak topology linear functionals on M.
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A state on M is a bounded positive linear functional ρ : M→ C of norm one. For
a normal state ρ its support, denoted by s(ρ), is defined as the smallest projection
in M such that ρ(s(ρ)) = ρ(1).

Let A and B be W ∗-algebras. A linear map T : A→ B is said to be normal if it
is continuous in the σ-weak topologies on A and B, respectively. It is called unital
if it maps the identity of A to the identity of B.

The map T is said to be Schwarz (or 1 1
2 -positive or strongly positive) if for each

a ∈ A the following Schwarz inequality holds

T (a)∗T (a) 6 ‖T‖T (a∗a),

which for a unital map amounts simply to

T (a)∗T (a) 6 T (a∗a).

2. Cloning and broadcasting

Let M be a von Neumann algebra. Consider now the tensor product M⊗M. We have
obvious counterparts Π1,2 : (M⊗M)∗ →M∗ of the customary notion of partial trace,
employed in the case M = B(H), defined as

(Π1ρ̃)(a) = ρ̃(a⊗ 1), (Π2ρ̃)(a) = ρ̃(1⊗ a), ρ̃ ∈ (M⊗M)∗, a ∈M.

The main objects of our interest are the following two operations of broadcasting
and cloning of states.

A linear map K∗ : M∗ → (M⊗M)∗ sending states to states, and such that its dual
K : M⊗M→M is a unital Schwarz map will be called a channel. A state ρ ∈M∗ is
broadcast by channel K∗ if (Πi ◦K∗)(ρ) = ρ, i = 1, 2; in other words, ρ is broadcast
by K∗ if for each a ∈M

ρ(K(a⊗ 1)) = ρ(K(1⊗ a)) = ρ(a).

A family of states is said to be broadcastable if there is a channel K∗ that broadcasts
each member of this family.

A state ρ ∈M∗ is cloned by channel K∗ if K∗ρ = ρ⊗ρ. A family of states is said
to be cloneable if there is a channel K∗ that clones each member of this family. An
arbitrary family Γ of normal states on M is broadcastable if and only if there exists a
family {ρi} of normal states with pairwise orthogonal supports such that each ρ ∈ Γ

is a convex combination of ρi. Moreover the states ρi are clonable by some channel
which also broadcasts the states in ρ ∈ Γ. This result was proved in [4].

3. Instruments in quantum measurement theory

An instrument on (Ω,F), a measurable space of values of an observable of the system,
is a map

E : F → L+(M∗)
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from the σ-field F into the set of all positive linear transformations on the predual
M∗ such that

(i) (EΩρ)(1) = ρ(1) for all ρ ∈M∗,

(ii) E⋃∞
n=1 ∆n

ρ =

∞∑
n=1

E∆nρ

for any ρ ∈ M∗ and pairwise disjoint sets ∆n from F, where the series on the
right hand side is convergent in the
σ(M∗,M)-topology on M∗.

Considering now for each E∆ its dual map E∗∆ : M→M defined by

ρ(E∗∆(x)) = (E∆ρ)(x), ρ ∈M∗, x ∈M,

we come to the notion of dual instrument which is defined as a map E∗ : F → L+
n (M)

from F into the set of all positive normal linear transformations on M such that

(i*) E∗Ω(1) = 1,

(ii*) E∗⋃∞
n=1 ∆n

(x) =

∞∑
n=1

E∗∆n
(x)

for any x ∈ M and pairwise disjoint sets ∆n from F, where the series on the
right hand side is convergent in the σ(M,M∗)-topology on M.

For a given instrument E its associated observable is defined as a map e : F →M by
the formula

e(∆) = E∗∆(1),

thus e is a positive operator-valued measure (POVM, semispectral measure). If e(∆)

is a projection for any ∆, then e is a projection-valued measure (PVM, spectral
measure).

Among many important classes of instruments there are repeatable instruments
which satisfy the celebrated von Neumann repeatability hypothesis: if the physical
quantity is measured twice in succession in a system, then we get the same value
each time. The definition of a repeatable instrument is a follows:

An instrument E is called repeatable if for any ∆1,∆2 ∈ F

E∆1E∆2 = E∆1∩∆2 ,

or equivalently
E∗∆1

E∗∆2
= E∗∆1∩∆2

.

4. Entropy of measurements

Let M be a von Neumann algebra with normal finite faithful trace τ, τ(1) = 1.

For any normal state ρ there exists a unique nonnegative selfadjoint operator Dρ

affiliated with M, called density of ρ, such that for each a ∈M, we have
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ρ(a) = τ(aDρ).

In particular, if Dρ is bounded, then Dρ ∈ M. The entropy of ρ, denoted by H(ρ),
is defined for bounded Dρ as

H(ρ) = τ(DρlogDρ)

that is, by spectral decomposition of the Dρ, (Dρ =
∫∞

0
λe(dλ)),

H(ρ) =

∫ ∞
0

λlogλτ(e(dλ)),

in which τ(e(·)) is a measure defined as

B(R) 3 ∆ 7→ τ(e(∆)).

Theorem 1. The entropy, as a function of a state, has the following properties

(i) Entropy is bounded from below and in particular it is nonnegative for a state:

H(ρ) > ρ(1)− 1.

(ii) Since Dρ is bounded thus the function λ 7→ λlogλ is bounded on its spectrum
which yields that entropy is bounded from above.

(iii) For ρ, ϕ ∈M∗, with bounded densities Dρ and Dϕ respectively:

H(ρ) +H(ϕ) 6 H(ρ+ ϕ)

with equality if and only if DρDϕ = 0

(iv) Entropy is a convex function of ρ.

The above theorem was discussed and proved in [8].
Let us consider now the measurement represented by an instrument E. Let the

system be in the initial state ρ ∈M∗. The final state of the system is EΩρ. For any
reading scale i.e.

R = {∆i : i = 1, 2, . . . , n; ∆i ∩∆j = ∅,
⋃
i

∆i = Ω}

we have

EΩρ =

n∑
i=1

E∆iρ.

Considering only the non-zero summands, denote
E∆iρ

(E∆i
ρ)(1)

= ρi, (E∆iρ)(1) = αi;

ρi are normal states, moreover , αi > 0 and
∑n
i=1 αi = 1. We have the following

theorem (proved in [8])
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Theorem 2. For every normal state ρ of the system such that EΩρ has bounded
density the following equation holds:

(1)
∑
i

H(ρi) +H((αi)) 6 H(EΩρ) 6
∑
i

H(ρi)

where H((αi)) is the (minus) classical entropy of the sequence αi:

H((αi)) =
∑
i

αi logαi.

The lower bound of (1) can be rewritten in the form∑
i

H(ρi) +H((αi)) =
∑
i

H(αiρi) =
∑
i

H(E∆iρ).

By the property (iii) of Theorem 1∑
i

H(E∆i
ρ) = H(

∑
i

E∆i
ρ) = H(EΩρ)

if and only if E∆i
ρ, and consequently ρi, have orthogonal supports, and we have the

following:

Corollary 1. The lower bound of (1) is attained if and only if the family (ρi)i have
orthogonal supports.

We say that the measurement associated with instrument E is minimal state
entropy one if for any initial state ρ and any reading scale R it attains the lower
bound of (1).

The characterization of instruments given in [8] shows the equivalent conditions
for minimal state entropy measurements. That is for instrument E having as its
observable a spectral measure the following conditions are equivalent

(i) E∗Ω = (E∗Ω)2 and E is a minimal state entropy

(ii) E is repeatable.

Theorem 3. Let ρ be an arbitrary initial state of the system and E an instrument
associated with a minimal state entropy measurement. For family of states Γ = {ρi :

i ∈ N} with

ρi =
E∆i

ρ

E∆i
ρ(1)

where ∆i is an arbitrary reading scale R, there exist the channel K∗ which clones
the family Γ. Moreover, the final state of the system EΩρ is broadcast by the same
channel K∗.

Proof. State EΩρ is a convex combination of states

ρi =
E∆iρ

E∆i
ρ(1)
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with coefficients αi = E∆i
ρ(1). As the instruments E is associated with a minimal

state entropy measurement, the states ρi ∈ Γ have orthogonal supports. For such a
family exists a channel K∗ cloning each state ρi, i = 1, 2, . . . and broadcasting the
state

EΩρ =
∑
i

αiρi.

�
It is worth noticing that the following theorem holds:

Theorem 4. Each repeatable or even weakly repeatable instrument E (i.e. such that
for all ∆1,∆2 ∈ F E∗∆1

(E∗∆2
(1)) = E∗∆1∩∆1

(1) holds) transforms the initial state ρ
to EΩρ broadcastable by the same channel K∗ which clones the family

Γ = {ρi, i = 1, 2, . . . }

Proof. Indeed, for a weakly repeatable instrument and any ∆,Θ ∈ F such that
∆ ∩Θ = ∅ we have

E∗∆(s(E∗∆)e(Θ)s(E∗∆)) = E∗∆(e(Θ)) = E∗∆(E∗Θ(1)) = 0

which yields
s(E∗∆)e(Θ)s(E∗∆) = 0

and thus
s(E∗∆)e(Θ) = 0.

From the weak repeatability of E, it follows that

E∗Θ(e(Θ)) = e(Θ) = E∗Θ(1)

so
E∗Θ(1− e(Θ)) = 0

and
s(E∗Θ)(1− e(Θ))s(E∗Θ) = 0

then we have
s(E∗Θ) = e(Θ)s(E∗Θ)

and finally
s(E∗∆)s(E∗Θ) = s(E∗∆)e(Θ)s(E∗Θ) = 0.

Let us also notice that for ρi =
E∆i

ρ

E∆i
ρ(1)

E∆i
ρi =

E∆i
(E∆i

ρ)

E∆i
ρ(1)

=
E∆i

ρ

E∆i
ρ(1)

= ρi

and
ρi(s(E

∗
∆i

)) = E∆iρi(s(E
∗
∆i

)) = ρi(E
∗
∆i

(s(E∗∆i
))) =

= ρi(E
∗
∆i

(1)) = E∆i
ρi(1) = 1 = ρi(1)
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and we have
s(ρi) ⊂ s(E∗∆i

).

The orthogonality of the supports of E∗∆i
’s implies orthogonality of s(ρi)’s. According

to [4, Theorem 4.3] there exists a channel K∗ which clones the family Γ = {ρi} i ∈ I
and broadcas the final state EΩ =

∑
i αiρi where αi = E∆i

ρi(1). �

Corollary 2. For a minimal state entropy measurement (associated with an instru-
ment E) the channel which clones family of states Γ = {ρi, i = 1, 2, . . . } and broad-
casts final state EΩρ is given by the formula

K∗(ϕ) =
∑
i

ϕ(s(E∗∆i
))

E∆i
ρ

E∆i
ρ(1)

⊗ E∆i
ρ

E∆i
ρ(1)

.

Proof.
Let denote ρi =

E∆i
ρ

E∆i
ρ(1) .

K∗(ρj) =
∑
i

ρj(s(E
∗
∆i

))
E∆i

ρ

E∆i
ρ(1)

⊗ E∆iρ

E∆i
ρ(1)

.

Observe that

ρj(s(E
∗
∆i

)) =

{
0 for i 6= j

1 for i = j

thus K(ρj) = ρj ⊗ ρj . Moreover,

K∗(EΩρ) =
∑
i EΩρ(s(E∗∆i

))ρi ⊗ ρi =
∑
i

∑
j E∆iρ(s(E∗∆i

))ρi ⊗ ρi
=
∑
i

∑
j ρ(E∗∆j

s(E∗∆i
))ρi ⊗ ρi =

∑
i ρ(E∗∆i

s(E∗∆i
))ρi ⊗ ρi

=
∑
i ρ(E∗∆i

(1))ρi ⊗ ρi =
∑
i E∆iρ(1)ρi ⊗ ρi

and
Πi(K∗(EΩρ)) =

∑
i

E∆iρ(1)ρi =
∑
i

E∆iρ = EΩρ.

�
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KLONOWANIE I ENTROPIA W ALGEBRACH VON NEUMANNA

S t r e s z c z e n i e
Klonowanie stanów kwantowych oraz badanie ich entropii to dwa ważne aspekty teorii

informacji kwantowej.
W pracy wykorzystana została definicja entropii stanu kwantowego, reprezentowanego

przez element preduala algebry von Neumanna, zaczerpniȩta od Segala. Przedstawione
zostały również własności entropii jako funkcji stanu.

Podczas pomiaru, stan pocza̧tkowy systemu kwantowego ulega przekształceniu. Jeżeli
pomiar jest reprezentowany przez instrument powtarzalny bȩda̧cy jednocześnie odwzoro-
waniem idempotentnym, wówczas entropia stanu końcowego osia̧ga najmniejsza̧ wartość,
a pomiar nazywamy “pomiarem o minimalnej entropii stanu”.

Z każdym stanem końcowym zwia̧zana jest rodzina stanów zdeterminowana przez tzw.
skalȩ odczytu pomiaru. Jeżeli pomiar jest pomiarem o minimalnej entropii stanu, wówczas
dla dowolnej skali odczytu istnieje kanał “brodcastuja̧cy” stan końcowy i jednocześnie
klonuja̧cy rodzinȩ stanów zdeterminowana̧ przez tȩ skalȩ odczytu.

Słowa kluczowe: algebra von Neumanna, entropia, klonowanie
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SPACEABILITY OF THE SET OF CONTINUOUS LINEAR INJEC-
TIONS FROM `p TO `p WITH NOWHERE CONTINUOUS INVERSES

Summary
Let 1 ≤ p < ∞. We show that, in the Banach space of all bounded linear operators

from `p to `p, the subset consisting of all injections with nowhere continuous inverses, is
isometrically `p-spaceable, i.e., it contains an isometric copy of `p. The proof uses the ideas
from a recent paper of M. Balcerzak and F. Strobin, in which a similar result (in particular,
without linearity) was proved, and from a recent paper of S. Creswell where one example
of such a mapping was given.

We also show how to modify the proof of mentioned result of M.Balcerzak and F. Strobin
to get a relatively more natural version of it.

Keywords and phrases: spaceability, special continuous mappings, `p-spaces, bounded linear
operators

1. Introduction

In the last decade a new notion of largeness has become very popular. Namely, one
can call a set big whenever it contains an algebraic structure inside - like a vector
space, a closed vector space, an algebra etc. (For a comprehensive description of
these concepts we refer the reader for example to the survey papers [8, 9].)

For our purposes we need to recall the notion of spaceability, that firstly appeared
in the works of R.Aron, A.Bartoszewicz, S.Gła̧b, V.Gurariy, D. Pérez-García and
J. B. Seoane-Sepúlveda (see [4–7])

Definition 1. Let X be a Banach space and a set A ⊆ X.We say that A is spaceable
if A ∪ {0} contains an infinite dimensional closed vector subspace. Moreover, if A ∪
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{0} contains an isometric copy of some Banach space V then we say that A is
isometrically V -spaceable.

Having 1 ≤ p < ∞ and a field K ∈ {R,C}, by `Kp we denote the space of sequences
of elements from K, summable with the pth power (with respect to the absolute
value of coefficients). An element x ∈ `Kp will denote a sequence x = (xn)n∈N. The
standard norm in `Kp will be denoted by the symbol ‖·‖p and for n ∈ N, en will denote
the sequence (0, ..., 0, 1, 0, ...) where 1 occurs on the nth coordinate only. Moreover,
B(`Kp , `

K
p ) stands for the Banach space of all continuous linear operators from `Kp

to `Kp equipped with the standard operator norm, and Cb(B`Kp , `
K
p ) stands for the

Banach space of all continuous bounded mappings (not necessarily linear) on the
open unit ball B`Kp ⊆ `

K
p to `Kp , equipped with the supremum norm.

S.Creswell [2] described a continuous bijection T from `R2 onto a subset of `R2
such that its inverse T−1 is discontinuous everywhere. In the paper [1] this example
(modified a bit) was exploit to prove the following:

Theorem 1. Let 1 < p < ∞ and W ⊆ Cb(B`Rp , `
R
p ) be a set of all injections with

nowhere continuous inverses. The set W is isometrically `Rp -spaceable.

In the Section 2 we show how to modify the original proof from [1] to get analo-
gous (to the one from [1]) result, but for mappings defined on a closed unit ball B`Rp
(as was pointed out by Z. Lipecki during seminar in Wrocław Univeristy of Technol-
ogy, such a result for the closed unit ball seems to be more natural). Namely, our
goal is to modify the proof (from [1]) of Theorem 1 to get the following result (we
equip the space Cb(B`Rp , `

R
p ) of bounded continuous mappings from B`Rp to `p also

with the supremum norm):

Theorem 2. Let 1 < p < ∞ and W ⊆ Cb(B`Rp , `
R
p ) be a set of all injections with

nowhere continuous inverses. The set W is isometrically `Rp -spaceable.

Moreover, in the Section 3, we use another S.Creswell’s example ( [3]) to obtain
related, but essentially different result. Namely, we prove that for 1 ≤ p <∞ (so we
allow p = 1) and K ∈ {R,C}, the set of all continuous linear injections from `Kp to
`Kp is isometrically `Kp -spaceable in the space B(`Kp , `

K
p ).

2. Proof of Theorem 2

In this section we show how to modify original proof of Theorem 1 to get a proof
Theorem 2. For simplicity, in this section we write `p instead of `Rp .

Proof. (of Theorem 2) We start in a similar way as in the proof of Theorem 1 in [1].
Let (Ak)k∈N be a decomposition of N (i.e. sequence of pairwise disjoint sets that
covers N) into infinite sets. For k ∈ N let σk : Ak → N be a bijection. For t ∈ `p and
x ∈ `p let us define a sequence

(
(Ft(x))j

)
j∈N by the formula:
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(Ft(x))j := tks
+(xσk(j))|xσk(j)|

p

for all j ∈ N, where k is such that j ∈ Ak, and s+ : R→ {−1, 1} is the sign function.
In the same way as in the proof of Theorem 1 in [1], we can see that the mapping

Bp 3 t→ Ft ∈ Cb(Bp, `p) is an isometry. It remains to show that for any t ∈ `p\{0},
h := Ft ∈ W ′′. We only focus on showing that h−1 is discontinuous everywhere in
h[B`p ].

So we fix y ∈ h[B`p ], and take x ∈ B`p such h(x) = y. If x ∈ B`p (i.e., ‖x‖p < 1),
then we proceed exactly as in [1].

Hence assume that ‖x‖p = 1, and take i0 ∈ N such that xi0 6= 0.
Now take r ∈ N so that tr 6= 0 (recall that t = (ti) 6= 0) and choose any δ > 0.

We can find c, η > 0 such that

(1) |tr|−1
∑
j∈Ar

|yj |+ c− η

 ≤ 1

(2)
η‖t‖p
|tr|

< δ

(3) η < |yσ−1
r (i0)

|

Note that (1) is a counterpart of [1, condition (4)]. Such a c, η can be taken because
‖x‖p ≤ 1 and yσ−1

r (i0)
6= 0 (since xi0 6= 0 - see [1, condition (3)]).

By (2) we can take n ∈ N such that

(4) |tr|−p‖t‖pp
(

cp

np−1
+ ηp

)
< δp

(note that it is a counterpart of [1, condition (5)]).
Then we proceed as in original proof of Theorem 1, with the change that we have
to assure that, additionally, j1, ..., jn 6= σ−1r (i0). Then we define v = (vi) as in [1],
but with additional condition:

(5) vi0 = s+(tr)s
+(yσ−1

r (i0)
)|tr|−

1
p

∣∣∣yσ−1
r (i0)

−s+(yσ−1
r (i0)

) · η
∣∣∣ 1p

Then by (1) we have

‖v‖pp = |tr|−1
 ∑
j∈Ar\{j1,...,jn,σ−1

r (i0)}

|yj |+
∑

j∈{j1,...,jn}

∣∣∣|yj |+ c

n

∣∣∣+ (|yσ−1
r (i0)

| − η
)

≤ |tr|−1
∑
j∈Ar

|yj |+ c− η

 ≤ 1,

so v ∈ Bp. Now setting z := h(v), we have (proceeding similarly as in [1] and
omitting one coefficient)

‖h−1(z)− h−1(y)‖p > |tr|−1
c

2
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and for every k ∈ N, following similar lines as in [1] and by (3), we have:∑
j∈Ak

|yj − zj |p = ... = |tk|p|tr|−p
∑
j∈Ar

|yj − zj |p = |tk|p|tr|−p
(

cp

np−1
+ ηp

)
(note that zσ−1

r (i0)
= yσ−1

r (i0)
− s+(yσ−1

r (i0)
) · η). The above, together with (4), give

us

‖z − y‖pp =
∑
k∈N

∑
j∈Ak

|zj − yj |p
 = |tr|−p

(
cp

np−1
+ ηp

)
||t||pp < δp

All in all, we proved the discontinuity of h−1 (for ε := |tr|−1 c2 ). �

Remark 3. It is worth to note that in the above proof it was more important that
‖x‖p > 0 rather than ‖x‖p = 1, since the fact that we were able to take xi0 6= 0

played some role.

3. Linear S. Creswell’s example and `p-spaceability

Let us start with recalling the mentioned in the Introduction example of S. Creswell
(see [3]; note that S.Creswell considered only the space `R2 , but his argument work
withs a general case). Let 1 ≤ p <∞, K ∈ {R,C}, and let the mapping T : `Kp → `Kp
be given by

T (x) :=
(
x1,

x2
2
,
x3
3
, ...
)
=
(xi
i

)
i∈N

for x ∈ `Kp . It is easy to see that T is linear, injective and that its inverse T−1 :

T [`Kp ]→ `Kp is given by

T−1(y) = (iyi)i∈N for y ∈ T [`Kp ].

Observe that:

(6) ‖T‖ = sup{‖T (x)‖p : ‖x‖p ≤ 1} = 1

and T−1 is discontinuous everywhere, that means (since T−1 is linear):

(7) sup{‖T−1(y)‖p : y ∈ T [`Kp ], ‖y‖p ≤ 1} =∞

To see (6), take x ∈ `Kp with ‖x‖p ≤ 1. Then

‖T (x)‖p =

(∑
i∈N

(
|xi|
i

)p) 1
p

≤

(∑
i∈N
|xi|p

) 1
p

≤ 1

Moreover, ‖T (e1)‖p = 1, so we have (6). Now fix n ∈ N and consider en ∈ T [`Kp ].
Since ‖en‖p = 1 and ‖T−1(en)‖p = n, we get (7).

The main result of this section is the following:

Theorem 4. Let 1 ≤ p < ∞, and W ⊆ B(`Kp , `
K
p ) be a set of all injections with

nowhere continuous inverses. The set W is isometrically `Kp -spaceable.
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Proof. We will write `p instead of `Kp . Let (Ak)k∈N be, again, a decomposition of N
into infinite sets and, for k ∈ N, let σk : Ak → N be a bijection. For t ∈ `p and x ∈ `p
let us define a sequence

(
(Ft(x))j

)
j∈N by the formula:

(Ft(x))j = tk
1

σk(j)
xσk(j)

for j ∈ N, where k ∈ N is such that j ∈ Ak. It is easy to see that for fixed t ∈ `p,
the mapping `p 3 x 7→ Ft(x) ∈ KN is linear. Moreover, for any x ∈ `p we have that∑

k∈N

∑
j∈N
|tk

1

σk(j)
xσk(j)|

p

 1
p

=

∑
k∈N
|tk|p

∑
j∈N
|1
j
xj |p

 1
p

= ‖t‖p · ‖T (x)‖p ≤ ‖t‖p · ‖T‖ · ‖x‖p(8)

where T is the Creswell’s operator recalled at the beginning of this section. Hence,
by (6) we have that Ft(x) ∈ `p. Moreover, also by (8) and (6), Ft : `p → `p is
continuous and

‖Ft‖ = sup{‖Ft(x)‖p : ‖x‖p ≤ 1} = sup{‖t‖p · ‖T (x)‖p : ‖x‖p ≤ 1}
= ‖t‖p · ‖T‖ = ‖t‖p.

The above calculations show that `p 3 t
F7→ Ft ∈ B(`p, `p) is an isometry.

Now, to finish the proof, it is enough to show that every element of F [`p] \ {0}
has an everywhere discontinuous inverse. Let t ∈ `p be such that Ft ∈ F [`p] \ {0}.
Then clearly t 6= 0. By linearity of F−1t it is sufficient to prove that

sup{‖F−1t (y)‖p : y ∈ Ft[`p], ‖y‖p ≤ 1} =∞

or, equivalently, that for every n ∈ N there is yn ∈ Ft[`p] with ‖yn‖p ≤ 1 and

‖F−1t (yn)‖p ≥
n

‖t‖p
.

Let n ∈ N and define yn ∈ `p by the formula:

yni =

{
tk
‖t‖p , when σk(i) = n for k ∈ N
0, elsewhere.

Observe that
‖yn‖p = 1 and Ft(

nen
‖t‖p

) = yn,

hence
‖F−1t (yn)‖p =

n

‖t‖p
.

To sum up, F : `p →W ∪ {0} is isometric embedding, hence W is `p-spaceable. �
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Remark 5. Observe that the family of all restrictions F|Bp
, F ∈ B(`p, `p), is a sub-

space of Cb(Bp, `p) (the norms coincide), so there might be an attempt to deduce
Theorem 2 directly from Theorem 4. However, it is not true that if F : X → Y is
an injection such that F−1 is everywhere discontinuous, then also every restriction
F|A has this property. Also, the proof of discontinuity of F−1t in Theorem 4 used
strongly the fact that a family of elements nen

‖t‖ is unbounded.
Let us also mention that the above proof of Theorem 4 is shorter and less techni-

cally complicated than the proofs of Theorems 1 and 2, despite the fact that its range
is wider (the complex case and p = 1). The reason is that the Creswell’s operator T
used here is nicer than the one used in the proofs of the latter theorems.
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DOMKNIĘTA LINIOWALNOŚĆ ZBIORU CIĄGŁYCH LINIOWYCH
INJEKCJI Z `p W `p O NIGDZIE-CIĄGŁYCH ODWROTNOŚCIACH

S t r e s z c z e n i e
Niech p ∈ [1,∞). W pracy pokazujemy, że w przestrzeni Banacha wszystkich operatorów

liniowych ograniczonych z `p w `p, podzbiór operatorów różnowartościowych o nigdzie-
ciągłych odwrotnościach, jest izometrycznie `p-domknięto liniowalny, czyli zawiera (wraz
z zerem) izometryczną kopię przestrzeni `p. Dowód wykorzystuje pewne idee z wcześniejszej
pracy M.Balcerzaka i F. Strobina, w której podobny wynik (w szczególności jednak bez
założenia liniowości) został udowodniony, oraz niedawnej pracy S.Creswella, gdzie jeden
konkretny przykład takiej funkcji został podany.

W pracy pokazujemy też w jaki sposób zmodyfikować dowód twierdzenia ze wspomni-
anej pracy M.Balcerzaka i F. Strobina aby uzyskać w pewnym sensie bardziej naturalną
jego wersję.

Słowa kluczowe: domknięta liniowalność, szczególne funkcje ciągłe, przestrzenie `p, opera-
tory liniowe ograniczone
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PHYSICS OF COMPLEX ALLOYS – ONE DIMENSIONAL
RELAXATION PROBLEM AND THE ROLE OF TOTAL ENERGY
CALCULATION

Summary
We start with a brief description of an approach to physics of complex materials, in

particular alloys, coming back to R.Kikuchi (1951). Then some algebras important when
studying the stochastical relaxation problems are recalled as well as the background algebras
involved in linearization of the initial second order differential equations, with help of the
Cayley-Dickson process. Then (Sections 4 and 5) the four and two-sheeted Riemann-surface
approach to the algebras in question is reported (the original content of this section is en-
tirely due to the second-named author). In Section 4 we consider algebras with four and
eight generators; in Section 5 with 9 and 18 generators – in addition this includes bridging
of the related scales. Next an analysis of linearization of the one-dimensional stochasti-
cal relaxation problem is given together with a numerical procedure for calculating the
six fundamental solutions. Three examples are attached for solving effectively the related
boundary value problem. Finally two kinds of conclusions are given: concerning lines of
forces and equipotential lines, and concerning physical and non-physical fundamental solu-
tions. In addition, an example of calculation of total energy of an alloy is given.

Keywords and phrases: complex material, relaxation problem, nonlinear parabolic equation,
para-quaternions

1. Introduction: an approach to physics of complex
materials

Physics of complex materials is now of basic interest in physics and technology
including, in particular, crystalline solidification [25–12]. In his theory of cooperative
phenomena, Kikuchi [3] approximated a complex crystallographic structure with help
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Fig. 1: Some basic configurations of pairs, triples and quadruples of neighbouring atoms in
a binary alloy according to R. Kikuchi.

of different configurations like lattice edges, pairs of edges, triangles, squares, and
regular pyramids (Fig. 1) which, in particular, gives rise for total energy calculations.
Following this idea, Castillo Alvarado and two of us [1] constructed fractal modelling
of alloys. In the case of an AB3 binary alloy of fcc lattice and (111) surface orientation
the first embranchment is shown in Fig. 2, where α- and β-vacancies are replaced by
α- and β-sites respectively. Actually our Fig. 2 is an example of introducing some
complexity: α- and β-vacancies because the AB3 binary alloy of [1] has to be treated
as a quaternary alloy.

Besides, owing to thermal dependence of vacancies, they are more dense close
to the surfaces, so the fractal structure fails. In addition we may treat the AB3-
binary alloy with α- and β-vacancies as a quaternary alloy. Two of us were already
treating the topic with help of decomposition of the staff to triangles or rectangles
[14, 12]. Moreover, they inverted a method of replacing the description of quater-
nary alloy by description of ternary alloys and the description of ternary alloy by
description of binary alloys [15] (cf. Figs 3, 4). On the level of linearization and
Cayley-Dickson process this involves Clifford-Grassmann algebras with quaternions
and para-quaternions for the background [27, 24, 6–8]. In connection with a four-and
two-sheeted Riemann-surface approach, in analogy to Tamm’s lectures on electro-
magnetism [32, 33, 9, 5] our description comes back to Sylvester [30, 31] and Peirce
[26], and includes bridging of the related scales. Conclusions, following examples, for
solving effectively the related boundary value problem, concern lines of force and
equipotential lines, and discussion which fundamental solutions are physical. Also,
an example of total energy calculation in an alloy is given.
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Fig. 2: AB3 binary alloy with two types α β of vacancies of fcc lattice and (111) surface
orientation.

2. Algebras important when studying the stochastical
relaxation problem

For studying the one-dimensional stochastical relaxation problem related with the
second order parabolic differential equation of the second kind [11]:

∂

∂t
s = −Γs.+ Λ

(
∂2

∂x2
− α2 ∂

2

∂τ̄2

)
s

or
∂

∂τ
s = −Γs.+ Λ

(
∂2

∂x2
− ∂2

∂τ̃2

)
s, τ̄ = ατ̃(1)

with real variables y, t, τ , given C2 – scalar functions Γ, Λ given real constant α and
admissible function s, we need an algebra with generators (ε, ε0, ε1) satisfying the
relations

ε2 = ε1, ε20 = ε, ε21 = 0, ε0ε1 + ε1ε0 = 0.(2)

A physical meaning of the functions and constants involved is explained in [13]. Since
τ̄ stands for temperature, entropy, or short-range order parameter, (1) describes a
statistical problem. Because of (2) statistic description is put into the mathematical
model, so the problem becomes stochastical.

The algebra governing (2) is called the Clifford-Grassmann Cl01,0(C) algebra [9].
As generators we may take
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Fig. 3: Cumulative scheme 3 · 2 · 34 → 3 · 3 · 24 of binary and ternary formal extensions
(non-satisfactory for characterizing a quaternary structure).

ε =

(
1 0

0 1

)
, ε0 =

(
i 0

0 −i

)
, ε1 =

(
0 i

0 0

)
,(3)

i being the imaginary unit.
We can see that our algebra is closely related to the Pauli algebra with the familiar

generators σ1, σ2, σ3 namely: ε0 = iσ3, ε1 = 1
2 i(σ1 + iσ2), and to the quaternion

algebra. Let us recall that, in analogy to the complex algebra, determined by the
composition formula
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(x21 + x22)(y21 + y22) = (x1y1 − x2y2)2 + (x2y1 + x1y2)2, x1, . . . , y2 real,

the quaternion algebra is determined by the composition formula

(x21 + · · ·+ x24)(y21 + · · ·+ y24) = (x1y1 − x2y2 − x3y3 − x4y4)2

+(x2y1 + x1y2 − x4y3 + x3y4)2 + (x3y1 + x4y2 + x1y3 − x2y4)2

+(x4y1 − x3y2 + x2y3 − x1y4), x1, . . . , y4 real,(4)

and this leads to quaternions [29, 4-8]:

x = x1 + x2i+ x3j + x4k,

where

ij = k, jk = i, ki = j, i2 = j2 = k2 = −1, x1, . . . , x4 real.

Instead, we may take four generators

I3 =

 1 0 0

0 1 0

0 0 1

 , u =

 0 0 1

j 0 0

0 j2 0

 ,

v =

 0 0 1

j2 0 0

0 j 0

 , uv =
1

j
vu = j

 0 1 0

0 0 1

1 0 0

 , j3 = 1, j 6= 1,

and this leads to quasi-quaternions [22].
In analogy we take

x = x∗1 + x∗2 ĩ+ x∗3j̃ + x∗4k̃,

where

ĩj̃ = k̃, j̃k̃ = −ĩ, k̃ĩ = j̃, ĩ2 = −j̃2 = −k̃2 = −1, x∗1, . . . , x
∗
4

real, thus having para-quaternions [13, 11, 34, 10]. Instead, we may take for them
four generators [22]:

I3, u⊥⊥ =

 0 j2 0

0 0 j

1 0 0

 , v⊥⊥ =

 0 j 0

0 0 j2

1 0 0

 ,

(uv)⊥⊥ =
1

j
(vu)⊥⊥ = j

 0 0 1

1 0 0

0 1 0

 , j3 = 1, j 6= 1,

where uαβ⊥ = uβ,4−α, α, β = 1, 2, 3, and this leads to quasi-para-quaternions.
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3. Background algebras involved in the linearization
the Cayley-Dickson process

Let A be a finite-dimensional algebra over a field K equipped with an involution:
∗ : A → A such that (ab)∗ = b∗a∗ for all a, b ∈ A and with norm ‖ a ‖2= aa∗. Let

(a, b) + (c, d) = (a+ c, b+ d), (a, b) · (c, d) = (ac− db∗, da+ bc∗)

for (a, b), (c, d) ∈ A×A.
The set A′ = A∗ with these operations is an algebra with involution: (a, b)∗ =

(a,−b)∗ and norm ‖ S ‖2= SS∗, where S = (a, b) ∈ A. Clearly, A is a subalgebra
of A via the embedding a 7→ (a, 0). The construction defined above is the so-called
Cayley-Dickson doubling process.

With help of this process, from real algebra we can obtain the complex alge-
bra, from complex algebra – the quaternion algebra, from quaternion algebra – the
octonion algebra:

C = R⊕ Ri, H = C⊕ Cj, O = H⊕H`,

where i, j, ` are complex, resp. quaternionic, resp. octonionic units.
Because of (3) the complex multiplication is defined by

(x1, x1) ◦C (y1, y2) = (x1y1 − x2y2, x2y1 + x1y2).

Because of (4) the quaternional multiplication is defined by

(s1, s2) ◦H (w1, w2) = (s1w1 − s2w2, s2w1 + s1w2).

Coming from the complex to quaternion multiplication we loose the commutativity;
coming from the quaterniome to octonionic multiplication, we loose the associativity.

4. The four- and two-sheeted Riemann surface approach
to the algebras: 4 and 8 generators

Riemann surfaces are of great importance in the electromagnetic field theories [32,
33, 9, 10]. They are also important for our interest in algebras with 4 and 8 generators
[22]. Following [30, 31, 26] consider the first quarter of the complex (3×3)-matrix
plane uI3v with origin I3 and scaling (u, u2), (v, v2) as expressed in Fig. 4.

In analogy, we consider the third quarter of the same plane with scaling
(u⊥⊥, u

2
⊥⊥), (v⊥⊥, v2⊥⊥) as expressed in Fig. 5.

In order to express in a similar way quasi-octonions we consider the first quarter as
before, together with the second quarter [22], with origin I⊥3 and scaling (u⊥, u2⊥),
(v⊥, v2⊥) as expressed in Fig. 6. In analogy, we consider the third quarter as before,
together with the fourth quarter, with the origin I⊥3 and scaling (u⊥⊥⊥, u2⊥⊥⊥),
(v⊥⊥⊥, v2⊥⊥⊥) as expressed in Fig. 7, arriving at para-octonions. The relationship
between the both algebras will be determined in [20].

It is natural o construct from the quarter-planes in question a Riemann sur-
face. Take two (yellow) planes Y1, Y2 and two (green) planes G1, G2 in the order
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Fig. 4: The quasi-quaternion quarter-plane.

Fig. 5: The quasi-para-quaternion quarter-plane.

Y1G1Y2G2, fix four origins as the critical point of the Riemann surface, cut Y1, G1

along positive v, u⊥-half-axes, and glue the edge of the first Y1-quarter to the edge
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of the second G1-quarter. Next cut G1, Y2 along v⊥, u⊥⊥-half-axis and then glue
the edge of second G1-quarter to the edge of the third Y2-quarter. In turn cut Y2,
G2 along v⊥⊥, u⊥⊥⊥ half-axes, and glue the edge of the third Y2-quarter to the
edge of fourth G2-quarter. Finally we cut G2, Y1 along v⊥⊥⊥, u⊥⊥⊥⊥ half-axis, and
glue the edge of the fourth G2-quarter to the edge of the first Y1-quarter. Clearly,
u⊥⊥⊥⊥ coincides with the positive u-half-axis. In order to do that we have to cut,
in addition, G1 and Y2 along v⊥⊥⊥, u⊥⊥⊥⊥-axes (in the both cases) and the glued
surface has to pierce the both cuts (Fig. 8).

Alternatively take one (yellow) plane Y and one (green) plane G in order Y G
(Fig. 9), fix two origins as one critical point of the Riemann surface, cut Y , G along
positive v, u⊥- and v⊥ u⊥⊥-half-axes, and glue the edge of first Y -quarter to the
edge of second G-quarter and the edge of third Y -quarter to the edge of fourth
G-quarter. Next cut G, Y along v⊥⊥, u⊥⊥⊥ and v⊥⊥⊥, u⊥⊥⊥⊥ -half-axes and glue
the edge of second G-quarter to the edge of third Y -quarter and the edge of fourth
G-quarter to the edge of the first Y -quarter. As before, u⊥⊥⊥⊥ coincides with the
positive u-half-axis. In order to do that we have to cut, in addition, G and Y along
v⊥, u⊥⊥ and v⊥⊥⊥, u⊥⊥⊥⊥ axes and the glued surface has to pierce the both cuts.

Fig. 6: The quasi-octonion half-plane.
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Fig. 7: The quasi-para-octonion half-plane.

Fig. 8: A four-sheeted Riemann surface model for quasi-quaternion and quasi-octonion
algebras.
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Fig. 9: A two-sheeted Riemann surface model of quasi-quaternion and quasi-octonion alge-
bras.

5. The four-and two-sheeted Riemann surface approach
to the algebras: 9 and 18 generators by bringing the scales
to u2vα, uαv2, α = 0, 1, 2

In order to deal with ternary alloys we need the nonion algebra (with 9 complex 3×3
matrix generators); in order to deal with quaternary alloys we need the duodevice-
nion algebra (with 18 complex 3×3 matrix generators) – the constructions rely upon
the cubic algebra (with 3 complex 3×3 matrix generators) [18–21, 4, 23, 17, 29–31].

To this end, we bridge the scales related to

u2vα =
1

j
vαu2, uαv2 =

1

j
v2uα, α = 0, 1, 2

in Fig. 4 and in Figs 5–9 correspondingly. The results are shown in Figs 10–13.
Generators

I3 =

 1 0 0

0 1 0

0 0 1

 , uv =
1

j
vu = j

 0 1 0

0 0 1

1 0 0

 ,

u2v2 =
1

j
v2u2 = j2

 0 0 1

1 0 0

0 1 0

 , with j3 = 1, j 6= 1(5)

spread the so called cubic algebra.
We conclude that the para-nonion algebra coincides with the nonion algebra.

However, different order of the generators allows a new geometrical interpreta-
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Fig. 10: Extension of the quasi-quaternion quarter-plane to nonion quarter-plane.

Fig. 11: Extension of the quasi-para-quaternion quarter-plane to para-nonion quarter-plane.

tion [20]. We can see that the generators of the duodevicenion algebra are the fol-
lowing:

three generators (5) of the cubic algebra and [16]: 1 0 0

0 j2 0

0 0 j

,
 0 j2 0

0 0 j

1 0 0

,
 0 0 1

j2 0 0

0 j 0

,
 1 0 0

0 j 0

0 0 j2

,
 0 j 0

0 0 j2

1 0 0

,
 0 0 1

j 0 0

0 j2 0

,
 0 0 1

0 1 0

1 0 0

,
 0 1 0

1 0 0

0 0 1

,
 1 0 0

0 0 1

0 1 0

,
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Fig. 12: Extension of the quasi-octonion half-plane to duodevicenion half-plane.

 0 0 1

0 j2 0

j 0 0

,
 0 j2 0

j 0 0

0 0 1

,
 1 0 0

0 0 j2

0 j 0

,
 0 0 1

0 j 0

j2 0 0

,
 0 j 0

j2 0 0

0 0 1

,
 1 0 0

0 0 j

0 j2 0

.
We also conclude that the para-duodevicenion algebra coincides with the duode-

vicenion algebra. However, different order of the generators allows a new geometrical
interpretation [20].
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Fig. 13: Extension of the para-nonion half-plane to para-duodevicenion half-plane.

6. An analysis of linearization of the one-dimensional
relaxation problem

We come back to the equation (1). Within the T.Oguchi theory of stochastical
relaxation, a = â/ā, where â is the amplitude of stochastical movement and ā is the
lattice constant. We may take the functions Γ and Λ as

Γ =
1

τ̂

[
1− 1

2

(
1− 4 〈s〉2 x̂1J

kBT

)]
, Λ =

ᾱ2

τ̂
· 1

ᾱ

(
1− 4 〈s〉2

) x̂1J
kBT

,

where x̂1 stands for the position of a fixed layer and τ̂ = x2 represents the stochastic
variable (temperature, entropy, or short range order parameter) responsible for the
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stochastic behaviour of the lattice; it describes thermal oscillations of spin. Further,
〈s〉 stands for the canonical average of spin; we suppose that it does not depend on
the position of a fixed layer x1 = x̂1. The parameter J us due to the interaction
between the neighbouring spins, kB stands for the Boltzmann constant, and T is the
absolute temperature. Following [11, 24, 25] we may take

s∗ = s0 ≡ −
∫ t

0

∫ +∞

−∞

∫ +∞

−∞
exp

[
(x− x′)2 − (τ̃ − τ̃ ′)2

4Λ(x′, τ̃ ′)(t− t′)

]
(Γs0) (x− x′, τ̃ − τ̃ ′, t− t′)dx′dτ̃ ′dt′.(6)

The counterparts of the familiar ∂ and ∂̄-operators known from the complex
analysis have to satisfy the conditions

∂∂̄s = Λ
(
∂2

∂x2 − ∂2

∂τ̃2

)
s, ∂̄s = P s = v, Λ∂(P s) = ∂

∂ts with Λ∂v = −Γs,

Λ∂(P s) = ∂(Qs), Qs = sxt � ε+ syt � ε0 + sxy � εε0

(7)

where � is the multiplication in C`∗01,0(C):

s ≡ (s, s0) = se+ s0e0; s, s0 ∈ R; (x, τ̃ , t) = xε+ τ̃ ε0 + tε1,

e� ε = (e, e� ε)e+ (e0, e� ε)e0

(e, e� e) = a.....e
2 + a.0...ee0 + a0....e0e+ a00...e

2
0 etc.,

(8)

( , ) being scalar product.
The solution s may be expressed as

s = c1s1 + . . .+ c6s6, c1, . . . , c6 ∈ C,

where s1, . . . , s6 are fundamental solutions of (1):

s1 = (∂s∗)ε, s4 = s∗ε+ (∂s∗)εε1

s2 = (∂s∗)ε0, s5 = s∗ε+ (∂s∗)ε0ε1

s3 = (∂s∗)εε0, s6 = −s∗εε0 + (∂s∗)εε0ε1.

(9)

Setting p = p(x, τ̃ , t) = ∂s∗, q = q(x, τ̃ , t) = s∗, we finally obtain

s = p[c1ε+ c2ε0 + c3ε0ε1 + (c4ε+ c5ε0 + c6εε0)ε1]

+ q(c4ε+ c5ε0 + c6εε0)ε1.

(10)

It is natural to suppose the initial conditions

s(x, τ̃ , 0) = x0, s(x, τ̃ , t)→ 0 as (x, t)→ (+∞, t0)

s(x, τ̃ , t)→ 0 as (x, τ̃ , t)→ (x0, τ̃ , t) for some x0.

(11)
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Throughout the paper we also assume that

0.5 · 10−12sec ≤ t0 ≤ 1.5 · 10−12sec, 2Å ≤ a ≤ 3Å.

7. Numerical procedure for calculating the six fundamental
solutions with the example of solving effectively
the boundary value problem

In order to calculate six fundamental solutions s1, . . . , s6 of (1) we choose the ad-
missible function s∗ so that the lines s1|t=τ̃ etc. and s1|t=−τ̃ etc. are singular
[24, 11]. To this end we choose the values (∂s∗, ∂̄s∗) satisfying (7) as shown in
Fig. 14.

Fig. 14: The map of (∂, ∂̄) for the chosen admissible function s∗.

Taking into account the multiplication rules for � given in Section 6 formulae (8),
and the admitted there initial conditions (11), we arrive at the maps of s1, . . . , s6 (9).
Since the differences between s1, s2, s3 and between s4, s5 are mainly in the structure
of singular lines, we show here the maps of s1, s5 and s6 only. A mere detailed
description including a study of singular lines is left to a future paper. It is worthwhile
to describe shortly the numerical algorithm concerned [36, 37, 27] in the context of
finding algorithm concerned has been presented in [27] in the context of finding the
behaviour of superconducting unconventional Josephson junction described using the
Ginsburg-Landau formalism. The authors of [27] assume that the general problem
concerned with

δ

δXi
F [Xi] = 0(12)

can be transformed into the schema

Xi(ζn+1) =
ζn+1 − ζn

ηi

δ

δXi
F [Xi]

∣∣∣∣
ζn

+Xi(ζn),(13)
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where F is a free energy functional, Xi is an unknown solution, ζn is an inten-
sive independent variable parameter increased in each iteration step, δF/δXi is the
Gâteaux derivative of F , and ηi is a constant. The first solution (Xi for ζ0 = 0) is
obtained from the simplified problem description (e.g. linearized problem (12)). The
proposed schema (13) is executed until the solution Xi(ζn) converge. The announced
results are shown in Fig. 15.

Fig. 15: The fundamental solutions s1, s
1,1
5 , s1,16 of equation (1). The upper index is used

to the matrix elements numeration.
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8. Calculation of total energy of an alloy

Physically and from the piont of view of possible technological applications, we
consider the fundamental solutions s1, s5, s6. We have

es1 = es2 = es3 << es4 = es5 = es6

which may be calculated with the procedures [3, 2, 35] or, alternatively, by a the
standard numerical finite-difference method.

More precisely, we can calculate the total energies esα using the following expres-
sion

esα =

∫ ∫
|sα|2 dx dy.

Following [24, 28] and (8) we can assume that

|sαsα0 | ≤
√

2|sα||sα0|

therefore for

sα =

(
aα bα
cα dα

)
we have

sα =
1

4
|aα + dα|2 +

1

4
|aα − dα|2 +

1

4
|bα + cα|2 +

1

4
|bα − cα|2,

so that, finally,
es4 = es5 = es6 ≈ 17.1874esα , α = 1, 2, 3.

9. Conclusions concerning lines of force, equipotential lines,
and physical and non-physical fundamental solutions

A map of lines of force and equipotential lines is formed in the plane (s, s0).
A careful analysis of magnetic fields generated by fundamental solutions s1, . . . , s6
for s∗ allows us to consider all of them as physical, i.e. physically realizable.
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O FIZYCE ZŁOŻONYCH KRYSZTAŁÓW – JEDNOWYMIAROWY
PROBLEM RELAKSACJI I ZNACZENIE OBLICZEŃ CAŁKOWITEJ
ENERGII

S t r e s z c z e n i e
Dla badania złożonych stopów istotna jest linearyzacja równań różniczkowych prze-

mieszczeń atomów w stopie, do czego niezbȩdne sa̧ pewne algebry o 4, 8, 9 i 18 genera-
torach, które omawiamy podaja̧c pewne nieznane dota̧d własności (sa̧ to wyniki Małgorzaty
N.-K.). Efektywne wyliczenie przeprowadzamy dla jednowymiarowej relaksacji stochasty-
cznej, co wia̧że siȩ z wyliczeniem sześciu rozwia̧zań fundamentalnych i badaniem ich udzi-
ału w rozpatrywanych sytuacjach fizycznych. Pracȩ kończy przykład obliczenia całkowitej
energii stopu.

Słowa kluczowe: materiał złożony, problem relaksacyjny, nieliniowe równanie paraboliczne,
para-kwaterniony
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A VISCOELASTIC CONTACT PROBLEM
WITH SLIP DEPENDENT FRICTION AND ADHESION

Summary
We consider a mathematical model which describes the equilibrium between a viscoelas-

tic body in frictional contact with a foundation. The contact is modelled with a prescribed
normal stress and adhesion, associated with a slip-dependent version of Coulomb’s law of
dry friction. The adhesion is modelled with a surface variable, the bonding field, whose
evolution is described by a first-order differential equation. We establish a variational for-
mulation of the mechanical problem and prove the existence and uniqueness result of the
weak solution if either the slip weakening or the given normal stress on the contact sur-
face are sufficiently small. The proof is based on arguments of time-dependent variational
inequalities, differential equations and Banach fixed-point theorem.

Keywords and phrases: viscoelastic, adhesion, slip-dependent friction, fixed point, weak
solution

1. Introduction

Contact problems involving deformable bodies are quite frequent in industry as well
as in daily life and play an important role in structural and mechanical systems.
Because of the importance of this process a considerable effort has been made in
its modelling and numerical simulations. A first study of frictional contact problems
within the framework of variational inequalities was made in [6]. The mathemati-
cal, mechanical and numerical state of the art can be found in [17]. The quasistatic
contact problem with normal compliance and friction for viscoelastic materials was
studied in [15]. In this paper we consider a mathematical model which describes a
quasistatic contact between a viscoelastic body and a fondation. The contact is mod-
elled with a prescribed normal stress, adhesion and slip-dependent friction. We recall
that the assumption of slip-dependent friction is used by geological researchers in the
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study of the motion of tectonic plates; see [11, 13] and the references therein. The
models for dynamic or quasistatic process of adhesive contact between a deformable
body and a foundation have been studied by several authors, see for instance the
references [2–5, 14, 16–21] and the references therein. Here, as in [8, 9] we use the
bonding field as an additional state variable β, defined on the contact surface of the
boundary. The variable is restricted to values 0 ≤ β ≤ 1, when β = 0 all the bonds
are severed and there are no active bonds; when β = 1 all the bonds are active; when
0 < β < 1 it measures the fraction of active bonds and partial adhesion takes place.
We refer the reader to the extensive bibliography on the subject in [10, 14, 16–20].
In this work we derive a variational formulation of the mechanical problem for which
we prove the existence and uniqueness of a weak solution if either the slip weakening
or the given normal stress on the contact surface are sufficiently small. The proof is
based on arguments of time-dependent variational inequalities, differential equations
and Banach fixed point theorem.

The paper is structured as follows. In section 2 we present some notations and
give the variational formulation. In section 3 we state and prove our main existence
and uniqueness result, Theorem 2.1.

2. Problem statement and variational formulation

We consider a viscoelastic body which occupies a domain Ω ⊂ Rd (d = 2, 3) and
assume that its boundary Γ is regular and partitioned into three measurable and
disjoint parts Γ1,Γ2,Γ3 such that meas (Γ1) > 0. The body is acted upon by a
volume force of density f1 in Ω and a surface traction of density f2 on Γ2. On Γ3

the body is in adhesive contact with a foundation following a slip-dependent version
of Coulomb’s friction law.

Then, the classical formulation of the mechanical problem is written as follows.

Problem P1. Find a displacement field u : Ω × [0, T ] → Rd and a bonding field
β : Γ3 × [0, T ]→ [0, 1] such that

(2.1) divσ (u, u̇) = −f1 in Ω× (0, T ) ,

(2.2) σ (u, u̇) = Aε (u̇) +Bε (u) in Ω× (0, T ) ,

(2.3) u = 0 on Γ1 × (0, T ) ,

(2.4) σν = f2 on Γ2 × (0, T ) ,

(2.5) −σν = S − cνβ2Rν (uν) on Γ3 × (0, T ) ,
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(2.6)



∣∣στ + cτβ
2Rτ (uτ )

∣∣ ≤ µ (|uτ |)S∣∣στ + cτβ
2Rτ (uτ )

∣∣ < µ (|uτ |)S =⇒ u̇τ = 0∣∣στ + cτβ
2Rτ (uτ )

∣∣ = µ (|uτ |)S =⇒

∃λ ≥ 0 s.t. u̇τ = −λ
(
στ + cτβ

2Rτ (uτ )
)

on Γ3 × (0, T ) ,

(2.7) β̇ = −[β(cν |Rν (uν)|2 + cτ |Rτ (uτ )|2)− εa]+ on Γ3 × (0, T ) ,

(2.8) u (0) = u0 in Ω,

(2.9) β (0) = β0 on Γ3.

Equation (2.1) represents the equilibrium equation where σ = σ (u, u̇) denotes the
stress tensor. Equation (2.2) is the viscoelastic constitutive law of the material in
which A and B are given nonlinear functions and ε (u) is the small strain tensor.
Here and below a dot above a variable represents a time derivative. Relations (2.3)

and (2.4) are the displacement and traction boundary conditions, respectively, in
which ν denotes the unit outward normal vector on Γ and σν represents the Cauchy
stress vector. Condition (2.5) represents the prescribed normal stress S with adhesion
and (2.6) is the associated Coulomb’s law of dry friction on the contact surface Γ3

where µ denotes the coefficient of friction. The parameters cν , cτ and εa are adhesion
coefficients which may depend on x ∈ Γ3. Following [18], Rν and Rτ are truncation
operators defined by

Rν (s) =


L if s < −L
−s if − L ≤ s ≤ 0

0 if s > 0

, Rτ (v) =

 v if |v| ≤ L
L

v

|v|
if |v| > L ,

where L > 0 is a characteristic length of the bonds. Equation (2.7) represents the
ordinary differential equation which describes the evolution of the bonding field and
it was already used in several papers, see for example [21], where [s]+ = max (s, 0)

∀s ∈ R. Since β̇ ≤ 0 on Γ3 × (0, T ), once debonding occurs, bonding cannot be
reestablished. Also we wish to make it clear that from [12] it follows that the model
does not allow for complete debonding field in finite time. Finally, (2.8) and (2.9)

represent respectively the initial displacement field and the initial bonding field.
We recall that the inner products and the corresponding norms on Rd and Sd are
given by

u.v = uivi, |v| = (v.v)
1
2 ∀u, v ∈ Rd,

σ.τ = σijτij , |τ | = (τ.τ)
1
2 ∀σ, τ ∈ Sd,

where Sd is the space of second order symmetric tensors on Rd (d = 2, 3). Here and
below, the indices i and j run between 1 and d and the summation convention over
repeated indices is adopted. Now, to proceed with the variational formulation, we
need the following function spaces:



50 A. Touzaline

H =
(
L2 (Ω)

)d , H1 =
(
H1 (Ω)

)d , Q =
{
σ = (σij) : σij = σji ∈ L2 (Ω)

}
,

Q1 = {σ ∈ Q : divσ ∈ H} .
Note that H and Q are real Hilbert spaces endowed with the respective canonical
inner products

(u, v)H =

∫
Ω

uividx, (σ, τ)Q =

∫
Ω

σijτijdx.

The strain tensor is

ε (u) = (εij (u)) , where εij (u) =
1

2
(ui,j + uj,i) ;

divσ = (σij,j) is the divergence of σ. For every element v ∈ H1 we denote by vν and
vτ the normal and the tangential components of v on the boundary Γ given by

vν = v.ν, vτ = v − vνν.

Similary, for a regular function σ ∈ Q1, we define its normal and tangential compo-
nents by

σν = (σν) .ν, στ = σν − σνν

and we recall that the following Green’s formula holds:

(σ, ε (v))Q + (divσ, v)H =

∫
Γ

σν.vda ∀v ∈ H1,

where da is the surface measure element. Let V be the closed subspace of H1 defined
by

V = {v ∈ H1 : v = 0 on Γ1} .

Since meas (Γ1) > 0, the following Korn’s inequality holds [6], where the constant
cΩ > 0 depends only on Ω and Γ1. We equip V with the inner product

(2.10) ‖ε (v)‖Q ≥ cΩ ‖v‖H1
∀v ∈ V,

(u, v)V = (ε (u) , ε (v))Q

and ‖.‖V is the associated norm. It follows from Korn’s inequality (2.10) that the
norms ‖.‖H1

and ‖.‖V are equivalent on V. Then (V, ‖.‖V ) is a real Hilbert space.
Moreover by Sobolev’s trace theorem, there exists dΩ > 0 which depends only on
the domain Ω, Γ1 and Γ3 such that

(2.11) ‖v‖(L2(Γ3))d ≤ dΩ ‖v‖V ∀v ∈ V.

For p ∈ [1,∞] , we use the standard norm of Lp (0, T ;V ). We also use the Sobolev
space W 1,∞ (0, T ;V ) equipped with the norm

‖v‖W 1,∞(0,T ;V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ) .

For every real Banach space (X, ‖.‖X) and T > 0 we use the notation C ([0, T ] ;X)

for the space of continuous functions from [0, T ] to X; recall that C ([0, T ] ;X) is a
real Banach space with the norm
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‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x (t)‖X .

We suppose that the body forces and surface tractions have the regularity

(2.12) f1 ∈ C ([0, T ] ;H) , f2 ∈ C
(

[0, T ] ;
(
L2 (Γ2)

)d)
and, moreover, we use Riesz’s representation to define a function

f : [0, T ]→ V

by

(2.13) (f (t) , v)V =

∫
Ω

f1 (t) .vdx+

∫
Γ2

f2 (t) .vda−
∫

Γ3

Svνda ∀v ∈ V , t ∈ [0, T ] .

(2.12) and (2.13) imply that

f ∈ C ([0, T ] ;V ) .

Also we define the functional jfr : V × V → R by

jfr (v, w) =

∫
Γ3

µ (|vτ |)S |wτ | da ∀v, w ∈ V,

where the coefficient of friction µ and S are assumed to satisfy

(2.14)

(a) µ : Γ3 × R+ → R+;

(b) there exists Lµ > 0 such that
|µ (x, r1)− µ (x, r2)| ≤ Lµ |r1 − r2| ∀r1, r2 ∈ R+, a.e. x ∈ Γ3;

(c) for any r ∈ R+, the mapping x→ µ (x, r) is measurable on Γ3;
(d) the mapping x→ µ (x, 0) ∈ L2 (Γ3) .


(2.15) S ∈ L∞ (Γ3) and S ≥ 0 a.e. on Γ3.

In the study of Problem P1 we assume that the viscosity operator A satisfies

(2.16)

(a) A : Ω× Sd → Sd;

(b) there exists MA > 0 such that
|A (x, ε1)−A (x, ε2)| ≤MA |ε1 − ε2| ,
for all ε1, ε2 in Sd, a.e. x in Ω;

(c) there exists mA > 0 such that
(A (x, ε1)−A (x, ε2)) . (ε1 − ε2) ≥ mA |ε1 − ε2|2 ,
for all ε1, ε2 in Sd, a.e. x in Ω;

(d) the mapping x→ A (x, ε) is Lebesgue measurable on Ω,

for any ε in Sd;
(e) x→ A (x, 0) ∈ Q.


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The elasticity operator B satisfies

(2.17)

(a) B : Ω× Sd → Sd
(b) there exists MB > 0 such that

|B (x, ε1)−B (x, ε2)| ≤MB |ε1 − ε2| ,
for all ε1, ε2 in Sd, a.e. x in Ω;

(c) the mapping x→ B (x, ε) is Lebesgue measurable on Ω,

for any ε in Sd;
(e) x→ B (x, 0) ∈ Q.


As in [19] we suppose that the adhesion coefficients cν , cτ and εa satisfy the condi-
tions:

(2.18) cν , cτ ∈ L∞ (Γ3) , εa ∈ L2 (Γ3) , cν , cτ , εa ≥ 0 a.e. on Γ3.

We assume that the initial data satisfy

2.19 u0 ∈ V ,

(2.20) β0 ∈ L2 (Γ3) : 0 ≤ β0 ≤ 1, a.e. on Γ3.

Next, we define the functional jad : L2 (Γ3)× V × V → R by

jad (β, u, v) =

∫
Γ3

(−cνβ2Rν (uν) vν + cτβ
2Rτ (uτ ) .vτ )da.

Finally, we need to introduce the following set for the bonding field:

B =
{
θ : [0, T ]→ L2 (Γ3) : 0 ≤ θ (t) ≤ 1 ∀t ∈ [0, T ] , a.e. on Γ3

}
.

Now assuming the solution to be sufficiently regular, we obtain by using Green’s
formula that the problem P1 has the following variational formulation.

Problem P2. Find a displacement field u : [0, T ] → V and a bonding field β :

[0, T ]→ L2 (Γ3) such that
(2.21)

(Aε (u̇ (t)) , ε (v)− ε(u̇ (t)))Q + (Bε (u (t)) , ε (v)− ε(u̇ (t)))Q + jfr (u (t) , v)

−jfr (u (t) , u̇ (t)) + jad (β (t) , u (t) , v − u̇ (t)) ≥ (f (t) , v − u̇ (t))V

∀ v ∈ V , t ∈ [0, T ] ,

(2.22) β̇ (t) = −[β (t) (cν |Rν (uν (t))|2 + cτ |Rτ (uτ (t))|2)− εa]+ a.e. t ∈ (0, T ) ,

(2.23) u (0) = u0,

(2.24) β (0) = β0.

Our main result of this section, which will be established in the next is the following
theorem.
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Theorem 2.1. Assume (2.12) , (2.14), (2.15), (2.16), (2.17), (2.18) , (2.19) and
(2.20). Then there exists a unique solution to Problem P2 which satisfies

u ∈ C1 ([0, T ] ;V ) , β ∈W 1,∞ (0, T ;L2 (Γ3)
)
∩ B

if
d2

ΩLµ ‖S‖L∞(Γ3) < mA.

3. Existence of solution

The proof of Theorem 2.1 will be carried out in several steps. In the first step, for
a given η ∈ C ([0, T ] ;V ) and g ∈ C ([0, T ] ;V ) we consider the following variational
problem.

Problem Pηg. Find vηg : [0, T ]→ V such that

(3.1)
(Aε (vηg (t)) , ε (w)− ε(vηg (t)))Q + (η (t) , w − vηg (t))V + jfr (g (t) , w)

−jfr (g (t) , vηg (t)) ≥ (f (t) , w − vηg (t))V ∀w ∈ V, t ∈ [0, T ] .

We show the following result.

Lemma 3.1. Problem Pηg has a unique solution which satisfies vηg ∈ C ([0, T ] ;V ).

Proof. We define the operator C : V → V by

(Cv,w)V = (Aε (v) , ε (w))Q ∀v, w ∈ V.

It follows from assumption (2.16) that C is a strongly monotone and Lipschitz con-
tinuous operator. Next, let t ∈ [0, T ]. The functional jfr (g (t) , .) is a continuous
semi-norm on V, then by a classical argument of elliptic variational inequalities [1],
we deduce that there exists a unique element vηg (t) ∈ V such that

(3.2)
(Aε (vηg (t)) , ε (w)− ε(vηg (t)))Q + jfr (g (t) , w)− jfr (g (t) , vηg (t))

≥ (f (t)− η (t) , w − vηg (t))V ∀w ∈ V.

Thus, we use (3.2) to see that vηg (t) is the unique element which solves (3.1), for
each t ∈ [0, T ] . Now, let t1, t2 ∈ [0, T ]. We write (3.2) for t = t1 and w = vηg (t2),
then for t = t2 and w = vηg (t1); by adding the resulting inequalities we obtain

(Aε (vηg (t1))−Aε (vηg (t2)) , ε (vηg (t1))− ε(vηg (t2))Q

≤ (f (t1)− f (t2) , vηg (t1)− vηg (t2))V − (η (t1)− η (t2) , vηg (t1)− vηg (t2))V

+jfr (g (t1) , vηg (t2))− jfr (g (t1) , vηg (t1))

+jfr (g (t2) , vηg (t1))− jfr (g (t2) , vηg (t2)) .
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Using (2.16) (c), (2.14) (b), (2.18), and (2.11), we see that

mA ‖vηg (t1)− vηg (t2)‖2V ≤ d
2
ΩLµ ‖S‖L∞(Γ3) ‖vηg (t1)− vηg (t2)‖2V

+ ‖η (t1)− η (t2)‖V ‖vηg (t1)− vηg (t2)‖V

+d2
Ω ‖g (t1)− g (t2)‖V ‖vηg (t1)− vηg (t2)‖V

+ ‖f (t1)− f (t2)‖V ‖vηg (t1)− vηg (t2)‖V .
Then, it follows that if

d2
ΩLµ ‖S‖L∞(Γ3) < mA,

there exists a constant c1 > 0 such that

‖vηg (t1)− vηg (t2)‖V ≤

c1 (‖f (t1)− f (t2)‖V + ‖g (t1)− g (t2)‖V + ‖η (t1)− η (t2)‖V ) .

As f ∈ C ([0, T ] ;V ), g ∈ C ([0, T ] ;V ) and η ∈ C ([0, T ] ;V ), we deduce that vηg ∈
C ([0, T ] ;V ) .

Now, let us consider the operator Λη : C ([0, T ] ;V )→ C ([0, T ] ;V ) defined by

(3.3) Ληg = gη, g ∈ C ([0, T ] ;V ) ,

where

(3.4) gη (t) = u0 +

∫ t

0

vηg (s) ds, t ∈ [0, T ] .

We have the lemma below.

Lemma 3.2. The operator Λη has a unique fixed point g∗η ∈ C ([0, T ] ;V ) .

Proof. We refer the reader to [[15], Proposition 4.2].
Next, for η ∈ C ([0, T ] ;V ), we denote by g∗η the fixed point given in Lemma 3.2 and
we define the function vη ∈ C ([0, T ] ;V ) by

(3.5) vη = vηg∗η .

By (3.3) and (3.4), let uη : [0, T ]→ V be the function given by

(3.6) uη (t) = g∗η (t) = u0 +

∫ t

0

vη (s) ds, t ∈ [0, T ] ,

then, we consider the following problem. �

Problem Pηβ . Find a bonding field βη : [0, T ]→ L2 (Γ3) such that

(3.7) β̇η (t) = −[βη (t) (cν |Rν (uην (t))|2 + cτ |Rτ (uητ (t))|2)− εa]+ a.e. t ∈ (0, T ) ,

(3.8) βη (0) = β0.

We have the following result.
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Lemma 3.3. There exists a unique solution to Problem Pηβ and it satisfies

βη ∈W 1,∞ (0, T ;L2 (Γ3)
)
∩ B.

Proof. Let k > 0 and consider the closed subset X of C
(
[0, T ] ;L2 (Γ3)

)
defined as

X =
{
θ ∈ C

(
[0, T ] ;L2 (Γ3)

)
, θ (0) = β0

}
,

where the Banach space C
(
[0, T ] ;L2 (Γ3)

)
is endowed with the norm

‖θ‖k = max
t∈[0,T ]

[
e−kt ‖θ (t)‖L2(Γ3)

]
for all θ ∈ C

(
[0, T ] ;L2 (Γ3)

)
.

We define the mapping Ψ : X → X by

Ψβ (t) = β0 −
∫ t

0

[β (s) (cν |Rν (uην (s))|2 + cτ |Rτ (uητ (s))|2)− εa]+da

and we will prove that Ψ has a unique fixed point, which is equally the solution of
the problem Pηβ . Indeed, using that |Rr (uηr)| ≤ L, r = ν, τ , it follows that for all
β1, β2 ∈ X, there exists a constant c2 > 0 such that

‖Ψβ1 (t)−Ψβ2 (t)‖L2(Γ3) ≤ c2
∫ t

0
‖β1 (s)− β2 (s)‖L2(Γ3) ds

= c2
∫ t

0
eks(e−ks ‖β1 (s)− β2 (s)‖L2(Γ3))ds

≤ c2 ‖β1 − β2‖k ekt/k.

Then
‖Ψβ1 −Ψβ2‖k = max

t∈[0,T ]

[
e−kt ‖Ψβ1 (t)−Ψβ2 (t)‖L2(Γ3)

]
≤ c2

k
‖β1 − β2‖k .

Hence, for all β1, β2 ∈ X

(3.9) ‖Ψβ1 −Ψβ2‖k ≤
c2
k
‖β1 − β2‖k ,

so that the inequality (3.9) shows that for k sufficiently large, Ψ is a contraction.
Then we deduce, by Banach fixed-point theorem that Ψ has a unique fixed point βη
which satisfies (3.7) and (3.8). To show that βη ∈ B, it suffices to use (3.7), (3.8)

and (2.20), see [18] for details. �

Next, using Riesz’s representation theorem we define the function

Λ : [0, T ]→ V

by

(3.10)
(Λη (t) , w)V = (Bε (uη (t)) , ε (w))Q + jad (βη (t) , uη (t) , w) ,
∀w ∈ V, t ∈ [0, T ] .

We have the lemma below.
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Lemma 3.4. For each η ∈ C ([0, T ] ;V ) the function Λη : [0, T ] → V belongs to
C ([0, T ] ;V ). Moreover, there exists a unique η∗ ∈ C ([0, T ] ;V ) such that Λη∗ = η∗.

Proof. Let η ∈ C ([0, T ] ;V ), t1, t2 ∈ [0, T ]. Using (3.10), it follows that there exists
a constant c3 > 0 such that

‖Λη (t1)− Λη (t2)‖V ≤ ‖Bε (uη (t1))−Bε (uη (t2))‖Q

+c3(
∥∥β2

η (t1)Rτ (uητ (t1))− β2
η (t2)Rτ (uητ (t2))

∥∥
L2(Γ3)

+ ‖µ (|uητ (t1)|)− µ (|uητ (t2)|)‖L2(Γ3)

+
∥∥β2

η (t1)Rν (uην (t1))− β2
η (t2)Rν (uην (t2))

∥∥
L2(Γ3)

).

Now we use the properties (see [18]) of the operators Rν , Rτ such that

|Rr (uηr)| ≤ L, r = ν, τ , |Rν (a)−Rν (b)| ≤ |a− b| ∀a, b ∈ R,

|Rτ (a)−Rτ (b)| ≤ |a− b| ∀a, b ∈ Rd,

(2.14) (b), (2.17), and 0 ≤ βη (t) ≤ 1, ∀t ∈ [0, T ]. Then it follows that there exists a
constant c4 > 0 such that

(3.11)
‖Λη (t1)− Λη (t2)‖V

≤ c4(‖uη (t1)− uη (t2)‖V + ‖βη (t1)− βη (t2)‖L2(Γ3)).

Since uη ∈ C1 ([0, T ] ;V ) and βη ∈W 1,∞ (0, T ;V ) , we deduce from inequality (3.11)

that Λη ∈ C ([0, T ] ;V ) .

Let now η1, η2 ∈ C ([0, T ] ;V ). For t ∈ [0, T ] we integrate (3.7) with the initial
condition (3.8) to obtain that

βηi (t) = β0 −
∫ t

0

[βηi (s) (cν |Rν (uηiν (s))|2 + cτ |Rτ (uηiτ (s))|2)− εa]+da.

Then there exists a constant c5 > 0 such that

‖βη1 (t)− βη2 (t)‖L2(Γ3) ≤

c5(
∫ t

0

∥∥∥βη1 (s) |Rν (uη1ν (s))|2 − βη2 (s) |Rν (uη2ν (s))|2
∥∥∥
L2(Γ3)

ds

+
∫ t

0

∥∥∥βη1 (s) |Rτ (uη1τ (s))|2 − βη2 (s) |Rτ (uη2τ (s))|2
∥∥∥
L2(Γ3)

ds)

and after some elementary calculus we find that there exists a constant c6 > 0 such
that

‖βη1 (t)− βη2 (t)‖L2(Γ3) ≤ c6(
∫ t

0
‖βη1 (s)− βη2 (s)‖L2(Γ3)

+
∫ t

0
‖uη1ν (s)− uη2ν (s)‖L2(Γ3) ds+

∫ t
0
‖uη1τ (s)− uη2τ (s)‖(L2(Γ3))d ds).
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Then by (2.11), it follows that

‖βη1 (t)− βη2 (t)‖L2(Γ3)

≤ c6(
∫ t

0
‖βη1 (s)− βη2 (s)‖L2(Γ3) + 2dΩ

∫ t
0
‖uη1 (s)− uη2 (s)‖V ds)

and using a Gronwall-type inequality, we deduce that there exists a constant c7 > 0

such that

(3.12) ‖βη1 (t)− βη2 (t)‖L2(Γ3) ≤ c7
∫ t

0

‖uη1 (s)− uη2 (s)‖V ds.

On the other hand, using arguments similar to those in the proof of (3.12), we
find that there exists a constant c8 > 0 such that

‖Λη1 (t)− Λη2 (t)‖V

≤ c8(‖uη1 (t)− uη2 (t)‖V + ‖βη1 (t)− βη2 (t)‖L2(Γ3)).

Then, by (3.12) we have

(3.13)
‖Λη1 (t)− Λη2 (t)‖V

≤ c8(‖uη1 (t)− uη2 (t)‖V + c7
∫ t

0
‖uη1 (s)− uη2 (s)‖V ds).

On the other hand, the function uηi satisfies the inequality

(3.14)
(Aε (vηi (t)) , ε (w − vηi (t)))Q + (ηi (t) , w − vηi (t))V + jfr (uηi (t) , w)

−jfr (uηi (t) , vηi (t)) ≥ (f (t) , w − vηi (t))V ∀w ∈ V,

i = 1, 2. It follows from (3.14) and the estimate in the proof of Lemma 3.1 that there
exists a constant c9 > 0 such that

‖uη1 (t)− uη2 (t)‖V ≤
∫ t

0
‖vη1 (s)− vη2 (s)‖V ds

≤ c9(
∫ t

0
‖η1 (s)− η2 (s)‖V ds+

∫ t
0
‖uη1 (s)− uη2 (s)‖V ds).

Using now a Gronwall-type inequality we get

(3.15) ‖uη1 (t)− uη2 (t)‖V ≤ c10

∫ t

0

‖η1 (s)− η2 (s)‖V ds,

where c10 > 0. Then by (3.13) and (3.15) , it follows that there exists a constant
c11 > 0 such that

(3.16) ‖Λη1 (t)− Λη2 (t)‖V ≤ c11

∫ t

0

‖η1 (s)− η2 (s)‖V ds.

Let now α > 0, and denote

‖η‖α = sup
t∈[0,T ]

[
e−αt ‖η (t)‖V

]
∀η ∈ C ([0, T ] ;V ) .
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Clearly ‖.‖α defines a norm on the space C ([0, T ] ;V ) which is equivalent to the
standard norm ‖.‖C([0,T ];V ). Using (3.16) and arguments similar to those in the proof
of (3.9), we have

‖Λη1 − Λη2‖α ≤
c11

α
‖η1 − η2‖α , ∀η1, η2 ∈ C ([0, T ] ;V ) .

So for α sufficiently large, the operator Λ is a contraction on the space C ([0, T ] ;V )

endowed with the norm ‖.‖k. Then by Banach-fixed point theorem it follows that Λ

has a unique fixed point η∗ ∈ C ([0, T ] ;V ), which concludes the proof.
Now, we have all the ingredients to prove Theorem 2.1.

Proof of Theorem 2.1. Existence. Let η∗ ∈ C ([0, T ] ;V ) be the fixed point of Λ and
let vη∗ , and uη∗ be the functions given by (3.5) and (3.6) for η = η∗. Let βη∗ the
solution of Problem Pηβ for η = η∗. We show that (uη∗ , βη∗) is a solution of Problem
P2 . To this end, choosing η = η∗, g = g∗η∗ in (3.1) and using (3.5), we obtain
(3.17)

(Aε (vη∗ (t)) , ε (w)− ε(vη∗ (t)))Q + (η∗ (t) , w − vη∗ (t))V + jfr
(
g∗η∗ (t) , w

)
−jfr

(
g∗η∗ (t) , vη∗ (t)

)
≥ (f (t) , w − vη∗ (t))V ∀w ∈ V , t ∈ [0, T ] .

Let β denote the solution of Problem Pηβ for η = η∗, i.e., β = βη∗ . As η∗ = Λη∗, the
inequality (2.21) follows from (3.4), (3.6) and (3.17), since vη∗ = u̇η∗ and g∗η∗ = uη∗ .
The equality (2.23) follows from (3.6), and the regularity uη∗ ∈ C1 ([0, T ] ;V ) is a
consequence of Lemma 3.1, (2.19) and (3.6). Clearly, equalities (2.22) and (2.24) hold
by Problem Pηβ . Also the regularity of the bonding field β ∈W 1,∞ (0, T ;L2 (Γ3)

)
∩B

follows from Lemma 3.3. �

Uniqueness. Let (u, β) ∈ C1 ([0, T ] ;V ) ×W 1,∞ (0, T ;L2 (Γ3)
)
∩ B be a solution of

Problem P2 and denote by η ∈ C ([0, T ] ;V ) the function defined by
(3.18)

(η (t) , w)V = (Bε (u (t)) , ε (w))Q + jad (β (t) , u (t) , w) , ∀w ∈ V , t ∈ [0, T ] ,

and let

(3.19) v = u̇.

Using (2.21) we obtain that v is a solution of the variational problem Pηu and since
this problem has a unique solution vηu ∈ C ([0, T ] ;V ), we conclude that

(3.20) v = vηu.

Hence, from (2.23), (3.19) and (3.20) we obtain

u (t) = u0 +

∫ t

0

vηu (s) ds, t ∈ [0, T ] ,

i.e., u is a fixed point of Λη, defined by Ληu = u. It follows from Lemma 3.1 that
u = g∗η and by (3.20) we have

(3.21) v = vηg∗η .
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Then, (3.5) and (3.21) imply

(3.22) v = vη.

So, it follows from (2.23), (3.6), (3.19) and (3.22) that

(3.23) u = uη.

Next, (2.22) and the initial condition β (0) = β0 imply that β is a solution of Problem
Pηβ and, since this problem admits a unique solution βη, we conclude that

(3.24) β = βη.

Using now (3.10), (3.18), (3.23) , and (3.24) we obtain that Λη = η and as the
operator Λ admits a unique fixed point guaranteed by Lemma 3.4, it follows that

(3.25) η = η∗.

The uniqueness of the solution is now a consequence of (3.23)–(3.25).
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1. Introduction

Let A denote the class of functions which are analytic in E = {z : |z| < 1} and let
Ap (p ∈ N0 := {0, 1, 2, ...}) denote the class of functions f ∈ A of the form

(1.1) f (z) = zp +

∞∑
n=p+1

anz
n (z ∈ E) .

A function f ∈ A is said to be subordinated to a function g ∈ A with notation
f ≺ g, if there exists a Schawarz function w ∈ A with w (0) = 0 and |w (z)| < 1

(z ∈ E) and such that f (z) = g (w (z)) (z ∈ E) . In particular, if g is univalent in
E, then f ≺ g if and only if f (0) = g (0) and f (E) ⊂ g (E) .

Let −1 ≤ b < a ≤ 1, 0 ≤ α < 1, 0 < β ≤ 1, m ≤ 2.

Definition 1.1. A function h ∈ A0 is said to belong to the class Pβ (a, b, α) , if

(1.2) h (z) ≺ hβ (p, a, b, α) := (1− α)
(
1 + az

1 + bz

)β
+ α = 1 + a1z + . . . .
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Moreover, let Pβ (a, b) := Pβ (a, b, 0) .

The class P (a, b) := P1 (a, b) was introduced by Janowski [11, 12] (see also [6, 9,
10, 20]) and P := P (1,−1) is the class of analytic functions with positive real part.
It is easy to show that

(1.3) h ∈ Pβ (a, b)⇐⇒ q = (1− α)h+ α ∈ Pβ (a, b, α)

We note, that the Herglotz representation for a function h ∈ Pβ (a, b, α) is given
as

(1.4) h (z) = α+
1− α
2

2π∫
0

(
1 + aze−iφ

1 + bze−iφ

)β
dµ (φ) (z ∈ E) ,

where µ is a non-decreasing function in [0, 2π] such that
2π∫
0

dµ (φ) = 2; see for details

[7] and [8].

Definition 1.2. A function h ∈ A0 is said to the class Pm,β (a, b, α) , if there exists a
function µ (φ) which is non-decreasing in [0, 2π] with

2π∫
0

dµ (φ) = 2 and
2π∫
0

|dµ (φ)| ≤ m

such that h is given by (1.4).

Now we define the following classes of functions:

Rm,β (p, a, b, α) =

{
f ∈ Ap :

zf ′(z)

pf(z)
∈ Pm,β (a, b, α)

}
,

Vm,β (p, a, b, α) =

{
f ∈ Ap :

(zf ′(z))
′

pf ′(z)
∈ Pm,β (a, b, α)

}
,

(p ∈ N := N0�{0}, f (z) z−1 6= 0, f ′ (z) 6= 0, z ∈ E).

Special cases:
For p = 1, β = 1, α = 0, we obtain the classes studied by Noor and Yousaf [15]

and Noor and Arif [14].
For p = 1, a = 1, b = −1, β = 1, α = 0, the classes introduced by Paatero [16] and

Pinchuk [18].
For p = 1, a = 1, b = −1, β = 1, 0 ≤ α < 1, we obtain the classes defined by

Padmanabhan and Parvatham [17].
For p = 1, a = 1, b = −1, β = 1, α = 1− e−iλ (1− ρ) cosλ, the classes studied by

Moulis [13], see also [1, 2].
For a = 1, b = −1 or α = 0, a = 2ρ − 1, b = −1 we have the classes studied by

Dziok [3, 5].
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It can easily be seen that

(1.5) f ∈ Vm,β (p, a, b, α)⇐⇒
zf ′(z)

p
∈ Rm,β (p, a, b, α) .

Some remarkable properties of defined classes are investigated.

2. Main results

The function ϕ := hβ (p, a, b, 0) defined by (1.2) is univalent and convex in E. More-
over, the domain ϕ (E) is symetric with respect the real axis. Therefore, by using
properties of subordination we have the following lemma.

Lemma 2.1. Let h ∈ Pβ (a, b) , |z| = r < 1. Then(
1− ar
1− br

)β
≤ Re h (z) ≤ |h (z)| ≤

(
1 + ar

1 + br

)β
.

The result is sharp with extremal function hβ (p, a, b, 0) defined by (1.2).

Lemma 2.2. [19] Let f ∈ A be a function of the form:

f(z) =

∞∑
n=1

anz
n (z ∈ E) .

If g ∈ A1 is a function univalent and convex in E and f ≺ g, then
|an| ≤ 1 (n ∈ N) .

Lemma 2.3. Let h ∈ Pβ (a, b, α) be of the form

(2.1) h (z) = 1 +

∞∑
n=1

hnz
n (z ∈ E) .

Then
|hn| ≤ β (a− b) (1− α) (n ∈ N) .

Proof. Let h ∈ Pβ (a, b, α) . Then from Definition 1.2 we have
h (z)− 1

β (a− b) (1− α)
≺ g(z),

where

g (z) =
1

β (a− b)

{(
1 + az

1 + bz

)β
− 1

}
= z + .... (z ∈ E) .

Thus, by (2.1), we get
∞∑
n=1

hn
β (a− b) (1− α)

zn ≺ g (z) .
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Since the function g is univalent and convex in E, by Lemma 2.2 we obtain the
required result. �

Lemma 2.4. [4] If h ∈ Pm,β (a, b, α) , then there exist h1, h2 ∈ Pβ (a, b, α) such that

(2.2) h =

(
m

4
+

1

2

)
h1 −

(
m

4
− 1

2

)
h2.

Theorem 2.5. Let h ∈ Pm,β (a, b, α) be of the form (2.1) . Then

|hn| ≤
m

2
β (a− b) (1− α) (n ∈ N) .

Proof. Let h ∈ Pm,β (a, b, α) . Then, by Lemma2.4 there exist h1, h2 ∈ Pβ (a, b, α)
such that

h =

(
m

4
+

1

2

)
h1 −

(
m

4
− 1

2

)
h2.

Let

h1 (z) = 1 +

∞∑
n=1

cnz
n, h2 (z) = 1 +

∞∑
n=1

dnz
n (z ∈ E) .

Then

1 +

∞∑
n=1

hnz
n =

(
m

4
+

1

2

)(
1 +

∞∑
n=1

cnz
n

)
−
(
m

4
− 1

2

)(
1 +

∞∑
n=1

dnz
n

)
.

Comparing the coefficients at zn, we obtain

hn =

(
m

4
+

1

2

)
cn −

(
m

4
− 1

2

)
dn.

Now using the triangle inequality with Lemma 2.3, we get the required result. �

Theorem 2.6. Let h ∈ Pm,β (a, b, α), |z| = r < 1, 0 ≤ α < 1. Then

(1− α)

((
m

4
+

1

2

)(
1− ar
1− br

)β
−
(
m

4
− 1

2

)(
1 + ar

1 + br

)β)
+ α ≤

Reh (z) ≤ (1− α)

((
m

4
+

1

2

)(
1 + ar

1 + br

)β
−
(
m

4
− 1

2

)(
1− ar
1− br

)β)
+ α.

The result is sharp.

Proof. Let h ∈ Pm,β (a, b, α) . Then there exist h1, h2 ∈ Pβ (a, b) , such that

h =

(
m

4
+

1

2

)
((1− α)h1 + α)−

(
m

4
− 1

2

)
((1− α)h2 + α) .
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Thus, by Lemma 2.1 we have

Reh (z) ≥
(
m

4
+

1

2

)(
(1− α)

(
1− ar
1− br

)β
+ α

)

−
(
m

4
− 1

2

)(
(1− α)

(
1 + ar

1 + br

)β
+ α

)
.

For the upper bound, we note that

Reh (z) ≤
(
m

4
+

1

2

)
max

h1∈Pβ(a,b)
{(1− α)Reh1 (z) + α}−(

m

4
− 1

2

)
min

h1∈Pβ(a,b)
{(1− α)Reh2 (z) + α} ,

≤
(
m

4
+

1

2

)(
(1− α)

(
1 + ar

1 + br

)β
+ α

)

−
(
m

4
− 1

2

)(
(1− α)

(
1− ar
1− br

)β
+ α

)
.

By taking

h1 =

(
1 + az

1 + bz

)β
, h2 =

(
1− az
1− bz

)β
, z = r,

it can easily shown that this result is sharp. �

Theorem 2.7. The class Pm,β (a, b, α) is a convex set.

Proof. Let h, q ∈ Pm,β (a, b, α). Then there exist h1, h2, q1,q2 ∈ Pβ (a, b, α) such that

h =

(
m

4
+

1

2

)
h1 −

(
m

4
− 1

2

)
h2,

q =

(
m

4
+

1

2

)
q1 −

(
m

4
− 1

2

)
q2.

Now for 0 ≤ γ ≤ 1, we consider

(1− γ)h+ γq = (1− γ)
{(

m

4
+

1

2

)
h1 −

(
m

4
− 1

2

)
h2

}
+ γ

{(
m

4
+

1

2

)
q1 −

(
m

4
− 1

2

)
q2

}
=

(
m

4
+

1

2

)
ϕ1 −

(
m

4
− 1

2

)
ϕ2,

where
ϕ1 = (1− γ)h1 + γq1, ϕ2 = (1− γ)h2 + γq2

both belong to Pβ (a, b, α) being a convex set. Hence Pm,β (a, b, α) is a convex set. �
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Theorem 2.8. Let h ∈ Pm,β (a, b, α), z = reiθ ∈ E. Then

(2.3)
1

2π

2π∫
0

∣∣h (reiθ)∣∣2 dθ ≤ 4 +
[
{mβ (1− α) (a− b)}2 − 4

]
r2

4 (1− r2)
.

Proof. Using the Parseval identity, we have

1

2π

2π∫
0

∣∣h (reiθ)∣∣2 dθ = ∞∑
n=0

|hn|2 r2n

by using Theorem 2.5. Thus we have

1

2π

2π∫
0

∣∣h (reiθ)∣∣2 dθ ≤ 1 +
(m
2
β (a− b) (1− α)

)2 ∞∑
n=1

r2n.

Hence (2.3) follows easily. �

Theorem 2.9. Let f ∈ Ap. Then f ∈ Rm,β (p, a, b, α) if and only if

f (z) = zp exp

2π∫
0

z∫
0

p (1− α)
2s

[(
1 + ase−iφ

1 + bse−iφ

)β
− 1

]
dsdµ (φ) .

Proof. Let f ∈ Rm,β (p, a, b, α) . Then

zf ′(z)

pf(z)
= α+

1− α
2

2π∫
0

(
1 + aze−iφ

1 + bze−iφ

)β
dµ (φ) .

This implies that(
log

f (z)

zp

)′
=
p (1− α)

2z

2π∫
0

[(
1 + aze−iφ

1 + bze−iφ

)β
− 1

]
dµ (φ) .

Hence, (
log

f (z)

zp

)
=

2π∫
0

z∫
0

p (1− α)
2s

[(
1 + ase−iφ

1 + bse−iφ

)β
− 1

]
dsdµ (φ) .

Therefore,

f (z) = zp exp

2π∫
0

z∫
0

p (1− α)
2s

[(
1 + ase−iφ

1 + bse−iφ

)β
− 1

]
dsdµ (φ)

and the proof is completed. �
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Corollary 2.10. Let f ∈ Ap. Then f ∈ Rm,1 (p, a, b, α) , if and only if

f (z) =


zp exp

{
p (1− α)

(
a−b
2b

) 2π∫
0

log
(
1 + bze−iφ

)
dµ (φ)

}
, b 6= 0,

zp exp

{
p (1− α) a2

2π∫
0

ze−iφdµ (φ)

}
, b = 0.

Theorem 2.11. Let f ∈ Rm,β (p, a, b, α) . Then there exist f1, f2 ∈ R2,β (p, a, b, α)

such that

(2.4) f =
f
(m+2

4 )
1

f
(m−2

4 )
2

.

Proof. Let f ∈ Rm,β (p, a, b, α). Then there exist h1, h2 ∈ Pm,β (a, b, α) such that

zf ′(z)

pf(z)
=

(
m

4
+

1

2

)
h1 (z)−

(
m

4
− 1

2

)
h2 (z) .

Thus, there exist f1, f2 ∈ R2,β (p, a, b, α) such that

zf ′(z)

pf(z)
=

(
m

4
+

1

2

)
zf ′1(z)

pf1(z)
−
(
m

4
− 1

2

)
zf ′2(z)

pf2(z)
,

f ′(z)

f(z)
=

(
m

4
+

1

2

)
f ′1(z)

f1(z)
−
(
m

4
− 1

2

)
f ′2(z)

f2(z)
,

and the integration gives

log f (z) =

(
m

4
+

1

2

)
log f1(z)−

(
m

4
− 1

2

)
log f2(z).

Thus we get (2.4). �

By (1.5), Theorems 2.9 and 2.11 with Corollary 2.10 we have the following results.

Corollary 2.12. Let f ∈ Ap. Then f ∈ Vm,β (p, a, b, α) , if and only if

f ′ (z) = pzp−1 exp

2π∫
0

z∫
0

p (1− α)
2s

[(
1 + ase−iφ

1 + bse−iφ

)β
− 1

]
dsdµ (φ) .



68 M. Arif, J. Dziok, and M. Raza

Corollary 2.13. Let f ∈ Ap. Then f ∈ Vm,1 (p, a, b, α) , if and only if

f ′ (z) =


pzp−1 exp

{
p (1− α)

(
a−b
2b

) 2π∫
0

log
(
1 + bze−iφ

)
dµ (φ)

}
, b 6= 0,

pzp−1 exp

{
p (1− α) a2

2π∫
0

ze−iφdµ (φ)

}
, b = 0.

Corollary 2.14. Let f ∈ Vm,β (p, a, b, α) . Then there exist f1, f2 ∈ V2,β (p, a, b, α)
such that

f ′ =
(f ′1)

m+2
4

(f ′2)
m−2

4

.
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O PEWNYCH WARIACJACH FUNKCJI JANOWSKIEGO

S t r e s z c z e n i e
W pracy zdefiniowane zostały klasy powiązane z funkcjami Janowskiego i funkcjami

o ograniczonej rotacji brzegowej. W klasach tych rozwazane są podstawowe problemy
ekstremalne takie jak oszacowania współczynników, oszacowania modulu funkcjii części
rzeczywistej funkcji oraz nierówności związane ze średnią całkową. Zostały także wyzna-
czone wzory strukturalne w omawianych klasach funkcji.

Słowa kluczowe: funkcje Janowskiego, funkcje o ograniczonej wariacji, funkcje o ograniczonej
rotacji
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SOME SCHWARZ INEQUALITY ON THE BOUNDARY
FOR ANALYTIC FUNCTIONS WITH PRESCRIBED ZEROS

Summary
In this paper we slightly generalize the recent result due to Dubinin [2] which concerns

the classical Schwarz inequality on the boundary connected with zeros of the function.

Keywords and phrases: Schwarz inequality, analytic function with prescribed zeros

1. Introduction

1. For r > 0 let Dr := {z ∈ C : |z| < r}, Dr := {z ∈ C : |z| ≤ r} and
Tr := {z ∈ C : |z| = r}. Let D := D1 and T := T1.

For a set A ⊂ C with 0 ∈ A let A0 := A \ {0}. Particularly, D0 = D \ {0} and
D

0
= D \ {0}.
For a set A0 let Ω(A) be the family of all finite subsets of A0 including the empty

set. Let Ω := Ω(D).

2. Let G be a domain in C and let H(G) be the set of all analytic functions in
G. Let H := H(D).

For r > 0, a ∈ C and n ∈ N let Ha[r, n] be the class of functions f ∈ H(Dr)

such that
f(0) = a, f ′(0) = . . . = f (n−1)(0) = 0, f (n)(0) 6= 0,

i.e., of the form

(1.1) f(z) = a+

∞∑
k=n

anz
n, z ∈ Dr,
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with an 6= 0, and let Ha[n] := Ha[1, n].
Let B be the subset of H of all self-mappings of D. Let B0 be the subset of B of

all functions keeping the origin fixed, i.e., the set of Schwarz functions. For n ∈ N

let B0[n] := B0 ∩H0[n].

3. Let f ∈ H, D ⊂ D and w0 ∈ f(D). Let

Zf,w0(D) :=
{
z ∈ D0 : f(z) = w0

}
,

Zf (D) := Zf,0(D), Zf,w0 := Zf,w0(D), Zf := Zf,0.

Let
nf : Zf (D) 3 z 7→ inf

{
k ∈ N : f (k)(z) 6= 0

}
.

Thus
nf (z) = inf

{
k ∈ N : f (k)(z) 6= 0

}
, z ∈ D.

For w0 ∈ f(D) let
nf,w0

:= nf−w0
.

2. Notation

Now we introduce some constants required in further considerations.

Definition 2.1. Let ζ ∈ C0, r := |ζ|, ∅ 6= Ω ∈ Ω(Dr), λ : Ω → N, a, b > 0 and
n ∈ N. Let

M(Ω, λ; ζ) :=
∑
α∈Ω

λ(α)
|ζ|2 − |α|2

|ζ − α|2
,

K(Ω, λ; a, b, r, n) :=
a
∏
α∈Ω |α|λ(α) − br

n+
∑
α∈Ω λ(α)

a
∏
α∈Ω |α|λ(α) + brn+

∑
α∈Ω λ(α)

,

L(Ω, λ; a, b, r, n) := −1

2
log

brn+
∑
α∈Ω λ(α)

a
∏
α∈Ω |α|λ(α)

,

K(Ω, λ; a, b) := K(Ω, λ; a, b, 1, n) =
a
∏
α∈Ω |α|λ(α) − b

a
∏
α∈Ω |α|λ(α) + b

,

L(Ω, λ; a, b) := L(Ω, λ; a, b, 1, n) = −1

2
log

b

a
∏
α∈Ω |α|λ(α)

.

Lemma 2.2. Let Ω1, Ω2 ∈ Ω, Ω1 ⊂ Ω2, Ω1 6= ∅, λ : Ω2 → N, r ∈ (0, 1], a, b > 0

and n ∈ N. Then

(2.1) K(Ω1, λ; a, b, r, n) ≥ K(Ω2, λ; a, b)

and

(2.2) L(Ω1, λ; a, b, r, n) ≥ L(Ω2, λ; a, b).
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Proof. Let Ω1, Ω2 ∈ Ω, Ω1 ⊂ Ω2, Ω1 6= ∅, λ : Ω2 → N, r ∈ (0, 1], a, b > 0 and
n ∈ N. Since 0 < |α| < 1 for α ∈ Ω2, and Ω1 ⊂ Ω2, so

(2.3)
∏
α∈Ω1

|α|λ(α) ≥
∏
α∈Ω2

|α|λ(α).

Hence and by the fact that the function

[0, 1] 3 x 7→ ax− c
ax+ c

, a, c > 0,

is strictly increasing it follows that

(2.4) K(Ω1, λ; a, b, r, n) =
a
∏
α∈Ω1

|α|λ(α) − brn+
∑
α∈Ω1

λ(α)

a
∏
α∈Ω1

|α|λ(α) + brn+
∑
α∈Ω1

λ(α)

≥
a
∏
α∈Ω2

|α|λ(α) − brn+
∑
α∈Ω2

λ(α)

a
∏
α∈Ω2

|α|λ(α) + brn+
∑
α∈Ω2

λ(α)
= K(Ω2, λ; a, b, r, n).

Since the function

[0, 1] 3 x 7→ d− bx
d+ bx

, d, b > 0,

is strictly decreasing so

K(Ω2, λ; a, b, r, n) =
a
∏
α∈Ω2

|α|λ(α) − brn+
∑
α∈Ω2

λ(α)

a
∏
α∈Ω2

|α|λ(α) + brn+
∑
α∈Ω2

λ(α)

≥
a
∏
α∈Ω2

|α|λ(α) − b
a
∏
α∈Ω2

|α|λ(α) + b
= K(Ω2, λ; a, b).

Hence and from the inequality (2.4) we get the inequality (2.1).
Since r ∈ (0, 1], so

(2.5) L(Ω1, λ; a, b, r, n) = −
1

2
log

brn+
∑
α∈Ω1

λ(α)

a
∏
α∈Ω1

|α|λ(α)

≥ −1

2
log

b

a
∏
α∈Ω1

|α|λ(α)
= L(Ω1, λ; a, b).

Using the inequality (2.3) we have

L(Ω1, λ; a, b) = −
1

2
log

b

a
∏
α∈Ω1

|α|λ(α)

≥ −1

2
log

b

a
∏
α∈Ω2

|α|λ(α)
= L(Ω2, λ; a, b).

Hence and from the inequality (2.5) we get the inequality (2.2). 2

Definition 2.3. Let r > 0, f ∈ H(Dr), w0 ∈ f(Dr), ζ ∈ Tr, a, b > 0 and n ∈ N. Let
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Mf,w0
(ζ) :=M(Zf,w0

(Dr), nf,w0
; ζ) =

∑
α∈Zf,w0

(Dr)

nf,w0
(α)
|ζ|2 − |α|2

|ζ − α|2
,

Mf (ζ) :=Mf,0(ζ) =
∑

α∈Zf (Dr)

nf (α)
|ζ|2 − |α|2

|ζ − α|2
,

Kf,w0(a, b, r, n) := K (Zf,w0(Dr), nf ;w0 ; a, b, r, n) =

=
a
∏
α∈Zf,w0

(Dr)
|α|nf,w0

(α) − brn+
∑
α∈Zf,w0

(Dr)
nf,w0

(α)

a
∏
α∈Zf,w0

(Dr)
|α|nf,w0

(α) + br
n+

∑
α∈Zf,w0

(Dr)
nf,w0

(α)
,

Kf (a, b, r, n) := Kf,0(a, b, r, n) =

=
a
∏
α∈Zf (Dr)

|α|nf (α) − brn+
∑
α∈Zf (Dr)

nf (α)

a
∏
α∈Zf (Dr)

|α|nf (α) + br
n+

∑
α∈Zf (Dr)

nf (α)
,

Kf (a, b) := Kf (a, b, 1, n) =
a
∏
α∈Zf |α|

nf (α) − b
a
∏
α∈Zf |α|

nf (α) + b
,

Lf,w0(a, b, r, n) := L (Zf,w0(Dr), nf ;w0 ; a, b, r, n) =

= −1

2
log

br
n+

∑
α∈Zf,w0

(Dr)
nf,w0

(α)

a
∏
α∈Zf,w0

(Dr)
|α|nf,w0

(α)
,

Lf (a, b, r, n) := Lf,0(a, b, r, n) =

= −1

2
log

br
n+

∑
α∈Zf (Dr)

nf (α)

a
∏
α∈Zf (Dr)

|α|nf (α)
,

Lf (a, b) := Lf (a, b, 1, n) = −
1

2
log

b

a
∏
α∈Zf |α|

nf (α)
.

3. Main results

Let us start with the definition.

Definition 3.1. Let f ∈ H(Dr), r > 0, be a function such that at the point ζ ∈ Dr

the limit f(ζ) 6= 0 and the derivative f ′(ζ) exist. Define

I(f ; ζ) :=
ζf ′(ζ)

f(ζ)
.

The lemma below follows directly from Julia-Wolff-Carathéodory Theorem (see
[5, Proposition 4.13, p. 82], [1, pp. 53-57]).
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Theorem 3.2. If ω ∈ B and at ζ0 ∈ T

(a) the limit ω(ζ0) exists and ω(ζ0) ∈ T,

(b) the derivative ω′(ζ0) exists,
then

(3.1) I(ω; ζ0) > 0.

The inequality (3.2) in the theorem below is a part of Lemma 2.2a [3] (c.f. [4,
Remark 3]). The inequality (3.3) was proved by Osserman [4, Remark 3] (c.f. [2, p.
3624]).

Theorem 3.3. If n ∈ N, ω ∈ B0[n] and the assumptions (a) and (b) of Theorem 3.2
hold, then

(3.2) I(ω; ζ0) ≥ n.

Moreover, if bn := ω(n)(0)/n!, then

(3.3) I(ω; ζ0) ≥ n+
1− |bn|
1 + |bn|

.

The equality in (3.2) holds for the function

(3.4) ω(z) := zn, z ∈ D,

and in (3.3) for the function

(3.5) ω(z) :=

(
z

ζ0

)n
z + xζ0
ζ0 + xz

, z ∈ D,

with any x ∈ (0, 1).

The case n := 1 was shown by Unkelbach [6, p. 741].

Theorem 3.4. If ω ∈ B0[1] and the conditions (a) and (b) of Theorem 3.2 hold,
then

(3.6) I(ω; ζ0) ≥
2

1 + |b1|
.

The equality in (3.6) holds for the function (3.4) with n := 1.

The next two theorems was proved by Dubinin [2, p. 3623]. In the original paper
Dubinin formulated both theorems as a unique one (Theorem 1).

Theorem 3.5. If n ∈ N, ω ∈ B0[n],

Zω 6= ∅, bn := ω(n)(0)/n!,

and the conditions (a) and (b) of Theorem 3.2 hold, then for every subset A ⊂ Zω
and every function λ : A→ N such that

(3.7) λ(α) ≤ nω(α), α ∈ A,
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the following inequality holds

(3.8) I(ω; ζ0) ≥ n+M(A, λ; ζ0) +K(A, λA; 1, |bn|)

= n+
∑
α∈A

λ(α)
1− |α|2

|ζ0 − α|2
+

∏
α∈A |α|λ(α) − |bn|∏
α∈A |α|λ(α) + |bn|

.

Particularly,

(3.9) I(ω; ζ0) ≥ n+Mω(ζ0) +Kω(1, |bn|)

= n+
∑
α∈Zω

nω(α)
1− |α|2

|ζ0 − α|2
+

∏
α∈Zω |α|

nω(α) − |bn|∏
α∈Zω |α|

nω(α) + |bn|
,

The equality in (3.8) holds for the function

(3.10) ω(z) := zn
∏
α∈A

(
−α
|α|
· z − α
1− αz

)λ(α)
, z ∈ D,

and in (3.9) for the function (3.10) with A := Zω and λ := nω.

Theorem 3.6. If n ∈ N, ω ∈ B0[n], bn := ω(n)(0)/n!, and the conditions (a) and
(b) of Theorem 3.2 hold, and if

1. Zω 6= ∅, then

(3.11) I(ω; ζ0) ≥ n+Mω(ζ0) + Lω(1, |bn|)

= n+
∑
α∈Zω

nω(α)
1− |α|2

|ζ0 − α|2
− 1

2
log

|bn|∏
α∈Zω |α|

nω(α)
;

2. Zω = ∅, then

(3.12) I(ω; ζ0) ≥ n−
1

2
log |bn|.

The equality in (3.11) holds for the function (3.10) with A := Zω and λ := nω,

and in (3.12) for the function (3.4).

In the following theorem we consider an arbitrary disk centered at the origin
instead of the unit disk D. The inequality (3.13) is as the inequality (3.2). This
theorem is a version of Lemma 2.2a of [3, p. 19] completed with the inequality
(3.14).

Theorem 3.7. Let r0 > 0, z0 ∈ Tr0 , n ∈ N and ϕ ∈ H0[r0, n] be a function such
that

(a) ϕ(Dr0) ⊂ D,

(b) at z0 the limit ϕ(z0) exists and ϕ(z0) ∈ T,

(c) at z0 the derivative ϕ′(z0) exists.
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Then

(3.13) I(ϕ; z0) ≥ n.

Moreover, if
cn := ϕ(n)(0)/n!,

then

(3.14) I(ϕ; z0) ≥ n+
1− |cn|rn0
1 + |cn|rn0

.

Proof. We will show the inequality (3.13) by applying the inequality (3.2). Since
ϕ ∈ H0[r0, n], so by (1.1) we have

(3.15) ϕ(z) =

∞∑
k=n

ckz
k, z ∈ Dr0 ,

with cn 6= 0. Define

(3.16) ω(z) := ϕ(z0z), z ∈ D.

Hence and by (3.15)we have

(3.17) ω(z) =

∞∑
k=n

bkz
k, z ∈ D,

where

(3.18) bk := ckz
k
0 , k = n, n+ 1, . . .

Thus ω ∈ H0[n]. Since ϕ(Dr0) ⊂ D, so ω(D) ⊂ D. Therefore ω ∈ B0[n]. As at
z0 ∈ Tr0 the limit ϕ(z0) ∈ T exists, so at 1 the limit ω(1) = ϕ(z0) ∈ T exists. Since
at z0 the derivative ϕ′(z0) exists, so at 1 the derivative ω′(1) exists and

(3.19) ω′(1) = z0ϕ
′(z0).

Thus the function ω satisfies the assumptions of Theorem 3.3 with ζ0 := 1. Using
the fact that ω(1) = ϕ(z0) and the condition (3.19) by the inequality (3.2) we have

(3.20) I(ϕ; z0) =
z0ϕ
′(z0)

ϕ(z0)
=
ω′(1)

ω(1)
= I(ω; 1) ≥ n.

Thus the inequality (3.13) was shown.
Using the left-hand side of the inequality (3.20), the inequality (3.3) and (3.18)

with k := n, we get

(3.21) I(ϕ; z0) = I(ω; 1) ≥ n+
1− |bn|
1 + |bn|

= n+
1− |cn|rn0
1 + |cn|rn0

,

which shows the inequality (3.14). 2

The next two theorems slightly generalize Dubinin Theorem by replacing the unit
disk as by an arbitrary one.
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Theorem 3.8. If the assumptions of Theorem 3.7 are satisfied, cn := ϕ(n)(0)/n! and
Zϕ(Dr0) 6= ∅, then for every subset B ⊂ Zϕ(Dr0) and every function µ : B → N

such that

(3.22) µ(α) ≤ nϕ(α), α ∈ B,

the following inequality holds

(3.23) I(ϕ; z0) ≥ n+M(B,µ; z0) +K(B,µ; 1, |cn|, r0, n)

= n+
∑
α∈B

µ(α)
|z0|2 − |α|2

|z0 − α|2
+

∏
α∈B |α|µ(α) − |cn|r

n+
∑
α∈B µ(α)

0∏
α∈B |α|µ(α) + |cn|r

n+
∑
α∈B µ(α)

0

.

Particularly,

(3.24) I(ϕ; z0) ≥ n+Mϕ(z0) +Kϕ(1, |cn|, r0, n)

= n+
∑

α∈Zϕ(Dr0 )

nϕ(α)
|z0|2 − |α|2

|z0 − α|2
+

+

∏
α∈Zϕ(Dr0

) |α|nϕ(α) − |cn|r
n+

∑
α∈Zϕ(Dr0 ) nϕ(α)

0∏
α∈Zϕ(Dr0

) |α|nϕ(α) + |cn|r
n+

∑
α∈Zϕ(Dr0 ) nϕ(α)

0

.

Proof. Under the assumptions of Theorem 3.7 we define the function ω as in (3.16).
Then the properties (3.16)-(3.19) hold. Let α ∈ Zϕ(Dr0). Since α 6= 0 and∣∣∣∣ αz0

∣∣∣∣ ≤ |α|r0 < 1,

so α/z0 ∈ D0. From the fact that

ω

(
α

z0

)
= ϕ

(
z0
α

z0

)
= ϕ(α) = 0,

it follows that α/z0 ∈ Zω. Let β ∈ Zω. Thus

ω(β) = ϕ(z0β) = ϕ(α) = 0,

where α := z0β. Hence α ∈ Zϕ(Dr0) and β = α/z0 ∈ Zω. In this way we shown that

(3.25) Zω = {α/z0 : α ∈ Zϕ(Dr0)}.

Observe also that from (3.15), (3.17) and (3.18) it follows that

(3.26) nω(α/z0) = nϕ(α).

Let

(3.27) A := {α/z0 : α ∈ B}.

In view of (3.25) we have A ⊂ Zω. Define λ : A→ N s follows:

(3.28) λ(α/z0) := µ(α), α ∈ B.
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Hence, by (3.26) and (3.22) we get

(3.29) λ(α/z0) = µ(α) ≤ nϕ(α) = nω(α/z0), α ∈ B.

Thus the inequality (3.7) holds for the set A and the function λ.
By (3.27) and (3.28) we have

(3.30) M(A, λ; 1) :=
∑

α//z0∈A

λ(α/z0)

1−
∣∣∣∣ αz0
∣∣∣∣2∣∣∣∣1− α

z0

∣∣∣∣2
=
∑
α∈B

µ(α)
|z0|2 − |α|2

|z0 − α|2
=M(B,µ; z0).

Using (3.18) for k := n we have

(3.31) K(A, λ; 1, |bn|) =

∏
α/z0∈A

∣∣∣∣ αz0
∣∣∣∣λ(α/z0) − |bn|n∏

α/z0∈A

∣∣∣∣ αz0
∣∣∣∣λ(α/z0) + |bn|n

=

∏
α∈B

|α|µ(α)

|z0|µ(α)
− |cn||z0|n

∏
α∈B

|α|µ(α)

|z0|µ(α)
+ |cn||z0|n

=

∏
α∈A |α|µ(α) − |cn|r

n+
∑
α∈B µ(α)

0∏
α∈B |α|µ(α) + |cn|r

n+
∑
α∈B µ(α)

0

= K(B,µ; 1, |cn|, r0, n).

Taking into account (3.30), (3.31), and using the inequality (3.8) for ζ0 := 1 we
obtain

I(ϕ; z0) =
z0ϕ
′(z0)

ϕ(z0)
=
ω′(1)

ω(1)
= I(ω; 1)

≥ n+M(A, λ; 1) +K(A, λ; 1, |bn|)

= n+M(B,µ; z0) +K(B,µ; 1, |cn|, r0, n).

In this way the inequality (3.23) was proved.
In view of (3.25) and (3.26) we have

(3.32) Mω(1) =
∑

α/z0∈Zω

nω(α/z0)

1−
∣∣∣∣ αz0
∣∣∣∣2∣∣∣∣1− α

z0

∣∣∣∣2
=

∑
α∈Zϕ(Dr0

)

nϕ(α)
|z0|2 − |α|2

|z0 − α|2
=Mϕ(z0).
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By (3.25), (3.26) and (3.18) for k := n we have

(3.33) Kω(1, |bn|) =

∏
α/z0∈Zω

∣∣∣∣ αz0
∣∣∣∣nω(α//z0) − |bn|∏

α/z0∈Zω

∣∣∣∣ αz0
∣∣∣∣nω(α/z0) + |bn|

=

∏
α∈Zϕ(Dr0

) |α|nϕ(α) − |cn|r
n+

∑
α∈Zϕ(Dr0 ) nϕ(α)

0∏
α∈Zϕ(Dr0 )

|α|nϕ(α) + |cn|r
n+

∑
α∈Zϕ(Dr0 ) nϕ(α)

0

= Kϕ(1, |cn|, r0, n).

Taking into account (3.32) and (3.33), and using (3.9) for ζ0 := 1 we get

I(ϕ; z0) =
z0ϕ
′(z0)

ϕ(z0)
=
ω′(1)

ω(1)
= I(ω; 1)

≥ n+Mω(1) +Kω(1, |bn|) = n+Mϕ(z0) +Kϕ(1, |cn|, r0, n).

In this way the inequality (3.24) was proved. 2

Theorem 3.9. If the assumptions of Theorem 3.7 are satisfied, cn := ϕ(n)(0)/n!

and

1. Zϕ(Dr0) 6= ∅, then

(3.34) I(ϕ; z0) ≥ n+Mϕ(z0) + Lϕ(1, |cn|, r0, n) =

= n+
∑

α∈Zϕ(Dr0
)

nϕ(α)
|z0|2 − |α|2

|z0 − α|2
+

−1

2
log
|cn|r

n+
∑
α∈Zϕ(Dr0 ) nϕ(α)

0∏
α∈Zϕ(Dr0 )

|α|nϕ(α)
;

2. Zϕ(Dr0) = ∅, then

(3.35) I(ϕ; z0) ≥ n−
1

2
log |cnrn0 |.

Proof. We define the function ω as in (3.16).

1. Suppose that Zϕ(Dr0) 6= ∅. Then the properties (3.16)–(3.19), (3.26), (3.27)
and (3.30) hold. By (3.25), (3.26) and (3.18) for k := n we have
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(3.36) Lω(1, |bn|) = −
1

2
log

|bn|∏
α/z0∈Zω

∣∣∣∣ αz0
∣∣∣∣nω(α/z0)

= −1

2
log

|bn|∏
α∈Zϕ(Dr0

)

|α|nϕ(α)

|z0|nϕ(α)

= −1

2
log
|cn|r

n+
∑
α∈Zϕ(Dr0 ) nϕ(α)

0∏
α∈Zϕ(Dr0

) |α|nϕ(α)
= Lϕ(1, |cn|, r0, n).

Taking into account (3.28) and (3.36), and using the inequality (3.11) for ζ0 := 1 we
have

I(ϕ; z0) =
z0ϕ
′(z0)

ϕ(z0)
=
ω′(1)

ω(1)
= I(ω; 1)

≥ n+Mω(1) + Lω(1, |bn|) = n+Mϕ(z0) + Lϕ(1, |cn|, r0, n).

In this way the inequality (3.34) was proved.

2. Suppose that Zϕ(Dr0) = ∅. Then Zω = ∅. By the inequality (3.12) for ζ0 := 1

and (3.18) for k := n we get

I(ϕ; z0) = I(ω; 1) ≥ n− 1

2
log |bn| = n− 1

2
log |cnrn0 |.

In this way the inequality (3.35) was proved. 2
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Summary
This article describes a unipolar motor which is an altered version of one of the very first

electric motors invented by M. Faraday. A modification consists of applying a rotor in a helix
shape winded on a cylinder surface. The rotor is located on an alkaline cylindrical battery
which was placed on a cylindrical neodymium magnet. One can observe that, despite the
rotor’s rotation, a relaxation oscillations occur directed alongside its axis. That new effect
was explained and conditions of its occurrence were discussed.
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1. Introduction

The very first electric motor was invented by Michael Faraday in 1821. It was a
unipolar motor. Within this motor, a conductor, in which there is a flow of electric
current, rotates around one pole of a permanent magnet [1]. Motion of the rotor
is caused by an electrodynamic force. In another model of Faraday’s motor, the
magnet rotated around the final part of the conductor with a current flow. Electric
motors, constructed in the next few years, e.g. Barlov’s wheel, were unipolar motors
as well [2]. Later there were developed and created various types of electric motors
applied in machines propel them. Although unipolar motors are rarely used these
days, the principle of their operation still remains the subject of great interest. Also
new kinds of these motors are being constructed. The article is about an interesting
effect which was observed after a change of unipolar motors’ construction.
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2. Faraday’s unipolar motor with a rotating frame

Nowadays, wide access to strong neodymium magnets and alkaline batteries makes
the construction of the unipolar motor easier. An example of the contemporary
unipolar motor, which uses mentioned elements, was described by H. J. Schlichting
and C.Ucke [3]. The structure of the motor, described in their paper, is based on
the very first unipolar motor, invented by M.Faraday [4]. Its outlook and operation
principle are presented in the Fig. 1.

Fig. 1: The construction and operation principle of the unipolar motor based on the Fara-
day’s motor; 1 – frame made of nonferromagnetic wire, 2 – a contact ring, 3 – a tip, 4 – a
cylindrical neodymium magnet, 5 – a cylindrical battery, 6 – N, S – the magnet poles,
I – the current intensity, B, B1, B2 – the vectors of magnetic field induction on the side
surface of a frame, B1t, B2t – the components of the induction vectors perpendicular to
the sides of the frame, B1p, B2p – the components of the induction vectors parallel to the
sides of the frame, F, F1, F2 – the electrodynamics forces applied to the frame’s sides.

This motor is composed of a single rectangular frame consisting of a copper
wire without isolation. In its lower part, the frame is equipped with a contact ring
touching the side surface of the cylinder shaped neodymium magnet. In the upper
part, the frame includes a tip based on one pole of cylindrical battery, located on the
magnet. Electric current flows through the blade, then through all sides of the frame
and the ring, as well as through the magnet’s surface. If a positive pole of the battery
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is turned upwards, then the directions of electric current flow within a frame are as
those presented in the Fig. 1. The frame is located in the magnetic field, produced
by the cylinder magnet. Components of a magnetic induction vector, which are
perpendicular towards the frame sides, cause electrodynamics forces. The momentum
of those forces causes a rotation of the frame. The unipolar motor discussed in the
paper allows us to present the basic laws of electromagnetism in an attractive way.
Other advantages of the unipolar motor also encompass a very simple structure and
an uncomplicated method of construction.

3. Construction of a unipolar motor with a helical rotor

The frame, within the described motor, may be of different than the rectangular
shape, for example of a trapezoid or another polygon. On the Internet there are
videos which show unipolar motors’ operation principles and there are presented
some the frames, e.g. in shape of a heart or dragonfly wings [5]. An interesting and
surprising effect occurs when a wire forming sides of the frame is winded into a helix.
The helix will not only rotate, but also oscillate in a vertical direction.

The purpose of this article is to present a description of such a motor, as well as
an explanation of the phenomena appearing within it. The structure of the unipolar
motor with a helical rotor is presented in the Fig. 2. Helix 1 is made of nonferromag-
netic wire, which has also some elastic properties. The lower part of the wire creates
a contact ring 2 touching the side surface of the cylindrical neodymium magnet 3.
The upper end of the wire is directed towards the side of the helix axis and then
curved downwards and filed in a form of a cone. As a result, the upper end of the
wire creates a tip 4 which touches the pole of the cylindrical battery 5, located on
the neodymium magnet.

Fig. 2: The construction of the unipolar motor with a helical rotor; 1 – the helix winded
with a nonferromagnetic wire, 2 – a contact ring, 3 – a cylindrical neodymium magnet,
4 – a tip, 5 – a cylindrical battery, N, S – the poles of magnet, I – the electric current
intensity.
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An appropriate material to construct a helix is a cooper wire without isolation,
with a diameter of approximately 0.5–1mm, coated with tin or silver and used to
create connections in electric networks. The wire with that a diameter is accurate
for hand winding and it can also be bent with universal pliers. The isolated wire can
be used and applied to roll windings, but isolation enamel needs to be removed from
the parts that compose the contact ring and the tip. In order to enable easy laying
of helix, the magnet diameter should be the same or grater than that of the battery.
If these diameters are equal to each other, then the helix may be properly winded on
the battery. While winding, each wire convolution should be placed precisely next
to the previous and the following ones. After hand winding and releasing the wire,
helix diameter, as well as a distance between the coils will slightly increase which is
caused by the wire elasticity. The increase in internal diameter of the helix makes its
movement easier after placing it on the battery. The contact ring is composed of 2–3
wire coils which adhere to each other and are soldered together. This ring’s inner
diameter should be about 0.5mm grater than the neodymium magnet diameter.
Then it enables a good contact between the ring and magnet, and there is little
friction during the rotation. The number of helix coils may vary from only a few to
even several dozens. A direction of winding (left-handed or right-handed) is arbitrary.

In the constructed motors, there were applied cylindrical neodymium magnets:
one with the diameter 14mm and height 10mm and the other one with the diameter
33mm and 30mm in height. In both cases, cylindrical alkaline batteries with the
electromotive force 1.5V were used. Batteries had steel shield enabling their coaxial
positioning and connection with the magnet. For smaller magnets, there were used
batteries LR6 (AA) with the diameter 14mm, and for bigger ones LR20 batteries
with the diameter 33mm. The number of convolutions used in helix ranged from 5
to 20. In order to start the motor, the batteries ought to be placed on the magnet
in a coaxial position, and then the helix should be put on the battery. In order to
ensure better contact between the helix and the battery, a slight cavity can be made
inside the battery’s pole. To do this one should take a tip of nail, place it on the
battery pole and gently it with a hammer. If orientation of the magnets poles and
the battery, as well as direction of the helix winding is the same as in Fig. 2, then
the vertical helix oscillations will appear. Moreover, the helix will revolve, similarly
as frame in Faraday’s motor. The motors constructed are presented on photos 1–3.

4. Operation of the unipolar motor with a helical rotor

The reason of the observed helix movements will be explained and discussed below.
To do this, we shall consider forces which are applied to an element of helix that is
located on the battery. According to a generally accepted convention, magnetic field
lines are oriented from the north to south pole; cf. Fig. 3.

Spatial distribution of field lines has an axis symmetry and these lines are lo-
cated within surfaces which go through the magnet axis. The magnetic induction
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Fig. 3: Explanation of the electrodynamics forces origins in the unipolar motor with a heli-
cal rotor; ∆F1, ∆F2, ∆F3 – the components of electrodynamic forces applied to the helix
element respectively: vertical, tangent and radial, B – a vector of magnetic field induc-
tion, B1, B2 – the components of the field induction respectively: horizontal and vertical,
j – a current density vector, j1, j2 – the components of the current density respectively:
horizontal and vertical.

vector B occurs at every point of the magnetic field, and is tangent to those lines.
Within points on the helix, the induction vector B is inclined downwards. It can
be decomposed into a horizontal element B1, and a vertical element B2 directed
alongside radius, which is tangent to helix. Similarly, the current density j, flowing
in the helix, is inclined and tangent to the direction of convolution. This vector will
be also decomposed into a horizontal component j1 and a vertical component j2.
Both components, j1 and j2 are located within a plane tangent to the helix side
surface. Vectors j1 and B1 are perpendicular to each other. Therefore there is an
electrodynamics force ∆F1, applied to an element of helix wire of length ∆l, and the
force ∆F1 is located vertically upwards. Using generally accepted signs, the force
∆F1 may be expressed by

(1) ∆F1 = S∆l (j1 ×B1)

where S means the area of wire cross section. Similarly, vectors j2 and B1 are
also mutually perpendicular, thus the electrodynamics force ∆F2 occurs, oriented
horizontally and perpendicularly to the helix radius. This force can be expressed as:

(2) ∆F2 = S∆l (j2 ×B1) .

The force ∆F2 creates a momentum which turns the helix around. However, if a
resulting force ∆F1 is high enough, it will lift of helix convolutions. As a result, the
helix tip stops touching the upper pole of the battery and the electric circuit becomes
opened. The force ∆F1 will become zero and the helix convolutions will fall down
because of their own weight. That situation will cause another close of circuit which
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generates the force ∆F1. Afterwards, these processes will repeat, and cause the helix
oscillation motion. The oscillations, developed in such a manner, have a relaxation
character. These oscillations are possible only in case of the above orientation of
the magnet and battery, as well as for the direction of the helix winding, in which
the force ∆F1 is directed upwards. In addition the horizontal component j1 of the
current density vector is also perpendicular to the vertical component of the magnetic
induction B2 and then, the electrodynamics force ∆F3 which is produced in such
a method is oriented along the helix radius. As the result the force ∆F3 cannot
trigger the helix motion, and only causes its radial tension. Moreover, within the
helix convolutions, there is a flow of electric current in the same direction. Because of
this, the convolutions attract each other. However the force occurring in this process
may not be taken into consideration, as it is significantly lower than the interaction
force between the wires and the magnetic field, which is developed by the magnet.
It is derived from both the measurements and the calculations. Such a research
indicates that area average magnetic induction, generated by the magnet within
the helix zone, equals to a few dozens mT. In comparison the average induction
of the area, generated by the adjacent helix convolutions is about a few µT (for a
typical electric current intensity of about 2A which can be averagely obtained from
a cylindrical battery).

5. Alternative unipolar motors with a helical rotor

The unipolar motor described above allows to make alterations in its construction,
and an investigation of its influence on the helix actions. The battery can be easily
placed on a magnet conversely, this means to direct its positive pole downwards.
The magnet can also be inverted around, as to place its north pole downwards.
The inversion of the batteries poles only or the magnet poles orientation causes an
inversion of the force ∆F1, and an oscillation of the helix will not appear. Then there
will be a downwards extension of the helix, and a tension of its tip exerted on the
battery will increase. Senses of the forces ∆F2 and ∆F3 will become also inverted.
In such a situation, the helix can only turn around in an opposite direction. The
angular velocity will be lower because of an increase within a friction force and
its momentum. If the friction force is too high, then the rotation will not occur,
and the helix will only remain extended. In this case, the experiments should not
be prolonged because the battery is in a state of short circuit by the helix, and it
results in heating of both elements.

Simultaneous change of the poles of the battery and the magnet orientation will
not cause a change in the helix motion. Further experiments may be performed in the
field of application of the helix, winded in an opposite direction, and may investigate
influence of this change on the direction of the rotation and the oscillation occurrence.
The others thorough examinations may investigate how is the influence of the helix
convolutions number, their diameters, pitch of convolution and the diameter of the
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applied wire on a frequency and the amplitude of oscillation within the helix, as
well as its angular velocity. What is more, the described unipolar motor is easy
to build, powered by two or more batteries, located one on the top of another.
When using a greater number of batteries, the attraction force of the higher placed
batteries towards the magnet will be less. Hence, in order to ensure good stability of
the system and an electric contact, the batteries should be connected towards each
other, and their side surface should be secured with an adhesive tape.

It is also worth applying the helix in a popular version of the unipolar motor
with the neodymium magnet suspended on a nail attraction to the battery [3]. Such
a motor is presented in Fig. 4.

Fig. 4: The application of helix in the unipolar motor with a suspended magnet; 1 – a
cylindrical neodymium magnet, 2 – a nail, 3 – a cylindrical battery, 4 – the helix winded
with the nonferromagnetic wire, 5 – the lower end of the wire, 6 – the upper end of the
wire, N, S – the poles of the magnet, I – the electric current intensity.

This figure presents that the battery LR6 (AA) and the helix winded from a thin,
nonferromagnetic wire with 0.3mm diameter were applied. The lower end of the helix
should touch a flat surface of the magnet (the upper or the lower one), near its edge,
in order to enable a current flow through the magnet in a radial direction. In such
version of the motor, a battery is held with a thumb and a middle finger of one hand,
and index finger presses the upper end of the helix towards the battery pole. For a
respective orientation of the magnet and battery poles in that version of the motor,
both the magnet rotation and the helix oscillation can be observed. Such a system
is, in a way, similar to the Roget’s helix, called “the dancing spring” [6, 7]. Summing
up, it can be stated that the above described unipolar motor with the helical rotor, is
adequate for various display experiments, as well as for more advanced quantitative
research. Its substantial advantages encompass the uncomplicated construction and
the low costs of the applied materials.
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a) b) c)
Photo 1: The external view of the three unipolar motors with the helix rotor selected
from a constructed series; a) a motor with LR6 (AA) battery, b) a motor with R20

battery, c) a motor with two batteries R20 connected in series.
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SPRZĘŻENIE MIĘDZY OBROTEM I DRGANIAMI PODŁUŻNYMI
W SILNIKU JEDNOBIEGUNOWYM

S t r e s z c z e n i e
W artykule opisano silnik, który jest zmienioną wersją jednego z najwcześniejszych sil-

ników wynalezionych przez M.Faraday’a. Zmiana polega na zastosowaniu wirnika
w kształcie spirali nawiniętej na powierzchni cylindrycznej. Wirnik ten nałożony został
na walcową baterię alkaliczną, ustawiona na również walcowym magnesie neodymowym.
Zaobserwowano wówczas, że oprócz obrotu wirnik wykonuje również drgania w kierunku
osiowym. Ten nowy efekt został wyjaśniony oraz przedyskutowano warunki jego występowa-
nia.

Słowa kluczowe: silnik jednobiegunowy, siła elektrodynamiczna, obrót, drgania osiowe,
sprzężenie
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THE MICROWAVES ABSORPTION
IN FERROFLUID CONTROLLED BY THE MAGNETIC FIELD

Summary
The construction of the system for research of microwaves interaction with ferrofluid

located in the magnetic field produced by Helmholtz coils is described. The microwaves
frequency equals 6.5 GHz. The magnetic field induction directed alongside of microwaves
beam were changed in range of 0–80mT. The ferrofluid’s samples of thickness 0–15mm
consist of magnetite nanoparticles coated by oleic acid and dispersed in mineral oil were
tested in this system. The most important result of this investigation is detection that
intensity of microwaves transmitted by ferrofluid depends on the applied magnetic field
induction. Technological application of this dependence in microwave absorber controlled
by the magnetic field is possible.

Keywords and phrases: ferrofluid, microwave, magnetic field, absorption

1. Introduction

In recent years an increasing interest in electromagnetic weapon, called the
E-weapon, has been observed [1]. The principle of operation of this weapon consists
in emission of high power microwave pulses [2]. While reaching objects prepared from
conductive materials, such pulses induce electromotive forces and electric current of
high intensity. In case of encountering electrical and electronic equipment, the in-
duced currents destroy or damage them [3]. The main targets of the E-weapons are
posed by power and information networks, serving-receiving apparatus and hard-
ware [4].

Since the listed objects of fire are of considerable significance for operation of con-
temporary states and societies, effective means of protection against the E-weapon
are sought for [5]. For that purpose, there are various studies performed over material
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that absorb the energy of microwaves, e.g. metamaterials, cavity and porous struc-
tures, composites, paints, pastes and suspensions. A material serviceable for that
purpose may be constituted by ferrofluids. This assumption arises from the fact that
ferrofluids are particle suspensions with high magnetic permeability, which triggers
an increase of the absorption coefficient of electromagnetic waves [6]. Furthermore,
spatial distribution of those particles is altered upon application of the magnetic
field. This may allow to control the absorbing properties of those materials. The dis-
cussed premises caused investigation into the interactions between the microwaves
and the ferrofluid. Results of the mentioned investigation are included in the article.

2. The experimental system

The experimental system presented in Fig. 1 and Photo 1. has been applied in the in-
vestigation over the microwaves absorption by ferrofluids . Samples of the ferrofluid
were closed in a cylindrical container 1 with an internal diameter of 32mm, prepared
from polymethylacrylate, Fig. 2 and Photo 2. Structure of the container allowed to
increase the contained amount of the ferrofluid easily. The container was place hor-
izontally on the support 2 with an opening. There was a diaphragm 3 beneath the
opening, prepared from aluminum plate, which limited the widths of the microwave
beam to the container’s internal diameter. The source of the microwaves was posed
by a transmitter 4, equipped with a k − 19 reflex klystron [7]. Voltages necessary
for the klystron to operate were produced by a supplier P . Microwaves frequency
amounted 6.5GHz, and the emitted beam power equaled 35mW.

The outgoing beam was directed vertically from the bottom, to the ferrofluid
container through a horn of the transmitter 5. It was an incident beam 7. Magnetic
field was applied to the ferrofluid, produced by the system of Helmholtz’s coils 12,
14, arranged symmetrically towards the container, on the supports 13, 14. Direction
of induction of the magnetic field B was parallel to the axis of microwaves beam and
of the ferrofluid container. The magnetic field induction was altered in the range
0–80mT, through changing the power source voltage U of the Helmholtz’s coils.
Thanks to application of the system of these coils, homogeneity of the magnetic
field induction inside the ferrofluid container did not exceed ±4%. Measurements
of the magnetic field induction were carried out with a teslameter with Hall sensor.
Having been transmitted through the ferrofluid container, the incident beam 7 was
converted into the transmitting beam 8, and entered into the receiver’s horn 9.
Intensity of the beam was measured by the receiver 10. The microwaves detector in
the receiver was a microwave diode D, biased in reverse direction. The reverse bias
caused no current to flow through the diode, where the microwaves did not descend
on it [8].

When the microwaves descended on the diode, current carriers were generated
and current flow was triggered with intensity directly proportional to that beam’s
intensity. The current was amplified by an amplifier A and measured through a micro
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Fig. 1: Scheme of the system for investigation of microwaves absorption in ferrofluids; 1 – a
container with ferrofluid, 2 – base of the container, 3 – cover, 4 – microwaves transmitter,
5 – horn of the transmitter, 6 – holder of the receiver, 7 – the incident beam of microwaves,
8 – the transmitted beam of microwaves, 9 – horn of the receiver, 10 – receiver of the
microwaves, 11 – holder of the receiver, 12 – lower Helmholtz’s coil, 13 – support of the
lower coil, 14 – upper Helmholtz’s coil, 15 – support of the upper coil, 16, 17 – brackets, 18 –
base of the system,K – reflective klystron, P – power supply of the klystron, D – microwave
diode, A – amplifier, µA – microammeter, U – power voltage of the coils, B – magnetic
field induction.

Photo 1: External view of the system,
where absorption of waves in ferrofluids was investigated.
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Fig. 2: Structure of the ferrofluid container; 1 – lower part of the container, 2 – bottom of
the lower part, 3 – upper part of the container, 4 – bottom of the upper part, 5 – ferrofluid,
6 – venting cork.

Photo 2: External view of the ferrofluid container.

ammeter µA. Based on the indications of the ammeter, a proportion of intensity of
the beam transmitted through the ferrofluid towards the incident beam. A ferrofluid
with magnetite nanoparticles – 10–40 nm in size, coated with a mononuclear layer
of oleic acid, dispersed in mineral oil – was applied, The layer of oleic acid protected
against agglomeration and sedimentation of particles. The magnetite content consti-
tuted 6.15% of the ferrofluid mass, and was estimated with an X-ray microanalyzer.
No diluted and diluted ferrofluids were applied. A mixture of toluene and acetone
in a volume ration 7 : 3 was applied as a diluent. An addition of the diluent was
30% or 60% of the ferrofluid volume. The whole investigation was performed in the
temperature 24◦C.

In the first part of the experiment, the transmission ability of the incident beam
of constant intensity through a layer of ferrofluid in dependence on its thickness
was investigated. In this part of the experiment, there was no magnetic field applied
to the ferrofluid. At first, the empty container 1 was placed in the experimental
system, and the microwaves beam was directed towards it. The intensity of the
current respective to the beam intensity I0, which was transmitted through the
empty container, was measure with the ammeter. Afterwards, the ferrofluid was
poured into the container, generating layers with increasing thickness h, which the
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beam was transmitted through. Thickness of this layer was altered in the range of
0mm to 15mm with spacing of 1mm. The respective current intensity – directly
proportional to the microwaves intensity, transmitted through the layer I – was
measured for each thickness of the layer. On the basis of achieved results, the ratio of
intensity of the beam transmitted through the ferrofluid layer towards the incident
beam I/I0 was calculated. The obtained results served preparation of the charts
presented in Fig. 3.

Fig. 3: Relation between the transmitted
beam intensity ratio to the incident beam
intensity I/I0, and the thickness of the
ferrofluid layer h for various degrees of

dilution d.

Fig. 4: Relation between the transmitted
beam intensity ratio with the applied
magnetic field to the transmitted beam
intensity without the magnetic field IB/I
and the field induction B for a ferrofluid
layer h = 4mm thick with various degrees

of dilution d.

In the second part of experiment, transmission of the incident beam with intensity
specified by a ferrofluid layer of selected thickness from induction of the applied
magnetic field B was investigated. The investigation was performed in case of three
chosen thicknesses – 4mm, 8mm and 12mm. For that purpose, a layer of ferrofluid
of selected thickness was placed inside the container and a microwave beam was
directed on it. In such conditions, current intensity I, corresponding to the beam
transmitted through the magnetic field was measured. Afterwards, the magnetic field
of induction B – change in the range 0–80mT with interval 10mT – was applied
to the ferrofluid, and current intensity IB , corresponding to the transmitted beam
intensity was measured. While applying the obtained values, the IB/I ratio was
calculated. Results of the calculations was used to draw charts presented in Figs. 4–6.
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Fig. 5: Relation between the transmitted
beam intensity ratio with the applied
magnetic field to the transmitted beam
intensity without the magnetic field IB/I
and the field induction B for a ferrofluid
layer h = 8mm thick with various degrees

of dilution d.

Fig. 6: Relation between the transmitted
beam intensity ratio with the applied
magnetic field to the transmitted beam
intensity without the magnetic field IB/I
and the field induction B for a ferrofluid

layer h = 12mm thick with various
degrees of dilution d.

3. Discussion on the results

The performed investigation proved that before applying the magnetic field to the
ferrofluid, intensity of the transmitted beam I decreases together with thickness of
its layer h, Fig. 3. A layer of not-diluted ferrofluid, 15mm thick, causes reduction
in the transmitted beam by 3.9 times. The ferrofluid layers of the same thickness,
with 30% and 60% of the diluent provide attenuation of the beam 1.5 and 1.1 times
respectively. Dependencies of intensity of the transmitted beam I on thickness of the
ferrofluid h is of nonlinear character. For lower thicknesses of the ferrofluid, reaching
several millimeters, reduction of intensity of the transmitted beam takes place faster
than for higher thickness. Furthermore, this effect is considerably weaker for diluted
ferrofluids. For an non-diluted ferrofluid, an increase in the layer thickness h from
0mm to 4mm, caused reduction of the transmitted beam intensity by 1.9 times.
After adding 60% diluent, the reduction reached only 1.05 times. For the sake of
comparison, an increase in thickness of the non-diluted ferrofluid from 10mm to
15mm resulted in reduction of the transmitted beam intensity only by 1.4 times,
and for the ferrofluid with 60% diluent, this reduction was non-measurable (see
curve 3 in Fig. 3).
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Having placed the ferrofluid in the magnetic field, the transmitted beam intensity
IB increased together with a rise of the magnetic field induction B. This increase
took place for all three layers selected for investigation, with thicknesses 4mm, 8mm
and 12mm, both for non-diluted and diluted ferrofluids. The speed of this increase
depended on the thickness of the ferrofluid layer and on the degree of its dilution.
Furthermore, in all of the mentioned cases, the dependency of the transmitted beam
intensity IB , on the magnetic field B was non-linear. If the ferrofluid layer was
thicker, the ratio of the transmitted beam intensity IB , in the magnetic field of
maximal induction 80mT to the transmitted beam induction I before application
of the field was higher. For example, for a layer h = 4mm, the ratio was 1.47, and
for h = 12mm, equaled 1.97 (compare Fig. 5 and 7). These values are related to the
non-diluted ferrofluid.

Fig. 7: Schematic presentation of microwaves beam transmission in a ferrofluid: a) before
application of the magnetic field, b) after application of the field; 1 – magnetite particle,
2 – surface–active substance, 3 – dispersion fluid, 4 – incident beam, 5 – transmitted

beam, I0 – intensity of the incident beam, I – intensity of the transmitted beam without
magnetic field, IB – intensity of the transmitted beam after application, without magnetic

field, B – field induction.
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Ferrofluid dilution caused a reduction in IB/I. In case of 8mm thickness, ad-
dition of 60% diluent caused a reduction IB/I from 1.69 to 1.31 (cf. Fig. 6). The
nonlinear dependency of the transmitted beam intensity IB on the magnetic field
induction B is shown through a quick increase of this intensity in the initial part of
the range of induction changes (0–30mT) in comparison with the final part of this
range (50–80mT). This regularity is more considerable for diluted ferrofluids, where
stabilization of the transmitted beam intensity was observed in the final part of the
range of induction changes (compare curves 3 and 1 in Fig. 5–7).

A reason for the observed changes in the microwaves intensity while transmit-
ting through the ferrofluid is its interaction with the magnetite particles, where the
spatial distribution is changed after application of the magnetic field, Fig. 7. If the
electromagnetic waves incident on the material of high electric conductivity σ and
relative magnetic permeability close to µr ≈ 1, e.g. aluminum or copper, they are
reflected. What is more, the waves penetrate the medium to rather shallowly. The
penetrating waves are strongly dumped. Intensity of the penetrating wave Iw on the
level x, measured from the material surface, is expressed by the following formula [6].

(1) Iw = I0e
− x

u ,

where: I0 – intensity of the incident wave, u – conventional depth of penetration, for
which intensity of the wave in the medium is reduced by e times.

The depth of penetration u is calculated from the formula

(2) u =

√
1

πfσµ0µr
,

where: f – wave frequency, µ0 – magnetic permeability of vacuum.
For the discussed materials and frequencies from the microwave range, the con-

ventional depth of penetration is very small, reaching 10−5 − 10−6 m. Even smaller
depth of penetration is proved by conductive ferromagnets, e.g. iron or steel, for
which µr � 1. In case of a dielectric, e.g. plastics, electrical conductivity is about
10−20 smaller than for metals [9]. Formula (2) suggests that the conventional depth
of penetration is then higher than for metals by 10−10. Therefore, the electromag-
netic waves penetrate dielectrics almost completely. These cases are relatively easy
to be described theoretically [10].

If the conductive qualities of the material are limited, and it proves µr � 1,
then partial absorption of electromagnetic waves and their partial penetration takes
place. The conventional depth of penetration to such a medium is expressed by a
more complicated formula [11].

(3) u =

√√√√ 2√
(2πf)

4
(ε0εrµ0µr)

2
= (2πfσµ0µr)

2 − (2πf)
2
ε0εrµ0εrµ0µr

,

where: ε0 – electrical permittivity of vacuum, εr – relative permittivity of medium.
The presented situation exists in case of the investigated ferrofluids, with mag-

netite particles of superparamagnetic properties or in some ferromagnetic cases, also
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characterized by µr � 1. These particles are not good conductors of electric current.
It is explained by the fact that specific conductivity of magnetite σ in the temper-
ature of 25◦C is about 104 S/m [12, 13]. For the sake of comparison, conductivity
of metals in those conditions reaches the level of 105–106 S/m, and conductivity of
insulators is included in the range 10−12–10−17 S/m. Furthermore, the ferrofluid in-
cludes dispersive liquid and a surface-active substance, which are dielectric. Hence,
the ferrofluid is inhomogenous in the microscope scale. Investigations of other authors
proved that with high intensities of electric and magnetic field, both the magnetic
and electric permeability depend on frequency [14, 15]. Such a situation is related
to the investigated ferrofluids, and that is why they are a structure of changeable
properties, hard to be described quantitatively.

The performed experiments showed that the applied microwaves transmit
through the ferrofluid, and are partially absorbed. Furthermore, significant meaning
for the level of absorption is borne by thickness of the ferrofluid layer, its degree
of dilution and induction of the applied magnetic field. These dependencies may be
explained by assuming that absorption of microwaves takes place mainly by the mag-
netite particles included in the ferrofluid. If amount of the particles was reduced by
application of a thinner layer of the diluted ferrofluid, an increase in intensity of the
transmitted beam was observed. In turn, a rise in the degree of the particles order
through application of the magnetic field and creation of a column-fiber structure,
suggested by Winslow, also caused an increase in the transmitted beam intensity IB
[16, 17].

The ordered structure includes areas with a reduced content of magnetite parti-
cles, where the dispersion fluid is located. The areas present a smaller ability to ab-
sorb microwaves, which is presented schematically in Fig. 7. Energy of the absorbed
microwaves is dissipated as a result of changes in the direction of magnetization of
the magnetite particles, polarization alterations of molecules of dispersive liquid and
surface-active liquid, and induced micro-eddy-currents in magnetite particles. En-
ergy of those micro-currents is conversed into Joule heat. Dissipation of this energy
may be also supported by changes in orientation of the magnetite particles, induced
by alterations of the microwaves magnetic field. These changes are suppressed by
forces of viscosity of the dispersive liquid. Eventually, the energy of the absorbed
microwaves cause an increase in the ferrofluid temperature. An increase in tempera-
ture would be hard to measure for insignificant power of microwaves, emitted by the
applied klystron. In order to perform the measurement, it was necessary to place a
ferrofluid sample in a calorimeter and carefully apply thermal stabilization.

While summing up the performed experiments it may be concluded that the fer-
rofluid layer, placed in the ferromagnetic field plays a role of a controlled absorbent,
which enables multiple modification of the microwaves intensity. This effect is use-
ful in innovative technological solutions, e.g. in removed filters or adaptive shields
protecting against microwave radiation.
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ABSORPCJA MIKROFAL PRZEZ FERROFLUIDY STEROWANA
POLEM MAGNETYCZNYM

S t r e s z c z e n i e
Opisana została budowa układu do badania oddziaływania mikrofal z ferrofluidem

umieszczonym w polu magnetycznym wytwarzanym przez cewki Helmholtza. Czȩstotliwość
mikrofal wynosiła 6.5GHz. Indukcja pola magnetycznego skierowanego wzdłuż wia̧zki mi-
krofal była zmieniana w granicach 0–80mT. W tym układzie badano próbki ferrofluidu
o grubości 0–15mm, zawierające nanoczastki magnetytu pokryte kwasem oleinowym i zdys-
pergowane w oleju mineralnym. Najważniejszym wynikiem tych badań jest wykrycie, że
natężenie wiązki mikrofal przechodza̧cej przez ferrofluid zależy od indukcji przyłożonego
pola magnetycznego. Możliwe są techniczne zastosowania tej zależności w pochłaniaczach
mikrofal sterowanych polem magnetycznym.

Słowa kluczowe: ferrofluid, mikrofala, pole magnetyczne, absorpcja
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Summary
In this paper the thermal analyses related to the modelling of heat transfer in modern

electronic structures are presented. The comparison of two thermal models is demonstrated.
The first one is a classical approach based on the Fourier-Kirchhoff equation. The second
one is a model which concerns the Dual-Phase-Lag equation. Moreover, some other heat
conduction models appropriate for nanosized electronic structures are listed and shortly
described. Furthermore, the thermal analyses of modern 12 nm Fin-FET transistor are
given.

Keywords and phrases: Fin-FET transistor, Dual-Phase-Lag equation, Fourier-Kirchhoff
equation, thermal analyses, nanoscale heat transfer, modern electronics

1. Introduction

Modern electronic demands a very precise analyses of the thermal processes which
occur in electronic structures during their operation. Modern electronic devices be-
come more and more smaller. Moreover, they are increasingly faster. Accelerated
operating speed together with lesser dimensions cause the cooling of the electronic
elements more difficult. It is not easy to install the heat sinks or other structures
dissipating the heat from each of the miniature elements which generate the heat.
So, one of the most important issues, related to the proper operating of that kind
of devices, is the modelling of the heat conduction in modern integrated circuits.
Furthermore, an electro-thermal analyses are commonly regarded to be a basic de-
velopment step in designing and constructing of a professional electronic circuits,
very small power modules, nanosized transistors and other submicron structures [1].
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As it turns, the mentioned kind of the analysis might be useful not only for mod-
eling of the heat conduction but also, for example, for estimation of the conditions of
devices operation. It allows, as an example, to determine the temperature dependen-
cies of the properties of analyzed electronic devices, analysis of the operating point
of integrated circuits or even to determine of the maximal operating temperature of
that circuits. Apart from that, the electro-thermal analyses also allow to the power
density estimation.

Generally writing, last years bring some new approaches to the problem of heat
transfer in electronic systems. For almost two hundred years, up to 1990s [2], the
most popular model, which was used to thermal analysis preparation, was a Fourier-
Kirchhoff model. It established the classical heat transfer theory. That theory has
been just introduced by heat conduction law’s originator, Jean Baptiste Joseph
Fourier [3]. Beginnings of this theory date back to the early 1820s. The considered
theory is based on the mentioned law of the heat conduction, which is also known
as a Fourier’s law. The heat conduction law concludes that the heat flux density at
a point ψ at a time t is proportional to the product of the gradient of a temperature
at the point ψ at the time t and of the quantity called a thermal conductivity of a
material which is analyzed. The mathematical form of this law presents itself in the
following way:

(1) q(ψ, t) = −κ · ∇T (ψ, t).

The symbol ψ means the location where the temperature analysis is conducted.
Depending on the case, which is considered, the symbol ψ expresses the variables
related to each dimensions. And, in one-dimensional case, this symbol expresses
simply the only one coordinate. In two-dimensional case, the symbol ψ make the
notation of two coordinates, for example x and y, easier. So, in such case, ψ can be
expressed as ψ = (x, y). Similarly to the previous case, when the three-dimensional
structure is analyzed, the symbol ψ is an abbreviated notation of three coordinates,
for example x, y and z, it can be written as ψ = (x, y, z). It is worth writing that
a negative sign, which is placed at the right side of the equation (1) indicates the
direction of a heat propagation. The negative sign means that the heat flows from
areas, where the higher temperatures are observed, towards regions characterized
by cooler temperatures. The quantity κ is a thermal conductivity and it can be
interpreted as a rate of the heat conduction. Of course, a variable q assumes values
of the density of the heat flux. The ∇T expression, in turn, is a gradient of the
temperature. The mentioned Fourier’s law was a base to formulation of another
very useful equation which was applied to modelling of heat conduction in almost all
electronic structures up to the end of the twentieth century. The mentioned equation
is called a Fourier-Kirchhoff equation. It is a parabolic partial differential equation
for which the mixed boundary conditions were formulated. The mathematical form
of that equation is presented below:

(2) cvs ·
∂

∂t
[r · T (ψ, t)] = − [∇q(ψ, t)− qgenerate(ψ, t)] .
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Similarly to the previous explanations, the variable q means the heat flux and it
can be obtained using the Fourier’s law. Symbol ∇q, of course, is a gradient of the
mentioned heat flux. Moreover, the variable T expresses the temperature at location
ψ at the time t. Of course, the explanation of the notation of the symbol ψ is the same
like in the previous case, when the Fourier’s law was considered. In the equation (2),
a new variable appears. The variable qgenerate expresses an international generation
of the heat. Apart from that, equation (2) includes also two new quantities. First
of them, cvs, means the specific capacity of the heat, while the second one, r, is a
notation of the density of the material, which is taken into considerations.

Both of described equations: this one, which expresses the Fourier’s law as well
as the Fourier-Kirchhoff equation were very important issues in the classic approach
to a problem concerning the heat conduction because they allow to provide the first
heat transfer theory. But now, at the age of the miniaturization, it turns that this
classical model could be not appropriate for all cases, especially when the thermal
processes occur very fast, for example during a few initial femtoseconds only after
the electronic devices operating start. Moreover, due to the fact that some impossi-
ble behaviours are assumed using the Fourier-Kirchhoff equation, the classical heat
transfer model is not sufficient in the case of microscopic structures [4]. One of
the mentioned nonphysical assumptions is, for example, the instantaneous speed of
propagation of the heat. Another one concerns the situation which could indicate
that the heat flux and the gradient of temperature are characterized by the ability
to their instantaneous changes. But, the experiments show clearly that mentioned
situations are impossible [1, 5–7]. The other issue is related to continuing process of
miniaturization of electronic structures and simultaneous acceleration of their speed
of operation.

It causes that the Fourier-Kirchhoff equation and thereby the classical heat con-
duction theory can not be applied for example for electronic structures which are
made in technology node smaller than about 200 nm [4]. Due to this fact, this pa-
per includes considerations related to attempts to find new approaches to the heat
transfer problems. Comparison of some most popular heat conduction models were
found and listed in the next chapter of this paper.

2. Different approaches to heat transfer problem

Insufficiencies mentioned in the previous paragraph impose finding new approaches
to the considered problem related to the heat transportation. It is needed to find such
models which would allow to take into account most of microscale effects. Due to this
need, some heat transfer models, appropriate even for the nanoscale, appears. One of
them, called the Boltzmann Transport Equation, was provided in the early 1870s by
an Austrian physicist Ludwig Boltzmann. The applicability of this model is available
in real structure which are developed in technology down to a few nanometers. It
can be also applied for larger structure, even up to few hundred nanometers.
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A bit different model concerns, in turn, the molecular dynamics simulations. That
model is also adequate for very small structures including such ones which technology
node size is slightly bigger than 1 nm. The mentioned model was delivered in the
late 1950s and it was originally applied for modelling of the biomolecules and in
many branches of the science, for example in the material science or in the chemical
physics.

Another one model which is adequate for nanoscale thermal modelling is based
on a Schrödinger Equation. It was formulated and published in the mid 1920s by
another Austrian physicist Erwin Schrödinger. This equation explains changes of a
quantum state of the physical systems with the passing of the time. It is estimated
that the mentioned model could be applied even in structures which technology
nodes are significantly smaller than 1 nm. It denotes that the values smaller than
the silicon lattice parameter could be taken into considerations.

The next model concerns the Ballistic-Diffusive equation. This model was pro-
posed at the beginning of the XXI century by Chen [8]. It might be appropriate
for nanosized electronic structures made in technology about 100 nm. An estimated
scope of heat conduction models which would be apply for silicon structures is pre-
sented in the Fig. 1.

Fig. 1: An estimated scope of heat conduction model.

In the figure above different heat transfer models are compared. The notation SE
is a short form of the Schrödinger Equation, while the MD means the simulations
using Molecular Dynamics. The next modelMM , marked by red color, is the general
notation of many different macroscopic model, hence the letters used in this abbrevi-
ation. The subsequent model included in the figure Fig. 1 use the Ballistic-Diffusive
Equation (BDE) to modelling the heat transfer in electronic structures. On the
other hand, there is also BTE model in which the Boltzmann Transport Equa-
tion is employed. The other two model are: the Macroscopic Energy Treatment,
marked by the orange color, which use the Fourier-Kirchhoff (F-K) equation and the
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Dual-Phase-Lag model highlighted by the purple color. The only black dashed line
indicates the value of the silicon lattice constant.

Many of the thermal models mentioned in the previous paragraph are appropri-
ate for modelling of heat conduction in electronic nanosized structures. But most of
them are characterized by a big computational complexity, so the simulation times
in each of these cases are usually so long to convenient application during the re-
search. Owing to this fact, another specific heat conduction model will be introduced
and analyzed in this paper. This model is called Dual-Phase-Lag and it was formu-
lated and proposed by Tzou at the end of twentieth century [2]. As it turns, that
model is a very useful tool because it could be applied for hyperbolic heat models as
well as the parabolic ones, such as the Fourier-Kirchhoff model. Apart for that, the
Dual-Phase-Lag model can be commonly used to heat transfer modelling in most
electronic structures, even in these which are developed in technology nodes smaller
than the mentioned 200 nm and for structures which are operating at frequencies
over 6GHz [4].

As it was mentioned previously, the heat conduction modelling at nanoscale is
currently very important because many new microscale structures are constructed
and applied in modern electronic devices. A good example of the modern nanosized
structures are for instance some families of the Intel CPUs in which the MOSFET
transistors are applied. Another example concerns the nanowires and the nanotubes,
a cylindrical nanostructure which are very valuable for optics, electronics, nanotech-
nology as well as the other fields of technology [1, 4]. There is also one structure which
is worth mentioning. It is called the Fin-FET transistor [9, 11]. Due to these facts,
the most of the following analyses are concerned the heat conduction in Fin-FET
transistors.

3. The description of the model

The precise description of an electro-thermal model, which uses the classical Fourier-
Kirchhoff equation, appropriate for the thermal analyses in the case of the Fin-
FET transistor was proposed by Asenova’s scientific team as it is presented in [9].
The mentioned paper includes the classic approach concerning the Fourier-Kirchhoff
model, but some corrections of this model have been made. That corrections allowed
applying mentioned model for nanoscale and for nanosized structures. Moreover,
based on considerations presented in [2, 4, 9] and [10], the heat conduction inside
the Fin-FET channel might be determined according to the following expression:

(3)
1

κ
· cvs ·

(
∂T

∂t
+ τq

∂2T

∂t2

)
∼= ∆T +∇ ·

(
∂

∂t
∇ (τT · T )

)
+

1

κ
· qgenerate.

Similarly to previous equations (1) and (2), the quantity κ is a thermal conductivity,
cvs expressed the specific heat capacitance, T is a variables which values are related
to the temperature. Moreover, t is time variable and a variable qgenerate means the
internal generated heat. There are also two new quantities, τq and τT . Their presence
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in the equation above is associated with the Dual-Phase-Lag equation which was a
reference point to the formulation of the equation (3). Quantities τq and τT are
usually called the heat flux time lag and the temperature time lag, respectively.
Moreover, in many cases the value of the quantity τq is less than a few picoseconds.
Of course, it depends on the parameters of considered materials and it may has
different values for different structures.

In the following considerations, the finite slope of the changes of the mentioned
heat flux is assumed. It can expressed in the following way:

(4)
1

τq
· qgen >

∂

∂t
qgen.

In the inequality (4), the presented relation should be understood in a specific way
that the left side of this inequality is significantly greater than the value of the
expression located at the right one. Moreover, if the following expression is assumed:

(5) r =

[
T

dT

]
,

the equation (3) can be also transformed to the parabolic system of the equations
which is presented below in equation (6).[

1 0

0 τq · cvs

]
· ∂T
∂t
−
[

0 0

1 −τq · cvs

]T
·T−∇ ·

([
0 κ

0 τT · κ

]T
∇T

)
(6)

= [0 qgenerate]
T
.

In equations (5) the symbol rmeans a one-column vector including the prime solution
of equation (3), whereas the symbol T occurring in both equations (5) and (6)
expresses the variable which values are related to the temperature. Moreover, the
variable dT is the time derivative of the first order of the temperature.

4. Results of the simulations in Fin-FET transistor

As it was written earlier, the full description of the heat conduction in Fin-FET
transistor, using the classic Fourier-Kirchhoff approach, was precisely documented
by Asenova’s team [9]. Although the very important issue, related to modern elec-
tronic circuits, are the dynamic behaviours observed in the case of very big Knudsen
numbers, the quantity expressing the ratio of average free path to a characteris-
tic length of a considered structure. Due to this fact, new considerations including
approach based on the Dual-Phase-Lag equation and simulation results will be pre-
sented in this paper.

The benchmark structure used in this case is the Fin-FET transistor made in
technology node 12 nm. Such kind of the transistors was described and analyzed
in [9]. Projections of considered structure are presented in Fig. 2. According to the
paper [9], the channel’s length is 25 nm, its width is 12 nm and the height of that
channel is 30 nm. The dielectric thickness placed between the gate and the thin fin is
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less than 1 nm, precisely writing 0.8 nm. An additional things in that structures are
spacers of 6 nm thickness, situated from left and right sides of a gate. The Equivalent
Oxide Thickness of the high-κ dielectric gate is also 0.8, while the Buried Oxide depth
is 30 nm.

Fig. 2: The considered 12 nm Fin-FET structure.

During the simulations, the following parameters have been used:

cvs = 1660

[
kJ

K ·m3

]
,

κ =



0.30E + 2

[
W

K ·m

]
for high-κ dielectric gate,

1.38E + 0

[
W

K ·m

]
for the polisilicon gate,

1.48E + 2

[
W

K ·m

]
for others.

Moreover, time lags in Dual-Phase-Lag equation were assumed according to the
material parameters of the silicon. Therefore, the τq parameter is equal to 3 ps,
whereas the temperature time lag τT is twenty times larger than the heat flux time lag
and it equals 60 ps. In order to received the solution, the Finite Element Method was
employed. It allows to approximate the Partial Differential Equation. Furthermore,
the fifth-order algorithm, also known as the Gear’s predictor-corrector method, has
been used. During simulations, the two-dimensional structure, presented in Fig. 3,
has been considered. In analyzed case, the following assumptions related to the initial
and boundary conditions were used:
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(7) T (x, y, t) = 0 for y = −30 nm,

(8) dT (x, y, t) = 0 for y = −30 nm,

(9)
∂T (x, y, t)

∂x
= 0 for x = 0 nm ∨ x = 20 nm,

(10)
∂dT (x, y, t)

∂x
= 0 for x = 0 nm ∨ x = 20 nm,

(11)
∂T (x, y, t)

∂y
= 0 for x = 60 nm,

(12)
∂dT (x, y, t)

∂y
= 0 for x = 60 nm,

(13) T (x, y, t) =

{
H(t) inside the channel ,

0 outside the channel.

(14) dT (x, y, t) = 0 for t = 0.

In equation (13), a function H means the Heaviside step function. In all assumption
presented in equations (7)–(14) variable T means the temperature while the variable
denoted by dT is the time derivative of the temperature of the first order. The
results of the mentioned simulations have been normalized. Due to this fact, obtained
results express the rise of the temperature in relation to the maximal temperature
of the steady state which was received using the Fourier-Kirchhoff model. The same
simulations have been also conducted using the Dual-Phase-Lag model. The sample
simulation result obtained for the benchmark structure is demonstrated in Fig. 3.

The figure above demonstrates the distribution of the temperature inside the
12 nm Fin-FET channel. As it was written earlier, the temperature is presented in
normalized form. As it can be seen in Fig. 3, the region of the highest temperature
is marked by the dark red color, while the coolest one is indicated by the dark
blue color. Simulations show that the maximal temperature is observed at the point
with coordinates x equals 0 and y equal to 0.291 nm. That point is located in the
close proximity to the gate, made of the polysilicon material, and a dielectric gate.
Increased temperature in mentioned point and in surrounding area indicates one of
the most exposed to the high temperature parts of the entire structure and suggests
to make precise thermal analyses.

The following figures show the simulation results received for some different time
instances using the classic Fourier-Kirchhoff equation. The temperature distribution
has been estimated after 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200 ps after the
beginning of the simulation, respectively. As it is visible in the Fig. 4. the highest
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Fig. 3: The distribution of the temperature observed inside the channel of 12 nm Fin-FET
transistor.

Fig. 4: The distribution of the temperature inside the Fin-FET channel estimated for chosen
time instants using the Fourier-Kirchhoff approach.
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Fig. 5: The distribution of the temperature inside the Fin-FET channel estimated for chosen
time instants using the Dual-Phase-Lag model.

temperature rise is observed inside the channel of analyzed Fin-FET transistor.
That process occurs very fast and already after 120–200 ps the maximal recorded
temperature is observed.

On the other hand, the thermal analyses in 12 nm Fin-FET channel approximated
using the Dual-Phase-Lag model is presented in Fig. 5. It is clearly shown that the
temperature rise inside the Fin-FET channel is significantly slower when the Dual-
Phase-Lag model is used to simulate the thermal processes occurring in analyzed
structure than in the case when the Fourier-Kirchhoff equation is employed. The
simple comparison of both the Fourier-Kirchhoff and the Dual-Phase-Lag models is
demonstrated in Fig. 6.

The figure above shows expressly that values of the temperature observed in
analyzed 12 nm Fin-FET transistor are considerably lower using the Dual-Phase-
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Fig. 6: Comparison of an average normalized temperature inside the Fin-FET channel using
the Fourier-Kirchhoff and Dual-Phase-Lag approaches.

Lag model than in the case when the Fourier-Kirchhoff equation is applied. This
situation denotes that more appropriate thermal model for modelling of the heat
conduction in modern electronic nanostructures is the Dual-Phase-Lag one.

5. Conclusions

That paper demonstrates the thermal analyses which occur inside the modern tran-
sistors. The 12 nm Fin-FET transistor is considered. The comparison of dynamic
behaviours of Dual-Phase-Lag model and the Fourier-Kirchhoff one is also included.
Moreover, the significant number of transistors located in the close proximity was
assumed. It is also worth writing that the distribution of the temperature inside the
transistor channel was considered. Having regard to all mentioned assumptions, the
considerably faster rise of the temperature in the Fin-FET channel is observed using
the Fourier-Kirchhoff model, while the slower temperature growth is remarked in the
case of the Dual-Phase-Lag one. This observation is very important in the context
of the designing of modern electronic nanostructures.
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MODELOWANIE PRZEPŁYWU CIEPŁA W NOWOCZESNYCH
STRUKTURACH PÓŁPRZEWODNIKOWYCH

S t r e s z c z e n i e
W niniejszym artykule zostały przeprowadzone analizy termiczne zwia̧zane z mode-

lowaniem przepływu ciepła w nowoczesnych strukturach elektronicznych. Zostało doko-
nane porównanie dwóch modeli termicznych. Pierwszy z nich oparty jest na klasycznym
podejściu wykorzystuja̧cym równanie Fouriera-Kirchhoffa. Drugi model wykorzystuje rów-
nanie Dual-Phase-Lag. Ponadto, przedstawionych zostało kilka innych modeli termicznych,
które znajduja̧ zastosowanie w modelowaniu przepływu ciepła w nanostrukturach elektro-
nicznych. Przeprowadzone rozważania dotycza̧ analiz termicznych nowoczesnych tranzy-
storów Fin-FET wykonanych w procesie technologicznym 12 nanometrów.

Słowa kluczowe: tranzystor Fin-FET, równanie Dual-Phase-Lag, równanie Fouriera-Kirch-
hoffa, analizy termiczne, przepływ ciepła w nanoskali, nowoczesna elektronika
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NUMERICAL APPROACHES TO DUAL-PHASE-LAG
EQUATION PROBLEMS

Summary
In this paper the Dual-Phase-Lag model is considered for one-dimensional structure

which was heated from the one side and perfectly cooled from other side. The solution for the
mentioned heat transfer model was acquired using the Finite Difference Method. This result
was precisely discussed and compared with classical heat conduction model which used the
Fourier-Kirchhoff equation. In order to present the accuracy of considered methodology
the computational complexity and the convergence of proposed algorithm were demon-
strated.

Keywords and phrases: Dual-Phase-Lag model, heat transfer, nanoscale, Fourier-Kirchhoff
equation, Finite Difference Method, simulations, convergence

1. Introduction

The theory of the heat transfer was established by Jean-Baptiste Joseph Fourier in
1822 [1]. It was based on a law of the heat conduction, which also is known as the
Fourier’s law. It states that the heat flux is proportional to the negative gradient
of the temperature. A differential form of this law demonstrates that the heat flux
density equals to the product of the thermal conductivity and the negative gradient
of the temperature. It can be formulated as follows:

(1) q(x, t) = −k∇T (x, t), for x ∈ R, t ∈ R+ ∪ {0},

where q is the local density of the heat flux, k is the conductivity of the considered
material and ∇T is the gradient of the temperature.



120 T. Raszkowski and A. Samson

The Fourier’s law led to formulation of the parabolic Fourier-Kirchhoff (FK)
partial differential equation with mixed boundary conditions. The mathematical
form of mentioned equation presents as follows:

(2)
∂T (x, t)

∂t
= − 1

cvs
∇q(x, t) for x ∈ R, t ∈ R+ ∪ {0},

where cvs means a volume-specific heat capacity.
Both the Fourier’s law and the Fourier-Kirchhoff equation were very important

issues in classical approach to the problem of modeling of heat transfer because
they provided the considered heat transfer theory. This theory has been successfully
applied to the end of the XX century to describe thermal processes for relatively
large structures and long times of thermal analyses.

Unfortunately, the Fourier-Kirchhoff equation assumes some non-physical be-
haviours such as infinite speed of heat propagation. Apart from that, this equation
postulates that both the heat flux and the temperature gradient could change in-
stantaneously, but, unluckily, it doesn’t agree with experiments. Moreover, due to
miniaturization of electronic appliances and meaningful increase of their speed, con-
sidered model is not sufficient for structures which technology nodes are smaller than
180 nm [2]. This issue is important for example in the case of the MOSFET tran-
sistors which are used, inter alia, in family of 14 nm Intel Broadwell CPU and even
in the case of prototypical 6 nm FinFET transistors or nanotubes and nanowires
manufacturing technology [3].

Therefore, there exists a need for alternative solutions which would include con-
sideration relating to the microscale effects in models of heat conduction. There
exist a few mathematical models which are adequate for modeling of heat transfer
in nanoscale. One of them is the Boltzmann Transport Equation (BTE). Another
one concerns the molecular dynamics simulations. Both of them are described pre-
cisely in [4]. It is worth saying that mentioned approaches are characterized by big
computational complexity, so simulations times are not short. It means that these
models might not be appropriate in all of applications, especially in the case when
the speed of simulations is one of the most important elements. Owing to this fact,
the paper focus on another heat conduction model called Dual-Phase-Lag (DPL). It
was proposed by Tzou in 1997 [5]. That model is relevant for the parabolic Fourier-
Kirchhoff model as well as the hyperbolic models. Furthermore, considered model
might be useful for heat conduction modeling in structures developed in technologies
lower than 180 nm and for integrated circuits operating at frequencies even up-to
6.4 GHz [6].

In the next section the Dual-Phase-Lag model is described. Then, solution ac-
quired for Finite Difference Method (FDM) is presented. In the consecutive section
of this paper simulations and their results are discussed. In the last section the
analyses related to the computational complexity and the convergence of proposed
algorithm are considered.
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2. Dual-Phase-Lag heat transfer model

The analysis will be begin with presenting a brief description of mentioned problem.
The general heat conduction behaviour might be presented using Fourier-Kirchhoff
model which is expressed in the form of the following system of equations:

(3)


− 1

cvs
∇q(x, t) =

∂T (x, t)

∂t
,

∇T (x, t) = − 1
k q(x, t),

for x ∈ R and t ∈ R+ ∪{0}. But in the case of nanoscale, as it was written earlier, a
better description of heat transfer can be received using the mentioned Dual-Phase-
Lag model [6, 7]. This model can be presented as follows:

(4)


− 1

cvs
∇q(x, t) =

∂T (x, t)

∂t
,

k · τT
∂

∂t
∇T (x, t) + k · ∇T (x, t) + τq

∂q(x, t)

∂t
= −q(x, t),

for x ∈ R and t ∈ R+ ∪ {0}.
The system of equations above was derived using the modified Fourier’s law.

Quantities used in description of this model have the following explanations:
• k, which is called a thermal conductivity, can be interpreted as measure of

the ratio of heat conduction,
• τq is called the heat time temperature flux,
• τT parameter means the temperature time flux.

Two last lag quantities explain existing of the word “dual” in the name of analysed
model. In the case, when τT equals to zero this model is called the Cattaneo-Vernotte
relation [8]. It leads to the hyperbolic heat transfer equation. In the other case,
when τT and τq parameters are equal to zero, the second equation describing the
DPL model reduces to the form notorious for the Fourier’s law equation. Another
case concerns the situation when the thermal conductivity is independent of the
temperature and the internal heat generation does not exist. Then the considered
relations can be written shortly as the following equation [8]:

(5) ατT
∂

∂t
(∇2T ) + α∇2T =

∂T

∂t
+ τq

∂2T

∂t2
.

In the form above it appears an additional parameter α. This is a ratio of the thermal
conductivity and capacity:

α =
k

cvs
,

which is also known as a thermal diffusivity.
In comparison to hyperbolic heat transfer model, it appears an additional term

which contains the 3rd-order mixed time and a space temperature derivative. The
case, when both the temperature and heat flux time lags equal to zero, provides (5)
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to Fourier-Kirchhoff equations. In order to facilitation of all analyses, the DPL heat
transfer equation was transformed to dimensionless form. Instead of the temperature
T , the rise Θ of the temperature over ambient temperature is considered. Then the
equation can (5) be demonstrated in the following form [8]:

(6) B
∂

∂η

(
∇2Θ

)
+∇2Θ = 2

∂Θ

∂η
+
∂2Θ

∂η2
.

In this formula new dimensionless constants appear:

B =
τT
2τq

, η =
t

2τq
.

The first one presents a dimensionless time. The second one is a parameter which
allows to control the transitions between different kinds of the heat conductions
behaviours.

3. Finite Difference Method solution

One of the most convenient approaches, which are commonly used in solving heat
transfer problems, are Green’s functions. In that cases they might be understood as
responses of the temperature at point x, which is a coordinate, at the time instant t
due to immediate heat generation at the point x1 at the instant t1. The sample one-
dimensional heat conduction problem was already solved using Green’s functions for
Fourier-Kirchhoff equation [8, 9]. This paper concerns the analogous considerations,
but Finite Difference Method has been used.

The following initial and boundary conditions were used for solving Dual-Phase-
Lag equation (4):

(7) q(0, t) = c · 1(t) for t ∈ R+ ∪ {0}, c ∈ R,

(8) T (L, t) = 0 for t ∈ R+ ∪ {0},

(9) T (x, t)|t=0 = 0 for x ∈ (0, L),

where L means the thickness of the silicon slab.
The discretization mesh for considered problem has been assumed according to

equations below:

(10) Ti = T

(
i ·∆x+

1

2
·∆x, t

)
for i = 0, . . . , n− 1,

(11) Tn = T (L, t),

(12) qi = q(i ·∆x, t) for i = 0, . . . , n.

In order to received the solution, the following system of the Finite Difference
Method equations was used:
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cvs ·


Ṫ0
Ṫ1
...

Ṫn−1

=
−1

∆x



−1

+1−1

+1−1
. . . . . .

+1−1

+1−1


·


q1
q2
...
qn



+
1

∆x


q0(t)

0
...
0

(13)

where the column vector [q1 q2 . . . qn]T is obtained according to the following system
of equations:

−τq ·∆x ·


q̇1
q̇2
...
q̇n

= ∆x ·


q1
q2
...
qn

− k


1−1

1 −1
. . . . . .

1 −1

1

 ·


T0
T1
...

Tn−1



− τT · k ·


1−1

1 −1
. . . . . .

1 −1

1

 ·


Ṫ0
Ṫ1
...

Ṫn−1

 .(14)

In this case, the following boundary conditions have been established:

(15) Ṫn = 0,

(16) q0(t) = c · 1(t) for c ∈ R.

4. Simulations and their results

The proposed approach using Finite Difference Method was received in Matlab en-
vironment. Moreover, the following methods for numerical solving of Ordinary Dif-
ferential Equations (ODE) have been used:

a) ode23 – the explicit Runge-Kutta expression of the 2nd and the 3rd order,
known as the Bogacki-Shampine pair;

b) ode45 – an explicit Runge-Kutta expression of the 4th and the 5th order, often
called as the Dormand-Prince pair;
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c) ode15s – a variable-order solver which is based on numerical differentiation
expressions and which use Gear’s method.

In all of mentioned cases, the assumptions presented below were used:

L = 10nm, n = 100, cvs = 1780
kJ

K ·m3
,

k = 0.16
kW

K ·m
, τq = 3 ps, B =

τT
2 · τq

,

where n means the number of discretization mesh nodes.
Due to the value of the dimensionless parameter B, the following cases have been

obtained [10]:
a) the Fourier-Kirchhoff solution for B equals to 0.5,
b) the hyperbolic solution when B is tending to 0,
c) and the case of the heat transfer which is observed e.g. in some metal nanos-

tructures when B is significantly greater than 0.5.
It is worth emphasizing that the time variables and coordinates have been nor-

malized because of the convenience of mathematical analyses and of the better com-
paring of observed phenomena in different approaches to the problem of the heat
transfer. Mentioned normalization was determined according to the following formu-
las:

(17) x̄ =
x

L
,

(18) T̄ =
T

Tmax
,

where the parameter Tmax means the maximal steady-state temperature. Moreover,
in considered one-dimensional case, the heat transfer equation can be expressed in
the form of the following Laplace equation:

(19) ∆T (x) = 0 for x ∈ (0, L),

and with boundary conditions presented below:

(20) −k∂T (x)

∂x

∣∣∣∣
x=0

= q,

(21) T (L) = 0.

Therefore, the analytical solution of the mentioned maximal steady-state tempera-
ture can be determined as follows:

(22) Tmax = lim
t→∞

T (x, t)
∣∣∣
x=0

= lim
t→∞

T (0, t) =
q

k
· L.

Obtained results of the simulations have been compared with results received
using Green’s functions [9]. The Fig. 1 presents the mentioned comparison prepared
for the value of the parameter B equals to 0.5.

As it can be seen, in the figure above the normalized temperature values along the
analysed structure are demonstrated. The black lines indicate the findings received
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using the Fourier-Kirchhoff model, while the red, green, blue and yellow lines repre-
sent that ones which were obtained for the Dual-Phase-Lag model for 25 fs, 250 fs,
1000 fs and 5000 fs, respectively. Every single line shows the temperature distribu-
tion for different values of time instants. It is clearly seen that the green solid lines
coincide exactly with the red dashed ones, so in both methods the similar results
are produced. This fact denotes that both methods are equivalent.

In Figs. 2 and 3 the temperature solutions obtained for Fourier-Kirchhoff model
(when B equals to 0.5) and for other values of the parameter B in the Dual-Phase-
Lag model are shown.

The Fig. 2. presents that the hyperbolic model, marked by dashed lines, overesti-
mates the temperature in heat source, which is located at point 0 on the horizontal
axis, but the higher average surface temperature is obtained for the Fourier-Kirchhoff
model, marked by the solid lines. In the figure the results for three different time
instants, respectively for 25 fs, 50 fs, 250 fs and 500 fs, are shown.

In turn, the Fig. 3 demonstrates that initially, in the case when the value of
the parameter B is greater than 0.5, the heat diffusion speed is higher than in
the Fourier-Kirchhoff model (B equals to 0.5). Analogously to the previous figure,
different normalized temperature distributions, for time instants equals to 25 fs, 50 fs,
250 fs and 1000 fs, are presented. It is also worth noticing that the scale on the vertical
axis in analysed figure is logarithmic.

Fig. 1: The comparison of the solutions obtained for the Fourier-Kirchhoff and the dual-
phase-lag (B = 0.5) models.
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Fig. 2: The temperature solutions obtained for the selected values of the parameter B in
the dual-phase-lag model.

Fig. 3: The comparison of the temperature solutions received for the dual-phase-lag model
for B = 10 and B = 0.5.
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5. Analyses related to computational complexity
and the convergence of proposed algorithm

In order to estimate the computational complexity of proposed algorithm, the tem-
perature values, denoted by T , were computed for some values of the number of
the discretization mesh nodes n. Temperature values have been yielded at point
x = 0 and for some time instants t. All simulations have been carried out in Mat-
lab environment. The testing machine was supported by the Intel quad-core CPU
and the Microsoft Windows 7 operating system. Due to avoid the excessive CPU and
RAM memory usage, the sparse matrices were implemented. Moreover, the following
simulation parameter values have been fixed:

B = 0.5, RelTol = 10−5, MaxStep = 10−16, t = 0 fs, . . . , 500 ps.

All of the durations of the simulations have been measured by the stopwatch
timer function in Matlab environment. Results of these measurements, received for
the case when the value of B is equal to 0.5, for various number of discretization mesh
nodes n and for all numerical methods mentioned earlier (ode23, ode45 and ode15s)
are included in the Table 1. and graphically in Fig. 4. The graphical comparison of
the simulation times measurement presents the figure below.

The temperature value relative error of the computation ε was established using
the following expression:

(23) ε =
Tk=n − T1000

T1000
,

where:
• T1000 means the temperature value obtained for n = 1000 nodes,
• Tk=n means the temperature values yielded for k = n where n = 10, 20, 50,

100, 200, 500 nodes.

Tab. 1: Times of simulation.

Number Simulation time [s]
of nodes ode23 ode45 ode15s

5 10.014 18.214 10.126
15 11.198 20.947 10.671
25 11.326 21.183 11.059
45 11.547 21.498 12.387
75 13.745 22.921 13.549
150 47.210 61.819 21.176
250 113.012 187.984 44.876
450 449.179 617.426 142.276
750 1139.210 2084.800 333.376
1000 2242.710 4216.300 547.626
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Fig. 4: Comparison of the simulation times in each numerical approach.

The Table 2 contains the relative error computed using Gear’s method for t =

500 ps according to the equation (23). The relative error presented in graphical form
demonstrates the following figure. As it can be seen, the increase of the number of
discretization nodes n causes the fast reduction of the relative error. It denotes that
the proposed approach is convergent in analyzed cases.

Tab. 2: The Relative Errors for t = 500 ps.

Number of nodes The relative error

5 −0.0928

15 −0.0318

25 −0.0192

45 −0.0106

75 −0.0062

150 −0.0029

250 −0.0015

450 −0.0006

750 −0.0001

1000 0.0000
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Fig. 5: The relative errors yielded for t = 500 ps.

6. Conclusions

This paper demonstrates the numerical approach in solving the heat transfer problem
in one-dimensional structures. The Finite Difference Method solution of the Dual-
Phase-Lag equation for considered problem is convergent when n tends to infinity.
The best of presented numerical methods, used to solve the ordinary differential
equations, is the Gear’s method as it is indicated by the results of the computational
complexity measurement. Apart from that, the analyzed Finite Difference Method is
appropriate to describe the nanosized structures and to approximate the temperature
of the real integrated circuits
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NUMERYCZNA IMPLEMENTACJA ALGORYTMÓW
ROZWIA̧ZYWANIA RÓWNANIA DUAL-PHASE-LAG

S t r e s z c z e n i e
W niniejszym artykule rozważane jest równanie Dual-Phase-Lag dla struktury jed-

nowymiarowej. Struktura ta jest ogrzewana z jednej strony i chłodzona z drugiej strony.
Rozwia̧zanie dla tak skonstruowanego modelu przepływu ciepła zostało uzyskane przy uży-
ciu Metody różnic skończonych. Wyniki zostały szczegółowo omówione i porównane z rezul-
tatami otrzymanymi za pomoca̧ klasycznego modelu Fouriera-Kirchhoffa. W celu ukazania
dokładności rozważanej metodologii przeprowadzone zostały badania dotycza̧ce złożoności
obliczeniowej i zbieżności zaproponowanego algorytmu.

Słowa kluczowe: model Dual-Phase-Lag, przepływ ciepła, nanoskala, równanie Fouriera-
Kirchhoffa, metoda różnic skończonych, symulacje, zbieżność, algorytmy



Rapporteurs – Referees

Richard A.Carhart (Chicago)
Fray de Landa Castillo Alvarado

(México, D.F.)
Stancho Dimiev (Sofia)
Paweł Domański (Poznań)
Mohamed Saladin El Nashie (London)
Ryszard Jajte (Łódź)
Zbigniew Jakubowski (Łódź)
Jan Janas (Kraków)
Tomasz Kapitaniak (Łódź)
Grzegorz Karwasz (Toruń)
Leopold Koczan (Lublin)
Radosław Kycia (Kraków)
Dominique Lambert (Namur)
Andrzej Łuczak (Łódź)
Cecylia Malinowska-Adamska (Łódź)
Stefano Marchiafava (Roma)
Andrzej Michalski (Lublin)
Leon Mikołajczyk (Łódź)
Yuval Ne’eman (Haifa)
Adam Paszkiewicz (Łódź)
Sergey Plaksa (Kyiv)
Krzysztof Podlaski (Łódź)

Yaroslav G.Prytula (Kyiv)
Henryk Puszkarski (Poznań)
Jakub Rembieliński (Łódź)
Carlos Rentería Marcos (México, D.F.)
Lino F. Reséndis Ocampo (México, D.F.)
Stanisław Romanowski (Łódź)
Monica Roşiu (Craiova)
Jerzy Rutkowski (Łódź)
Ken-Ichi Sakan (Osaka)
Hideo Shimada (Sapporo)
David Shoikhet (Karmiel, Israel)
Józef Siciak (Kraków)
Francesco Succi (Roma)
Osamu Suzuki (Tokyo)
Józef Szudy (Toruń)
Luis Manuel Tovar Sánchez (México, D.F.)
Massimo Vaccaro (Salerno)
Anna Urbaniak-Kucharczyk (Łódź)
Władysław Wilczyński (Łódź)
Hassan Zahouani (Font Romeu)
Lawrence Zalcman (Ramat-Gan)
Yuri Zeliskǐı (Kyiv)
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Théodoresco quaternionic F (p, q, s) function spaces . . . . . . . . . . . ca. 20 pp.

10. M. Vaccaro, Orbits in the real Grassmannian of 2-planes under

the action of the groups Sp(n) and Sp(n) · Sp(1) . . . . . . . . . . . . . . ca. 13 pp.

[132]


	1-okladka-bull-65-2
	pusta-2
	2-okladka-bull-65-2
	redakcyjna-65-2
	instr-franc
	instruction
	spis65-2-A
	tytulowa-65-1-dolbeault
	1-podsedkowska-65-2
	2-strobin-65-2
	3-nowak-kepczyk-65-2
	4-touzaline-65-2
	5-dziok-65-2
	6-lecko-65-2
	7-bednarek-65-2
	8-bednarek-65-2
	9-raszkowski-65-2
	10-raszkowski-65-2
	recenz-65(2)
	spis65-2-B

