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INSTRUCTION AUX AUTEURS

1. La présente Série du Bulletin de la Société des Sciences et des Lettres de  Lódź
comprend des communications du domaine des mathématiques, de la physique
ainsi que de leurs applications liées aux déformations au sense large.

2. Toute communications est présentée à la séance d’une Commission de la Société
par un des members (avec deux opinions de spécialistes designés par la Ré-
daction). Elle doit lui être adressée directement par l’auteur.

3. L’article doit être écrit en anglais, français, allemand ou russe et débuté par
un résumé en anglais ou en langue de la communication présentée. Dans tous
les travaux écrits par des auteurs étrangers le titre et le résumé en polonais
seront préparés par la rédaction. Il faut fournir le texte original qui ne peut
contenir plus de 15 pages (plus 2 copies).

4. Comme des articles seront reproduits par un procédé photographique, les au-
teurs sont priés de les préparer avec soin. Le texte tapé sur un ordinateur de
la classe IBM PC avec l’utilisation d’un imprimante de laser, est absolument
indispensable. Il doit être tapé préférablement en AMS-TEX ou, exception-
nellement, en Plain-TEX ou LATEX. Après l’acceptation de texte les auteurs
sont priés d’envoyer les disquettes (PC). Quelle que soient les dimensions des
feuilles de papier utilisées, le texte ne doit pas dépasser un cadre de frappe
de 12.3×18.7 cm (0.9 cm pour la page courante y compris). Les deux marges
doivent être le la même largeur.

5. Le nom de l’auteur (avec de prénom complet), écrit en italique sera placé à la
1ère page, 5.6 cm au dessous du bord supérieur du cadre de frappe; le titre de
l’acticle, en majuscules d’orateur 14 points, 7.1 cm au dessous de même bord.

6. Le texte doit être tapé avec les caractères Times 10 points typographiques et
l’interligne de 14 points hors de formules longues. Les résumés, les rénvois, la
bibliographie et l’adresse de l’auteurs doivent être tapés avec le petites car-
actères 8 points typographiques et l’interligne de 12 points. Ne laissez pas de
“blancs” inutiles pour respecter la densité du texte. En commençant le texte
ou une formule par l’alinéa il faut taper 6 mm ou 2 cm de la marge gauche,
respectivement.

7. Les texte des thèorémes, propositions, lemmes et corollaries doivent être écrits
en italique.

8. Les articles cités seront rangés dans l’ordre alphabétique et précédés de leurs
numéros placés entre crochets. Après les références, l’auteur indiquera son
adress complète.

9. Envoi par la poste: protégez le manuscript à l’aide de cartons.

10. Les auteurs recevront une copie de fascicule correspondant à titre gratuit.

Adresse de la Rédaction de la Série:
Département de la Physique d’etat solide

de l’Université de  Lódź
Pomorska 149/153, PL-90-236  Lódź, Pologne
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Name and surname of the authors

TITLE – INSTRUCTION FOR AUTHORS

SUBMITTING THE PAPERS FOR BULLETIN

Summary

Abstract should be written in clear and concise way, and should present all the main

points of the paper. In particular, new results obtained, new approaches or methods applied,

scientific significance of the paper and conclusions should be emphasized.

1. General information

The paper for BULLETIN DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES

DE  LÓDŹ should be written in LaTeX, preferably in LaTeX 2e, using the style (the

file bull.cls).

2. How to prepare a manuscript

To prepare the LaTeX 2e source file of your paper, copy the template file in-

str.tex with Fig1.eps, give the title of the paper, the authors with their affilia-

tions/addresses, and go on with the body of the paper using all other means and

commands of the standard class/style ‘bull.cls’.

2.1. Example of a figure

Figures (including graphs and images) should be carefully prepared and submitted

in electronic form (as separate files) in Encapsulated PostScript (EPS) format.

Fig. 1: The figure caption is located below the figure itself; it is automatically centered and
should be typeset in small letters.

2.2. Example of a table

Tab. 1: The table caption is located above the table itself; it is automatically centered and
should be typeset in small letters.

Description 1 Description 2 Description 3 Description 4

Row 1, Col 1 Row 1, Col 2 Row 1, Col 3 Row 1, Col 4

Row 2, Col 1 Row 2, Col 2 Row 2, Col 3 Row 2, Col 4

[6]



2.3. “Ghostwriting” and “guest authorship” are strictly forbiden

The printed version of an article is primary (comparing with the electronic version).

Each contribution submitted is sent for evaluation to two independent referees before

publishing.

3. How to submit a manuscript

Manuscripts have to be submitted in electronic form, preferably via e-mail as attach-

ment files sent to the address zofija@uni.lodz.pl. If a whole manuscript exceeds

2 MB composed of more than one file, all parts of the manuscript, i.e. the text

(including equations, tables, acknowledgements and references) and figures, should

be ZIP-compressed to one file prior to transfer. If authors are unable to send their

manuscript electronically, it should be provided on a disk (DOS format floppy or

CD-ROM), containing the text and all electronic figures, and may be sent by reg-

ular mail to the address: Department of Solid State Physics, University of

Lodz, Bulletin de la Société des Sciences et des Lettres de  Lódź, Pomorska

149/153, 90-236  Lódź, Poland.
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Professor
Claude Surry

* 2.12.1945 † 19.12.2013

Photo by Prof. Z.-D. Zhang

Chers amis Yolande, Fréderic et Gildas Surry,

C’est avec une immense tristesse que nous venons d’apprendre le décès de notre

cher collègue et ami, Professeur Claude Surry. Il était non seulement un chercheur

impliqué et professionnel, mais essentiellement, nous nous souvenons de lui en tant

qu’un vrai ami – gentil, cordial, avec la riche personnalité pleine d’empathie.

Nous allons manquer de ses conseils amicaux, et de son sens de l’humour qui a

toujours enrichi nos discussions autour d’une tasse de café ou d’un verre du vin.

Nous prions pour Claude et pour vous.

Nous espérons que vous recevrez la consolation chrétienne dans votre douleur et

perte.

Dear Friends Yolande, Frederic and Gildas Surry,

It is with great pain and sorrow that we received your information about the

death of our friend and colleague Professor Claude Surry.

He was not only an involved and highly professional researcher but, first of all, we

remember Claude as a true friend – kind, warm and of rich and empathic personality.

We will miss his friendly advice and his rich sense of humour, always enriching

our informal talks over a cup of coffee or a glass of wine.

We pray for Claude and for you.

We hope that you will receive Christian consolidation in your pain and loss.
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Dedicated to the memory of our Professors

on the occasion of the 60th anniversary

of appearance of their fundamental publications

Zbigniew Jerzy Jakubowski

SOME REMARKS ON THE ORIGINS OF COMPLEX ANALYSIS
IN �ÓD�

Summary
The article has a review and recollective character. Its guiding idea is a 60th anniversary

of appearance of the work by Z.Charzy«ski entitled �Sur les fonctions univalentes bornées�.

Keywords and phrases: complex analysis in �ód¹, bounded univalent functions, Charzy«-
ski Z., JanowskiW.

Professor Julian �awrynowicz on June 18th, 2013, at the session of Mathematical
Commission of the III Department of the �ódz Society of Mathematics, proposed a
project to commemorate a 60th anniversary of Scienti�c School of Complex Analysis
in �ód¹, which was initiated by a fundamental Zygmunt Charzy«ski's work entitled
�Sur les fonctions univalentes bornées�, [1]. The project was accepted. It remained to
set about to its realization. Obviously, three restrictions must have been taken into
consideration: mathematicians researching in the �eld of complex analysis (which
used to be called as analytic functions), a time of the formation of scienti�c institu-
tions before and after the Second World War, the place �ód¹. The mentioned criteria
are not actually �sharp�. For example, a given paper can concern couple branches of
mathematics, can be written in the time when the author was working in Warsaw,
and was published in the ��ód¹ time�, has couple co-authors, or non-local author
published a paper in a publisher in �ód¹, etc. From the above remarks there arise
an author's request of the present paper for understanding.
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As it is well known, (e.g., [2]), in the time before the Second World War in
�ód¹ there were running some institutions with educational and scienti�c character
(including the department of Wolna Wszechnica Polska in �ód¹). However, it is
di�cult to �nd among them signi�cant scienti�c mathematical research, especially
in the �eld of analytic functions. After the war, many mathematicians came to
�ód¹, where some of them for several years, only travelled to �ód¹, a large group,
however, remained permanently and of course the latter had a signi�cant impact on
the emergence and development of mathematics in �ód¹. Among them, one should
look for the pioneers of complex analysis.

Among the non-resident people it is worthy to mention Jerzy Popru»enko, who
worked in �ód¹ in years 1946�1952 and among his earlier works there are two: �Sur
l'analycité des ensembles (A)�, 1932, [3] and �Le principle de Dirichlet et les ensembles
(A)�, 1934, [4] concerning the theory of analytic functions. For couple years (1945�
1954) dr. Hanna Szmuszkowicz worked in Educational College (Pa«stwowa Wy»sza
Szkoªa Pedagogiczna) and in University of �ód¹ (U�). In the sectional article by
Z.Charzy«ski and L.Kaczmarek [5] there are mentioned her three papers [6,7] and [8]
written together with S.Mazurkiewicz and her two own [9,10] concerning the theory
of analytic functions, also published in the thirties. I also found the information that
H. Szmuszkowicz gave lectures in U� on analytic functions. One of the mentioned
work is entitled: �Sur les zéros des fonctions quasi-analytiques� (B), [8]. There was
not found any information that J. Popru»enko and H. Szmuszkowicz had in�uenced
the development of analytic functions in �ód¹, however the above mentioned facts
are worthy to be recalled.

It is known (e.g., [2]) that a great signi�cance on the development of math-
ematics in Technical University of �ód¹ had (despite the short stay) Professor
Witold Pogorzelski. Among his doctoral students there were W.Krysicki (1950) and
D. Sadowska (1956). In the literature there is relatively little of attention to the activ-
ity of W.Pogorzelski in the �eld of analytic functions. In the article by M.Biernacki
and F. Leja (Biography of Mathematics in the ten year period of 1944�1954), PartVI.
Analytic functions, [11]) there were mentioned four of his works. In volume XX.3
of Annales Polonici Mathematici, 1967�68, p. 352, among the mentioned twenty ar-
ticles by W.Pogorzelski one can �nd references 17 and 19 [12, 13] concerning the
classical theory of analytic functions.

It seems interesting that a resident of �ód¹ and professors's student, above-
mentioned Danuta Sadowska, has an article entitled: �Sur une probléme aux lim-
ites de la théorie des fonctions analytiques�, 1960, [14]. W.Pogorzelski in 1954 at
the conference in �ód¹ devoted to the theory of analytic functions [2], gave a talk
on �Analytic functions and integral equations�. He is also an author of �Mathemat-
ical analysis�, which eighth part is devoted to �Functions with complex variable�.
(Warszawa, PWN, 1956, volume IV). It is also worth to pay attention on the arti-
cle by J.Wolska-Bochenek on the occasion of 45th anniversary of scienti�c work of
Professor Pogorzelski, [15].
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Looking for the oldest traces of complex analysis in �ód¹, one must not omit
Zygmunt Zahorski. Z. Charzy«ski and L.Kaczmarek [5] listed �ve of his works, in-
cluding: �On a problem of M.F. Leja�, 1947 and �On zeros of quasi-analytic (B)
functions�, 1947 [16,17]. In the aforementioned article [11] M.Biernacki and F. Leja
write:

1) �The Leja's theory was completed in many details by Z. Zahorski�.
2) �In a completely di�erent approach Z. Zahorski dealt with singularities in

his works on the borderland of analytic functions and real functions�. In the sec-
tional article by Z.Charzy«ski [18] there are also given the information about the
Z. Zahorski's research in the complex domain. On the aforementioned conference
(year 1954) Z. Zahorski gave a talk entitled �The application of resultanta to a cer-
tain extreme issue�. We do not have the content of the paper, but the subject is
close to the extreme issues of geometric function theory. More information about
the Professor can be found in the J. S. Lipi«ski's article [19].

In the second half of the forties, Zygmunt Charzy«ski, Witold Janowski and also
Romuald Zawadzki appear in �ód¹ (from Warsaw, �owicz and Suwaªki respectively).
They are �rich� in experience after didactic and organisational practice and the �rst
two are after work in higher education in Warsaw (until 1939). In �ód¹ at school
Lucjan Siewierski worked (as it later turned out, he was a wonderful teacher). It turns
out that all four had known each other from mathematical studies in the University of
Warsaw. W. Janowski together with R. Zawadzki were in o�ag in Woldenburg, where
they organized the secret teaching of di�erent branches of mathematics. Among the
belongings that W. Janowski took after the liberation in 1945, there were his notes
from the classes and the exams. This notes were useful later for a number of former
o�cers. As one can observe, the �spark� was needed in order to form a positive
activity. For example � a scienti�c one.

Z. Charzy«ski such a �spark� brought fromWarsaw. In 1938 he started his work as
a Professor W. Sierpi«ski's assistant in University of Warsaw. In the spring of 1939,
he passed his master's examination. During the war, in addition to working as a clerk
[20], he started the investigations concerning properties of holomorphic bounded and
univalent functions. I do not remember if he explained why this issue was interesting
for him, and possible to realize. He created his own variational method for the
aforementioned functions, and in consequence, he obtained the di�erential-functional
equation for the extreme functions with respect to the functionals dependent on the
�nite number of coe�cients of the expansions in Taylor's series of such functions
in the unit disk. He presented these results on Mathematical Congress in Wrocªaw
(December 12�14, 1946), and the abstract of the article appeared in 1948, [21],
whereas the full text of the work was published in the known series of Disertationes
Mathematicae (Rozprawy Matematyczne), 1953, [1], therefore sixty years ago. This
work played a crucial and inspiring role in the process of forming a strong group of
mathematicians interested in the geometric theory of analytic functions and other
problems of this theory.
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In 1950, Z.Charzy«ski and W. Janowski (using the Z.Charzy«ski's variational
method) transfer the Charzy«ski's result to the case of the functionals de�ned on
the mentioned class of S(M) functions of the form f(z) = z + A2z

2 + · · · holo-
morphic univalent and bounded (|f(z)| < M for |z| < 1; M > 1) dependent
on the in�nite number of coe�cients, [22]. W. Janowski investigated a functional
F(f) = arg f(z)/z, f ∈ S(M) and using the primary theorem from the mentioned
work [1] obtained the limits of the aforementioned functional for every M > 1 and
arbitrarily �xed z, 0 < |z| < 1, [23]. There are two co-authored articles from 1959
by Z.Charzy«ski and W. Janowski in the domain of values of coe�cients A2 and A3

in the class S(M) [24] and in the domain of values of functions in this class [25].
On their basis there are mentioned earlier the general results from the articles [1]
and [22]. It is also worthy to mention the elaborated by W. Janowski method of
solving the di�erential-functional equations in the paper [26] about the estimation
of the functional |f ′(z)|, f ∈ S(M). Z. Charzy«ski believed that the presented here
investigations were pioneer for these type of concrete issues.

It is worth noting that the mentioned general Z.Charzy«ski's and Z.Charzy«ski-
W. Janowski's theorems were transferred to the case of subclass Sr(M) ⊂ S(M)

of the functions with all coe�cients real. This was made by I.Dziubi«ski [27] and
Z.Charzy«ski-H. �miaªkówna [28]. Obviously, the Z.Charzy«ski's idea of variation
had to be modi�ed to the case of symmetric functions.

The mentioned four papers about the equations of �Charzy«ski type� had a lot of
other applications, including the doctoral and habilitation thesis. One can list here
the Charzy«ski-Tammi's hypothesis and its beautiful solution in L. Siewierski's work,
1960, [29]. The other was an interesting hypothesis antipodal to the previous, where
there was a case of M su�ciently large and the coe�cients with even indexes, [30].
L.Mikoªajczyk determined the domain of values of coe�cients A2 and A3 in the
class of holomorphic bounded and univalent functions with all coe�cients real, [31].
Z. Jakubowski investigated the di�erent problems concerning the functional |A3 −
αA2

2|, α ∈ R, [32]. The above problem was inspired by the master's seminars, which in
1954�1955 were run by Z.Charzy«ski and W. Janowski (including the G.M.Goªuzin
variational method), the Z.Charzy«ski's monographic lecture (the Löwner's method
and its applications), and also the seminar for the (W. Janowski's) research workers,
when as a master I had a talk about the paper [33] on the estimation of the coe�cient
A3 in the class S(M). In the latter work, as in many others, there was used again
the Zygmunt Charzy«ski's theorem, [1].

In the discussed topic the famous Bieberbach conjecture is very important. In
1955 P.R.Garabedian and M. Schi�er, [34] determined the result in a case of co-
e�cient A4. However, the paper was very long (38 pages) and di�cult to read. I
remember when professor Charzy«ski talking about it, questioned whether the arti-
cle is easy to be checked. During his stay in the United States, Z. Charzy«ski together
with M. Schi�er published in 1960 two papers containing new proofs, the article [35]
consists of �ve pages and can be presented during a master's seminar. These works
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have been accepted with universal acclaim and attracted renewed interest of the
mentioned hypothesis in many centres around the world.

It is di�cult in a short article to discuss all the research directions in the theory of
complex analysis initiated by professor Charzy«ski, and also by professor Janowski
and his students. For example one can list a paper [36] about the univalent alge-
braic and bounded functions � 1955 and its development in publications: [37] by
L. Siewierski, [38], [39] co-authored with Janina �ladkowska, [40] by Romuald Za-
wadzki and in the Józef Janikowski's manuscript (about a uniformity of certain
class of algebraic functions of third degree by a method with di�erential equations).
Leon Mikoªajczyk investigated for example the functions meromorphic univalent
and bounded from below, [41], Izydor Dziubi«ski � the quasi-starlike functions, [42].
Obviously, a list of the doctoral dissertations is very long.

I hope that further recollective articles let us with satisfaction to recall the past
sixty years of complex analysis in �ód¹. It is also probably worth looking in the
sectional articles, which were already published [20, 43�51], and one can think how
much we owe our teachers. Obviously, a great signi�cance for a development of
complex analysis in �ód¹ had:

1) co-operated next conferences every four years after the mentioned conference
on analytic functions in 1954,

2) a wide collaboration of �our seniors� with the centres of complex analysis in
Cracow (F. Leja, . . . ) and Lublin (M.Biernacki, . . . ),

3) international cooperation (M. Schi�er, O.Tammi and many others).
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ON THE VALENTA MODEL AND ITS ACTUALITY II

Summary
The model for ferromagnetic thin �lms originally introduced by Lubo² Valenta at the

level of molecular �eld approximation (MFA) and now modi�ed in the case of layered
nanoparticles described by means of the reactions �eld approach (RFA) is still of great
interest for modern physics and technology.

In this context the present paper is a contribution to the previous one, devoted to the
Valenta model and its actuality, I, published in Bulletin de la Société des Scienices et des

Lettres de �ód¹; Série: Recherches sur les Déformations (25 (2005), 13, �TN, �ód¹, 2005).
The recent results obtained within the modi�ed version of the Valenta model were

presented during the 15th Czech and Slovak Conference on Magnetism (Ko²ice 2013) in
poster form entitled �Topicality of the Valenta model for the magnetization in thin �lms
and surfaces� (CSMAG'13 Abstracts, Ko²ice, 2013, P4-01). For that reason we remember
this fact in honor of P. J. �afarik University in 50. anniversary of its foundation.

Keywords and phrases: ferromagnetic thin �lms, spin autocorrelation functions, Valenta
model modi�ed by Reaction Field Approach

1. Introduction

Fifty �ve years ago Lubo² Valenta introduced the model for ferromagnetic thin �lms
[1, 2�4, 5] which describes the spontaneous magnetization, its angular and spatial
distributions leading to the construction of spin waves resonances, the calculations
in terms of the order-disorder theory as well as the phase transitions including also
the instability conditions.
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The model was later extended to its more general form which is now known in
literature as the Valenta model [1, 2�4, 6]. It is applicable not only to ferromagnetic
thin �lms but it can also be applied to the description of the lattice thermodynamics
as well as to electronic phenomena and order-disorder e�ects.

The Valenta model for magnetic �lms has been proceeded by the pioneering work
[2] concerning the angular distribution of magnetization in one-dimensional toroid.
The work has been founded as a good starting point for explanation of the surface
deformed in rare-earth thin �lms with heliomagnetic structure. Mössbauer e�ect
as well as neutron inelastic magnetic scattering certify non colinear distribution of
magnetization in low dimensional solid magnetic systems.

Recently, the Valenta model is also applied to the description of nanoparticles
when the extended form of the model is modi�ed by RFA where the spin correlations
are not neglected, in contrast to MFA when the spin correlations do not appear.

Thus, we introduce now the Valenta model modi�ed by RFA [7�10] in order to
test the fundamental parameters like the phase transition temperature TCRFA(n) and
TCMFA(n) as well as the spin waves resonance linewidth ΓRFA

τh and ΓMFA
τh considered for

each resonance peak (τh)∗ derived by means of a frequency spectrum which satis�es
the di�erence equations of universal character [11, 12] for spin wave propagation
(SWR) [13] or Green's function averages (GFA) [14] are related to the discussed
coe�cients in MFA [3] or RFA [9]. The symbol h denotes the wave vector in the
plane perpendicular to the direction labelled by τ . In particular, the last method
seems to us very convenient for nano-structures.

In order to introduce the characterization by means of parameter K we interpret
it as the surface anisotropy of the model assumed that the Curie temperature in
MFA is given by [3]

(1) TCMFA(n) = TCMFA(∞) ·
s11 + s12 cos π

n+1

s11 + 2s12

where

(2) TCMFA(∞) =
zJ

kB
, z = s11 + s12,

and the boundary condition (α = π) should be valid.
The relation (2) shows that the Curie temperature is proportional to the ex-

change integral J which determines the interaction between two neighbouring spins
(sνµ; ν, µ = 1, 2) denotes the number of nearest neighbours in the plane µ when the
central spin is localized in the plane ν.

Similar calculations lead to the Curie temperature in RFA, namely [9]

(3) TCRFA(n) = TCMRA(n)
1

1 + K
J

G−1
(

1 +
K

J

)
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where

(4) G(s) =
1

nN

∑
τh

1[
s− I(τ,h)

I(1,0)

]
stands for the �lattice� Green function.

The aim of our presentation is to discuss the relation between MFA and RFA
considerations taking into account the role of RFA in the calculations concerning
the Curie temperature.

The next experimental veri�cation concern the description of the spin waves
resonances terms and the explanation of the spectral structure of excitations. The
third domain of our interest in this work is the description of the topmost surface
layer and its in�uence on the thermodynamical properties, �rst of all, the behaviour
of the spontaneous magnetization leads to the picture of stochastic structures which
decay spontaneously. These mentioned phenomena having the mutual behaviours
are similar in their solutions.

The spontaneous magnetization considered in its local equilibrium can be ob-
tained by means of the use of the MFA or RFA in their standard form of the quantum
mechanics which gives

(5) 〈SzR〉MFA =
1

2
tanh

(
J

2kBT

∑
g

〈SzR+g〉MFA

)
in the case of S = 1/2 in MFA, while the result in RFA is of the form [9, 18]

(6) 〈SzR〉RFA =
1

2
tanh

(
J
∑
g

〈SzR+g〉+ (K − λ)〈SzR〉RFA

)
where

(7) λ = Jz

(
s− 1

G1(s)

)
for s = 1 + K

J with the summation over g which runs over the distance between two
of neighbouring spins. K is the anisotropy parameter.

2. MFA and RFA

The Valenta model modi�ed by RFA is discussed in the context of its discretization
and its thermodynamics corresponding to the Valenta model which can be considered
in two variants, (RFA) and (MFA).

Next, the kinetic equation is based on the Oguchi approach [1] for the damping
term and the Néel [6] construction for the thermodynamics of inhomogeneous sys-
tems which are described by the equation of the di�usion type with the damping [8].
In this context the basic di�erential equation is calculated in MFA or RFA procedure
applied to the Oguchi method.
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The damping cor�cient Γτh and the di�usion constant Λτh are connected by

(8) τ∗τh

(
Γτh +

z

a2
Λτh

)
= 1

hence, the coe�cients Γτh and Λτh can be calculated separately. In advance we
obtain

(9) Γτh =
1

τ∗τh

[
1− 1

2

(
1− 4〈Szτh〉2

) TC(∞)

T

]
and

(10) Λτh =
1

τ∗τh
· 1

2

[
1− 4〈Szτh〉2

TC(∞)

T

]
with τ∗τh standing for the linewidth parameter temperature dependent.

We can see that the damping coe�cient Γτh as well as the di�usion constant Λτh
depend on the spontaneous magnetization Mτh = gµB〈Szτh〉, namely

(11) 〈Szτh〉 =
1

n

∑
νj

Tνjτh〈Szνj〉

with the coe�cients Tνjτh satisfying the well known equation [11, 12] which together
with the orthogonality conditions and the boundary conditions allow us to �nd the
solutions interpreted as the third component of the propagation wave vector con-
nected with the perpendicular wave amplitudes which describe only the properties
of the boundary surfaces.

The inhomogeneities of the magnetization 〈Szνj〉 are connected with the creation
a+νj and annihilation a−νj operators for magnons and they can determine the relation
between the third component of magnetization and the number of magnons, namely

(12) 〈Szνj〉 = S − nνj , nνj = a+νja
−
νj .

In this manner, taking into consideration, that

(13) nνj =
∑
τh

Tνjτhnτh

we present a scheme of mutual dependences leading to the main self consistent
relations between the wave and particle quantum mechanics formulation.

First of all, the number of magnons nτh determined with respect to peaks of the
energetic spectrum Esτh for which, in consequence, we have

(14) nτh =

(
1

eβE
s
τh − 1

+
(n+ 1)

1− eB(n+1)Esτh

)
; β = (kBT )−1

instead of that determined by the boson statistics when the second term is vanishing
[cf. 17, 18].

The occupied number of quasi-particles is in fact determined by structural be-
havior for which the equation describing the linear transformation. The Curie tem-
perature behavior is one of the most interesting results in connection with the con-
struction of models presented.



On the Valenta model and its actuality II 25

The Curie point in RFA can be seen in contrast to the Curie point in MFA. That
in the case of the isotropic interactions (K = 0, s = 1, ∆J = Jz − J∗ = 0) the
T cRFA is leading to zero (G−1(1) = 0) when it is compared with T cMFA which has the
limited value. This result is in agreement with the rigorous theorems by Mermin and
Wagner [12] for localized order or by Gosh in the case of band theory.

Thus, we can conclude that the Curie temperature behavior is one of the most
interesting results in connection with the constructing of the model RFA in context
to MFA.

The second e�ect observed in the case of the phase transition temperature and
its behavior is the interval of spin autocorrelation function which can be considered
in the conditions when the in�uence of the correlation symmetry is important not
only for the scattering but also for the spin autocorrelation time. The recent one is
evidently closer to the experimental data than to those obtained on the basis of the
Ornstein-Zernike radial function.

3. Theory and experiments

The interplay between the theory and experiment is still important for the funda-
mental physics and modern technology. Moreover, recent achievements obtained in
the case of local nanoparticles show that the progress of the surface physics seems
to be expected.

In particular, the use of the Valenta model considered for the Curie temperature
belonging to the interval from the RFA to MFA level can be treated as a new original
methodology which allows us to interpret magnetic �uctuations. We introduce the
Curie temperature dependence on temperature. From theoretical point of view we
consider the relation between the Curie point and the anisotropy parameter. From
experimental point of view analyze the phase transition in relation to the surface
properties. In this manner the present paper is of an proper example of above men-
tioned relation which corresponds to the measurement of the autocorrelation time.

Fig. 1 presents a typical experimental device pro�ting from the spin wave reso-
nances observed in the form of the peaks of the energetic spectrum Eτh,

(15) (nτh) = f(Eτh),

where nτh given by (14), is a number of quasi-particles which occupy the sublattices
being in fact determined by structural behavior for which the determinant is de�ned
by the linear transformation describing the transition from an arbitrary sublattice to
diagonal one. f denotes the Fermi-Dirac distribution. Next, we can see that the RFA
allows us to conclude that the character of the phase transition re�ects the �uctuat-
ing character connected with methodology, in�uence of its nature on a system has
the meaning of the second. Fig. 2 shows the geometry of the SWR experiment param-
eter describing the linewidth Γτh as related to the linewidth Γτh. In the spin waves
resonance (SWR) amplitude in the dependence on the Curie temperature by means
of the experimental connected with the magnetic adsorption power measurements.
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The alternative magnetic �eld h∗ causes the precession around magnetization in
the plane perpendicular to the surface. The change of the �eldH⊥ leads to the change
of the intensity P 0−1

τh=0 which is determined by the matrix elements corresponding
to the inelastic magnetic scattering on the surfaces. The power intensity is found
originally by the resonance conditions

(16) P 0−1
τh=0 ∼ P0

[∑
ν

Tντ 〈Szν 〉

][∑
ν

Tντ

]
.

Another example to the presented here interpretations is connected with the rela-
tion between the Curie temperature and properties of a sample like the observation
of elementary excitations via the adsorption power measurements (Fig. 2).

The e�ective parameter related to the linewidth can be observed in the spin
waves resonance (SWR) experiments. The power intenstity is found originally by
the resonance condition related to the environment can be reduced to two relations

(17) Tτh ∼ |
∑
νj

Tνjτh| 6= 0

and

(18) Tτh ∼ |
∑
νj

Tνjτh〈Szνj〉| 6= 0

which are very well known in literature. The conditions (17) and (18) are satis�ed
when the surface anisotropy is taken into account. At the same time it is worth-
while to notice that in the case of regular homogeneous surfaces the conditions (17)
and (18) are not ful�lled, so that the ideal samples cannot consider for discussed
experiments.

Therefore, magnetic phenomena expected at the surfaces, interfaces, or �rst of
all superfacial layers receive great attention. This arises from the fact that magnetic
structures serve as almost ideal systems to explore basic ideas in physics [17�22].
However, for several decades the experiments and the theory were not developed at
the same level of precision.

In order to consider an example of the interplay between theory and experiment
we take into account ferromagnetic thin �lms with the hexagonal cobalt structure,
we describe their properties. For this purpose we divide a cobalt sample into layers
parallel to the plane xy(0001) which remains determined by spins belonging to one
of the sublattices A and B. In this manner we obtain n layers of type A and n layers
of type B. The layers are directed in z-axis which is perpendicular to the plane xy
whose position in two-dimensional space of spins is extended. The magnetization
is assumed to be along the z-axis. Its characteristics is determined by the thermo-
dynamic average and the distribution of the spin directions at every point of the
discretized lattice.

Let us remark that the lattice of hexagonal cobalt sample is characteristic for
the structure of 2D graphene [24] and the analogy between two sublattices which
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Fig. 1: The geometry of the spin waves resonance (SWR) experiment. The alternating
magnetic �eld hx causes the precession around magnetisation in the plane perpendicular
to the surface. The intensity Pτ is determined by the matrix elements given by (15).

Fig. 2: Trajectories on the surfaces corresponding to the scattering phenomena which appear
on the surface [cf. 15], or more precisely speaking on the atoms localized into lattice sites
connected with magnons. The impulse momentum P0 and PS as well as the production of
a quasi particle satisfy the momentum and the energy conversation law. The incident and
scattered particles are a source of the energy of the motion in the plane parallel to the
surface [cf. 16].



28 L. Wojtczak and �. Zajac

are properly chosen allows us to �nd the structure belonging to the regular lattice.
For the investigations of surface magnetic structures we use ion-induced capture or
emission of the spin polarized from magnetic surfaces which are powerful means
for prolong various surface properties, in particular, surface magnetic properties. In
order to continue various methods, we can pro�t from the theoretical description of
the methods choosing experimental investigations which allow us to �nd the methods
experimentally precise with a great level of applications.

Electron capture spectrometry (ECS) and spin-polarized electron emission spec-
troscopy (SPEES), electron spin polarization (ESP) existing at magnetic surface
with extremely high surface sensivity.

Experimental details on ECS, SPEES and ESP are given in the papers published
by C.Rau [15] ECS procedure allows us to study long-ranged and short-ranged
ferromagnetic order at surfaces of magnetic materials. The physical process in ECS
is the capture of one or two spin polarized electrons during grazing angle surface
re�ection of fast ions. In the case of deuterons with the energy 150 keV and the angle
of incidence 0.2◦ the distance of closes approach to the re�ecting surface amount to
0.1mm (Fig. 3ab) and the ions probe spin polarized electron densities of state at the
topmost surface layer. The long ranged ferromagnetic order is detected by exploiting
one-electron capture processes (D++e− → D0) [15]. The short ranged ferromagnetic
order is detected by exploiting two electron capture processes (D+ + 2e− → D0 or
H+ = 2e− → H−).

In angle and energy resolved SPEED, small angle surface scattering of energetic
(5.150 keV) ions (H+, He+ or Ne+) is utilized to study.

It is found that at Ni(hkl) surfaces the short ranged ferromagnetic order exists
even at 2TCs where TCs means the Curie temperature the emission of spin polarized
secondary and Auger electrons as a measure of long ranged ferromagnetic order
which can be interpreted as the spin correlations when the measurements are made
above the Curie temperature of a sample.

Fig. 2 illustrates ion trajectories for scattering angles α varying this angle from
0.2◦ up to 45◦ allows to vary the probing depth from the topmost surface layer to
interface and deeper layers, allowing us to perform magnetic depth pro�ling.

The ESP of secondary (or Auger) electrons emitted along the surface normal is
detected by using Mott detectors. The EPS is de�ned by P = (n+−n−)/(n+ +n−)

with n+ and n− being the numbers of majority and minority of spin electrons,
respectively. The case P > 0 is related to a predominance of majority spin electrons
parallel to the total magnetization while the case P < 0 refers to a predominance of
minority spin electrons antiparallel to the total magnetization.

We can see that the new spin-sensitive spectroscopies discussed in the excellent
review reported by Rau [15] (i.e. ECS, SPEES) as well as SIMPA (scaning ions
microscopy with polarization analysis (SIMPA)), permit very selective investigations
of surface magnetic structures and promise to reveal many new and fascinating
phenomena in the future. In particular, SIMPA enables us to study and fabricate
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Fig. 3: Temperature dependence (ε = (T − TC)/TC) of the spin autocorrelation time in
a nickel sample (a). The solid curve is related to the correlation function with the lattice
symmetry [21]. The dashed curve is related to the Ornstein-Zernike function. Experimental
points are taken from the paper of Kobeissi et al. [23]. The temperature di�usion (b) on
the linewidth as compared with experimental points.

in situ nano structured 3D, 2D and 1D magnetic elements. SIMPA allows us for
detailed observations of the internal structure of magnetic domains and domain
walls by providing high resolution and the surface electron spin polarization.

Fig. 3 shows that the spin auto-relation time is of stochastic nature. Transform-
ing the picture presented in Fig. 3a to the coordinate system (TC , T0(TC)) presented
in Fig. 3b we can see that the τ0 is of the Gaussian-like form experimentally con-
�rmed. The magnetization is of the same properties due to the universal theory of
homogeneous functions, namely we can write

τ∗0 ∼

[
1−

(
TC − T
TC

)2β
]β+1

.

The Curie temperature depend on temperature via the autocorrelation time τ∗ tem-
perature dependent. The temperature dependence of the magnetisation is described
by the critical exponent β.

The experiments presented in the paper of Rau [15] provide clear evidence that
the described methods are powerful techniques to study a topmost surface and inter-
face layer magnetic properties. The results collected by Rau concern the nickel, iron,
hcp cobalt samples as well as several systems, magnetically exotic, like vanadium.
Terbium �lms seem to us extremely interesting for considerations. In particular,
the cobalt topmost planes are interesting because their band structure remains very
similar to the planes of graphene whose properties are intensively studied [24].
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4. Final conclusions

The main result of the present paper is to bring a comparison between the Valenta
model originally applied in MFA approach and the model modi�ed in terms of RFA,
introduced to the theoretical construction, considered in the both cases; thin �lms
as well nanoparticles structures.

The evident advantage in the case of RFA method is observed when a generalized
susceptibility considerations are included to the sample energy minimization and lead
to the conclusion that the convergence of a mean number of magnons is obtained
even in thin �lms, and in contrast to the result of MFA calculations.

We consider the above problem as the explanation of the spontaneous magneti-
zation in some isotropic layered system which gives the average magnetization van-
ishing at the temperature assumed to be di�erent from zero. For this purpose, we
remember that a thin �lm in the Valenta model is treated as a set of n monoatomic
layers parallel with the �lm surfaces. The set of layers is equivalent in their interpre-
tation to Néel sublattices [6] embedded in the limited space of the discrete geometry.
Of course, the construction of the lattice for the structural form in the case of RFA is
the same. In terms of thermodynamics we consider properties of a sample treated as
the composition of layers which form homogeneous independent subsystems. Thus,
the relation between the main values of spontaneous magnetization and the e�ective
number of magnons is di�erent when MFA or RFA are applied.

Concluding we can see that the mean number of particles vanishes when T 6= 0

and it takes the value di�erent from zero when T = 0. The second conclusion which
is important for the present paper and brings the interpretations of great interest
for the physics methodology refers to the interplay between theory and experiment.

The theory and, �rst of all, its development from MFA to RFA shows the in-
terpretation of the considered e�ects at the surface. At the same time, the theo-
retical description is an inspiration of new experimental techniques based on the
investigated e�ects. This interdependence is seen particularly in the surface physics
domain. The relation between theory and experiment is an leading factor in the
progress of coherent and successive interpretations. The method applied to the long
and short-ranged ferromagnetic order at the topmost surface layer as well as a layer
in the middle of interface is an example of mutual considerations.
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O MODELU VALENTY I JEGO PRZYSTOSOWANIU
DO RZECZYWISTO�CI II

S t r e s z c z e n i e
Model opisuj�acy cienkie warstwy ferromagnetyczne, wprowadzony przez profesora

Lubo²a Valent�e, na poziomie przbli»enia pola molekularnego (MFA), a obecnie zmody-
�kowany w przypadku warstwowej struktury nanocz�astek na poziomie przybli»enia pola
reakcji (RFA) budzi wci�a» du»e zainteresowanie zastosowaniem metody we wspóªczesnej
�zyce i technologii.
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W tym kontek±cie obecna praca jest przyczynkiem do pracy, po±wi�econej modelowi
Valenty i jego przystosowaniu do rzeczywisto±ci I, opublikowanej w Bulletin de la Société

des Scienices et des Lettres de �ód¹; Série: Recherches sur les déformations (25 (2005), 13,
�TN, �ód¹, 2005).

Ostatnio otrzymane rezultaty w modelu Valenty zmody�kowanym na poziomie RFA
byªy prezentowane podczas 15-tej Czesko-Sªowackiej Konferencji o Magnetyzmie (Ko²ice
2013) w formie prezentacji posterowej.

Niniejszy artykuª stanowi okazj�e, aby przypomnie¢ o tym w 50. rocznic�e utworzenia
Uniwersytetu J. P. �afarika w Koszycach.
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BINARY AND TERNARY CLIFFORD ANALYSIS ON NONION

ALGEBRA AND su(3)

Summary
Concepts of binary and ternary extensions are considered and the extension theory is

developed on nonion algebra and su(3). Concepts of binary and ternary Clifford algebras
are studied by the Galois theory. The corresponding Dirac-like operators and Klein-Gordon-
like operators are associated and quark models are constructed. As an example the Galois
extension structures for su(3) are constructed and the quark model due to Gell-Mann is
reconstructed.
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Introduction

In [5, 7] Kerner has introduced a concept of ternary algebra and has given trials

for the quark confinement by this concept. He has also introduced a concept of

ternary Clifford analysis and its ternary Dirac-like operator and Klein-Gordon-like

operator. In this paper we shall develop a concept of noncommutative Galois theory

and discuss the binary/ternary Clifford analysis by use of the binary/ternary Galois

extension. In some sense the paper summarizes our previous papers [8–13].

0.1. Binary Clifford analysis

We call in this paper the usual Clifford algebra binary Clifford algebra. For the

case of binary Clifford algebra Cl2(n) with generators (T1, T2, . . . , Tn) satisfying the

commutation relations
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(1) TbTc + TcTb = ±2δbcIn

we have the generation scheme

(2) Cl2(2)⇒ Cl2(4)⇒ Cl2(8)⇒ . . . .

We can show that this scheme can be described in terms of successive binary Galois

extensions (Theorem 1).

0.2. Ternary Clifford analysis

The purpose of this paper is to analyze the ternary version of the observations. We

develop the concept of ternary Clifford algebra and find standard ternary Clifford

algebras, and give their generation scheme. We study the concept of ternary Clifford

algebra.

Definition 1. We call an algebra with generators Ta, Tb, Tc ternary Clifford alge-

bra when they satisfy two sets of commutation relations (1), nondegenerate cyclic

conditions

(3)

TaTbTc + TbTcTa + TcTaTb = ηabcI3,

ηabc = ηbca = ηcab,

η111 = η222 = η333 = 1, η123 = η231 = η312 = j2, where j3 = 1,

η321 = η213 = η123 = j,

and degenerate cyclic conditions

(4) TaTbTc + jTbTcTa + j2TcTaTb = 0 or TaTbTc + j2TbTcTa + jTcTaTb = 0

where two of them are identical.

We denote the algebra by Cl3(3). At first we consider ternary Clifford algebras

on the nonion algebra. Then we proceed to the construction of generation scheme

of ternary Clifford algebras. The heart of this paper is a study of noncommutative

Galois extension for the construction of Clifford algebras. Then we can introduce the

ternary Clifford algebra Cl3(n) with generators T1, . . . , Tn, n = 3p, and shall find a

generation scheme

(5) Cl3(3)⇒ Cl3(9)→ Cl3(27)⇒ . . . .

In order to discuss physical applications we have to consider a successive non-

commutative Galois extension of binary and ternary Clifford algebras. At first we

consider the noncommutative Galois extension structure su(3). By this we can ob-

tain the algebras which admit binary and ternary Clifford structures at the same

time. Then we can expect to obtain the generation scheme

(6) Cl2(3)⇒ Cl3(3)⇒ Cl2(9)⇒ Cl3(9)⇒ . . . .

This scheme is suggested only in the final section and with be discussed in a forth-

coming paper.
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More precisely, in Sect. 1 we introduce a concept of noncommutative Galois ex-

tension and give some basic facts on noncommutative Galois extensions [2, 12]. In

particular, we notice that although the commutative Galois theory is developed quite

well, the noncommutative Galois theory has been developed quite little [2, 12]. In

Sect. 2 we are concerned with a relationship between binary Galois extensions and

binary Clifford algebra. We can prove that any Clifford algebra with negative sig-

nature defines a noncommutative binary Galois extension (Theorem 1). In Sect. 3

we concentrate ourselves on the noncommutative Galois theory only for the nonion

algebra (Theorem 2).

In Sect. 4 we consider the ternary Clifford analysis on the nonion algebra by the

use of ternary Galois extensions. Then we can obtain a standard ternary Clifford

algebra which is called ternary algebra of nonion type (Theorem 3). In Sect. 5 we

can introduce a generation scheme of ternary Clifford algebras of nonion type. In

Sect. 6 we construct noncommutative binary and ternary extension on su(3). Then

we can prove that su(3) has a successive extension of binary and ternary extensions

(Theorem 4). In the final Sect. 7 we propose a construction scheme of quark models

and thus can obtain the so-called Gell-Mann model [3] by the use of noncommutative

Galois extensions.

1. Binary and ternary noncommutative Galois extensions

In this section we develop concepts of noncommutative Galois extensions of binary

type and ternary type.

1.1. Examples of noncommutative Galois extension

We adapt the notation and definitions of our previous paper [10] (the same journal

and year, Sect. 1). We quote

Proposition 1. 1) The relation

A′1(τ)A′1(τ) = A′
(±)
2 (τ)

implies that

A′
(±)
r (τ)A′1(τ) = A′

(±)
r+1(τ).

2) When the condition

xτ = τx′ (∃x′ ∈ A′) for ∀x ∈ A′

is satisfied, then the extensions (1), (2), (3) are identical each other.

We give some examples of binary and ternary extensions.

Example 1: complex numbers

R[
√
−1] = {θ11 + θ2

√
−1|θ1, θ2 ∈ R}

=

{(
θ1 θ2
−θ2 θ1

) ∣∣∣∣ θ1, θ2 ∈ R
}
.
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Example 2: quaternionic numbers

They can be obtained by the left-module or the right-module noncommutative

Galois extension of complex numbers:

C[
√
−12 = {θ11 + θ2

√
−12|θ1, θ2 ∈ C} =

{(
θ1 θ2
−θ2 θ1

)
|θ1, θ2 ∈ C

}

=




θ1 θ2 θ3 θ4
−θ2 θ1 θ4 −θ3
−θ3 −θ4 θ1 θ2
−θ4 θ3 −θ2 θ1

∣∣∣∣θ1, θ2, θ3, θ4 ∈ R

 .

Example 3: cubic root numbers. For a basic ternary Galois extension a natural

example is provided by the cubic root numbers; cf. [10], Sect. 3 and [12], Sect. 2:

R
[

3
√

1
]

=
{
θ11 + θ2j + θ3j

2|θ1, θ2, θ3 ∈ R
}

∼=


θ1 θ2 θ3θ3 θ1 θ2
θ2 θ3 θ1

∣∣∣∣θ1, θ2, θ3 ∈ R

 /I3.

In the next section we shall give bimodule ternary extensions in the nonion algebra.

1.2. Successive Galois extensions

We take an extension A2 = A1[τ2](τk
′

2 = 1) at first. Then we consider the extension

A2 = A1[τ2] (τk
′

2 = 1) which is called successive extension of k-nary and k′-nary

extensions and is denoted by A0[τ1, τ2]. As a special successive extension, we can

make the tensor product extension of bimodule type:

(7) A2 = A0[τ1 ⊗ τ2], A2 =
{∑

xi,jτ
i
j ⊗ τ i2x′i,j | xi,j , x′i,j ∈ A0

}
.

The successive extensions of the other types can be defined in a completely analogous

manner. Example 2 gives the tensor product extension of the binary extensions. The

basic notations on Galois extensions are listed as 1)–5) in [10], Sect. 1.2.

2. Binary Clifford algebras and noncommutative Galois
extensions

In this section we discuss relationships between binary Clifford algebras and binary

noncommutative Galois extensions, and prove that a binary Clifford algebra intro-

duces a binary Galois extension. Here we are concerned with Clifford algebras of

negative signature.

Let us proceed to a Clifford pair of noncommutative Galois extensions. We notice

that Galois extensions do not necessarily have a structure of Clifford algebra.
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Example 4 ([10], formula (26)):

R
[

2
√
I2,

2
√
I2

]
∼=
{

C× C,
H.

We can find only one Clifford pair (e1, e4) for C× C as follows:

C× C = {x1e1 + x2e2 + x3e3 + x4e4|x1, x2, x3, x4 ∈ R}
(8)

=

{
x1

(
I 0

0 I

)
+ x2

(
0 J

J 0

)
+ x3

(
J 0

0 J

)
+

(
0 I

−I 0

)}
where I, I ∈M2(R), is the unit matrix, and J,J ∈M2(R), is the complex structure.

We can see that every pair (ei, ej), i, j 6= 1; i 6= j, for H is a Clifford pair:

H = {x1f1 + x2f2 + x3f3 + x4f4| x1, x2, x3, x4 ∈ R}
(9)

=

{
x1

(
I 0

0−I

)
+ x2

(
0 J

J 0

)
+ x3

(
J 0

0 −J

)
+

(
0 I

−I 0

)}
.

We have

Theorem 1. For a Clifford algebra A with generators T1, T2, . . . , Tn, there exists a

sequence of noncommutative binary Galois extensions of R which realizes the given

Clifford algebra A. Namely, we have the following sequences of binary Galois exten-

sions Ak| k = 1, 2, . . . ,m:

TiTj + TjTi =−2δijIn ⇒ Ak = Ak−1
[

2
√
−In

]
, k = 1, 2, . . . ,m;

Am = A, A0 = R.(10)

Proof. We prove the assertion by induction with respect to m. Complex numbers can

be obtained by the commutative Galois extensions of real numbers (see Example 1).

We can give a construction of the Clifford algebras. Let T1, T2, . . . , Tm be a system

of generators of a Clifford algebra Am. Setting

(11) T̂i =

(
Ti 0

0 −Ti

)
, i = 1, 2, . . . , n; Ĥn+1 =

(
0 I

−I 0

)
,

we get Clifford algebra which is generated by {T̂1, T̂2, . . . , T̂n, Ĥn+1} on one hand,

and the right (or left) module binary extension of An by Ĥm+1 on the other hand.

Hence we arrive at the desired assertion.

Next we construct the corresponding Dirac-like operators: field operators of the

Clifford algebra defined by the Galois extension of binary type. Choosing T̂1, T̂2,

. . . , T̂m and Ĥm+1 we can introduce the following three operators on the m-dimen-

sional Euclidean space:
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D= T̂1
∂

∂x1
+ T̂2

∂

∂x2
+ . . .+ T̂m

∂

∂xm
,

(12)

D∗ = Ĥm+1

(
T̂1

∂

∂x1
+ T̂2

∂

∂x2
+ . . .+ T̂m

∂

∂xm

)
.

The operators are called Dirac-like operator and its conjugate operator for the ex-

tension, and they satisfy the condition

(13) ∆ = D∗D = DD∗, where ∆ =

(
∂2

∂x21
+

∂2

∂x22
+ . . .+

∂2

∂x2m

)
⊗ 1m.

We call ∆ binary Klein-Gordon-like operator (or binary Laplace-like operator).

3. Ternary noncommutative Galois extensions for the nonion
algebra

We recall the concept of nonion algebra [6, 10] and make several constructions of

successive ternary extensions. We call the algebra which is generated by two of the

following three elements nonion algebra:

(14) Q̂1 =

 0 1 0

0 0 1

1 0 0

 , Q̂2 =

 0 j2 0

0 0 j

0 0 0

 , Q̂3 =

 0 j 0

0 0 j2

1 0 0

 .

We can see that the linear basis over the complex field can be given as follows:

Q1 =

 0 j 0

0 0 j2

1 0 0

 , Q2 =

 0 j2 0

0 0 j

1 0 0

 , Q3 =

 0 1 0

0 0 1

1 0 0

 ,

(15) Q̄1 =

 0 0 1

j2 0 0

0 j 0

 , Q̄2 =

 0 0 1

j 0 0

0 j2 0

 , Q̄3 =

 0 0 1

1 0 0

0 1 0

 ,

R1 =

 1 0 0

0 1 0

0 0 1

 , R2 =

 0 j2 0

0 0 j

1 0 0

 , R3 =

 1 0 0

0 j 0

0 0 j2

 .

The construction is related with the concept of cubic algebra. Namely, setting

(16) T1 =

 1 0 0

0 1 0

0 0 1

 , T2 =

 0 1 0

0 0 1

1 0 0

 , T3 =

 0 0 1

1 0 0

0 1 0

 ,

we introduce a ternary extension B = R[T2] over R which is called cubic algebra:

(17) B = {θ1T1 + θ2T2 + θ3T3| θ1, θ2, θ3 ∈ R} .
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Then we have the commutative ternary Galois extension which is isomorphic to the

cubic root numbers of Example 3:

B/I '
{
θ11 + θ2j + θ3j

2| θ1, θ2, θ3 ∈ R
}

(18)

' {θ1R1 + θ2R2 + θ3R3|θ1, θ3, θ3 ∈ R} ,

where I = {θ(T1 + T2 + T3), θ ∈ R}. The above enables us describing the structure

of Galois extension on the nonion algebra as follows:

Theorem 2. (1) We introduce the following ternary Galois extensions of bimodule

type over B[j], B = R[T2], called basic extensions:

∆[R] = {xR1x
′ + yR2y

′ + zR2z
′| x, y, z, x′, y′, z′ ∈ B[j]},

A[Qi] = {xRix′ + yQiy
′ + zQ2

i z
′| x, y, z, x′, y′, z′ ∈ B[j]}, i = 1, 2, 3,(19)

A[Q̄i = {xRix′ + yQ̄iy
′ + zQ̄2

i z
′| x, y, z, x′, y′, z′ ∈ B[j]}, i = 1, 2, 3.

Then we have

B[j] = A[R] and N = A[Qi] = A[Q̄i], i = 1, 2, 3.

Thus the nonion algebra N has bimodule ternary Galois extensions over B[j].

(2) Ri, Qi, Q̄j (i, j = 1, 2, 3) generate a subgroup of the Galois group as multi-

plication operator. Namely, setting

(20) AU [R] =
{
xR1x

′ + yUR2y
′ + zŪR3z

′| x, x′, y, y′, z, z′ ∈ R[j]
}
,

where U = R1, Qj , Q̄k (i, j, k = 1, 2, 3), we obtain new Galois extensions, so U deter-

mines a subgroup of the Galois group of extension which is generated by multiplicative

elements and which is isomorphic to the permutation group of degree 3.

(3) The adjoint operation gives a part of generators of the Galois group of

B[j] [ 3
√

1]:

AdQiR1 = R1, AdQiR2 = jR2, AdQiR3 = j2R3; j = 1, 2, 3,

AdQi
Q1 = Q1, AdQi

Q2 = jQ2, AdQi
Q3 = j2Q3; i = 1, 2, 3,(21)

AdQi
Q̄1 = Q1, AdQi

Q̄2 = j2Q̄2, AdQi
Q̄3 = jQ̄3; i = 1, 2, 3.

Proof of (1). Clearly, B[j] = A[B]. We prove that N = A[Q1]. The remaining as-

sertions can be proved in the completely analogous manner. The statements on

Ri, Qj , Q̄k(i, j, k = 1, 2, 3) can be obtained by the extension with the use of the

(Q, Q̄,R)-matrices product table: see [10], p. 104. From the definition we can see

that R1, R2, R3, Q1, Q
2
1 ∈ A[Q1]. Next we show that Q̄i ∈ A[Q1], i = 1, 2, 3. From
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Q2
1 = Q̄1 we deduce that Q̄1R3 = jQ̄2 and Q̄1 = j2Q̄3. Hence the assertion of (1)

follows.

Proof of (2) is based upon the following obvious lemma:

Lemma 1. With the preceding notation and assumptions we have

AQ1
[R] = A[Q2], AQ1

[Q1] = A[Q1], AQ1
[Q2] = A[Q3], AQ1

[Q3] = A[Q2],

AQ2 [R] = A[Q3], AQ2 [Q1] = A[Q3], AQ2 [Q2] = A[Q2], AQ2 [Q3] = A[Q2],

AQ3 [R] = A[Q1], AQ2 [Q1] = A[Q2], AQ2 [Q2] = A[Q1], AQ3 [Q3] = A[Q1],(22)

AR2
[R] = A[R], AR2

[Q1] = A[Q2], AR2
[Q2] = A[Q3], AR2

[Q3] = A[Q1],

AR3
[R] = A[R], AR2

[Q1] = A[Q3], AR3
[Q2] = A[Q1], AR3

[Q3] = A[Q2].

By use of the lemma we can see that the group in question is isomorphic to the

symmetry group of degree 3 when we pay attention to the actions Qi on A[Qj ],

i, j = 1, 2, 3.

Proof of (3) is easy and may be omitted.

Remark 1. We may give some demonstration of the generation scheme of the total

nonion algebra by elements of the Galois group in Fig. 1.

Fig. 1: The generation scheme of the total nonion algebra in relation with (21) and (22).

We may expext that the total Galois group of the extension N = R[ 3
√

1, 3
√

1] can be

generated by the elements in (2) and (3) of Theorem 2.

4. Ternary Clifford algebra for the nonion algebra

We are going to investigate the structure of a ternary Clifford algebra in the case of

the nonion algebra. We start with recalling Definition 1 of a ternary Clifford algebra.

Next we construct the corresponding Dirac-like operators. Choosing {Ta, Tb, Tc} we

can introduce the following four operators on the 3-dimensional Euclidean space:

D = Ta
∂

∂xa
+ Tb

∂

∂xb
+ Tc

∂

∂xc
,

D∗ = Ta
∂

∂xa
+ j2Tb

∂

∂xb
+ jTc

∂

∂xc
,(23)

D∗∗ = Ta
∂

∂xa
+ jTb

∂

∂xb
+ j2Tc

∂

∂xc
.
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The operators are called Dirac-like operators and its first (resp. second) conjugate

operator for the extension, and they satisfy condition

(24) ∆ = DD∗D∗∗, where ∆ =

(
∂2

∂xa2
+

∂2

∂xb2
+

∂2

∂xc2
− 3

∂2

∂xa∂xb∂xc

)
⊗ 13.

We call ∆ ternary Klein-Gordon-like operator.

By a direct calculation we can arrive at

Proposition 2. A triple {Ta, Tb, Tc} determines a ternary Clifford algebra if and

only if it determines the Dirac-like operators (23).

Now we extend Definition 1 as follows:

Definition 2. Consider an algebra with finite generators T1, T2, . . . , Tn. Choose three

of them, Ta, Tb, Tc, say. The triple chosen is called Clifford triple when it generates

a ternary Clifford algebra.

Hence we can define the ternary Dirac-like operators and ternary Klein-Gordon-

like operator.

Example 4. The generators T1, T2, T3 of the cubic algebra defines a ternary Clifford

algebra; see (16). Hence it is a Clifford triple.

We can determine ternary Clifford triples for the nonion algebra. By direct cal-

culations we can prove the following

Theorem 3. Let {Qi, Q̄j , Rk}, i, j, k = 1, 2, 3, be the system of linear basis of the

nonion algebra; see (15). Then the ternary Clifford triples which are obtained from

the system of generators can be listed as follows:

Type I (cubic extension type)

{Q1, Q1, Q1}, {Q2, Q2, Q2}, {Q3, Q3, Q3};
{Q̄1, Q̄1, Q̄1}, {Q̄2, Q̄2, Q̄2}, {Q̄3, Q̄3, Q̄3};(25)

{R1, R1, R1}, {R2, R2, R2}, {R̄2, R̄2, R̄2}.
Type II (basic extension type)

(26) {R1, Q1, Q̄1}, {R1, Q2, Q̄2}, {R1, Q3, Q̄3}.
Type III (general type)

(27) {Q1, Q2, Q3}, {Q̄1, Q̄2, Q̄3}, {R1, R2, R̄2}.
Hence we can introduce Dirac-like operators for the triples.

5. Nonion algebra construction of ternary Galois extensions

In Sect. 2 we have given generators of a binary Clifford algebra in terms of binary

Galois extensions (Theorem 1). Now we consider the analogy of this fact for a ternary
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Clifford algebra. In this section we introduce a concept of the nonion algebra con-

struction of ternary Galois extensions and a standard construction of successive

Galois extensions.

5.1. Basic construction by the cubic algebra/nonion algebra

Consider a sequence of successive ternary extensions over real numbers (of R):

(28) Ak = 3
√
In[Ak−1], k = 1, 2, . . . ,m; A = Am, A0 = R.

We consider the case where m = 2. At first we notice that the successive extension

is not unique. In fact, we can obtain a commutative extension by the successive

extension of cubic extensions and a noncommutative extension by the nonion algebra

(cf. [10], p. 103):

(29) R

(
3
√
I3,

3
√
I9] =

{
B⊗ B
V.

)
We may understand that the cubic and nonion algebras are ternary counterparts

of complex numbers and quaternions, respectively.

1◦ We begin with the extension by the cubic algebra. Let A1 be an algebra with

a system of generators {S1, S2, . . . , Sn}. Then we can obtain cubic algebra extension

construction A1[ 3
√

1] by the tensor product extension A1 ⊗ B, where B is the cubic

algebra; cf. (16). Choosing a linear basic of B, we define

(30) S
(α)
i = Si ⊗ Tα, i = 1, 2, . . . , n; α = 1, 2, 3.

2◦ Next we proceed to the ternary extension

A3 = A1[
3
√

1,
3
√

1]

by the nonion algebra using the tensor product A1⊗V. We choose 9 generators (15)

which are now denoted by V1, V2, . . . , V9. We introduce the elements

(31) S
(α)
i = Si ⊗ Vα, i = 1, 2, . . . , n; α = 1, 2, . . . , 9.

Repeating the process, we get a sequence of ternary extensions which we call nonion

algebra extension construction.

5.2. Totally ternary Dirac-like operator

Finally we introduce the totally ternary Dirac-like operator. As we have seen, we

can obtain the ternary Clifford algebra not for all triples involved, but for Clifford

triples only. We notice the following obvious

Proposition 3. Consider a nonion algebra extension construction. Let {Sa, Sb, Sc}
be a ternary Clifford triple of the generators; see (30). Then we have the following

ternary Clifford triples:
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(32)
{
S(1)
a , S

(2)
b , S(3)

c

}
,
{
S(i)
a , S

(i)
b , S(i)

c

}
, i = 1, 2, 3.

Hence, choosing the total set of Clifford triples, we can introduce the following Dirac-

type operator which we call total Dirac-type operator:

(33) D =
∑

D(j), D∗ =
∑

D(j)∗, D∗∗ =
∑

D(j)∗∗,

where

D(i), D(i)∗, D(i)∗∗, i = 1, 2, . . . , m̃,

are the Dirac-like operator and its conjugate operators of each triple, m̃ being the

number of Clifford triples. Introducing the product by taking the usual product only

for the ternary Clifford triples and defining other products to be zero, we can intro-

duce the following total Klein-Gordon-like operator:

D ◦D∗ ◦D∗∗ =
∑

∆(j),

where ∆(j) is the Klein-Gordon-type operator for the j-th triple.

6. The Galois extension of su(3) and its Clifford analysis

In this section we discuss the structure the Galois extension for su(3). At first we

recall some basic facts on su(3).

Example 5. We give a basis of the algebra due to Gell-Mann [3]:

f1 =

 0 i 0

i 0 0

0 0 0

 , f2 =

 0 −1 0

1 0 0

0 0 0

 , f3 =

 i 0 0

0 −i 0

0 0 0

 ,

f4 =

 0 0 i

0 0 0

i 0 0

 , f5 =

 0 0 −1

0 0 0

1 0 0

 , f6 =

 0 0 0

0 0 i

0 i 0

 ,(34)

f7 =

 0 0 0

0 0 −1

0 1 0

 , f8 =
1√
3

 1 0 0

0 1 0

0 0 −2

 ,

Example 6. In connection with the preceding example we consider the linear space

L1 generated by 3 elements:

(35) L1 : e1 =

 0 i 0

i 0 0

0 0 0

 , e2 =

 0 −1 0

1 0 0

0 0 0

 , e3 =

 i 0 0

0 −i 0

0 0 0

 .
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We also introduce two linear spaces L2 and L3:

L2 : e′1 =

 0 0 i

0 0 0

i 0 0

 , e′2 =

 0 0 −1

0 0 0

1 0 0

 , e′3 =

 i 0 0

0 0 0

0 0 −i

 ,

(36)

L3 : e′′1 =

 0 0 0

0 0 i

0 i 0

 , e′′2 =

 0 0 0

0 0 1

0 −1 0

 , e′′3 =

 0 0 0

0 i 0

0 0 −i

 .

Remark 2. Observe that f8 = (1/
√

3)(e′3 + e′′3). Therefore, omitting one of e3, e
′
3, e
′′
3 ,

we obtain a system of basis of su(3).

With the help Li, i = 1, 2, 3, we can formulate important properties of the binary

and ternary Galois extension structures.

Theorem 4. 1). We have the following adjoint representation on Li, i = 1, 2, 3:

He1H
−1 = −e2, He2H

−1 = e1, He3H
−1 = e3,

(37) H ′e′1H
′−1 = −e′2, H ′e′2H

′−1 = −e′1, H ′e3H
′−1 = e′3,

H ′e′′1H
′−1 = −e′′2 , H ′e′′2H

′−1 = e′′1 , H ′e′′3H
′−1 = e′′3 ,

where

(38) H =

 1 0 0

0 i 0

0 0 i

 , H ′ =

 1 0 0

0 1 0

0 0 i

 .

Then, following the scheme Adg : A′[τ ]→ A′[τ ′] with

Adgξ = gξg−1, g ∈ A′[τ ], xg = gx for x ∈ A′

we can define the ternary adjoint extension.

2). The triples {ei, e′i, e′′i }, i = 1, 2, 3, satisfy the conditions

GekG
−1 = e′′, k = 1, 2, 3; Ge′kG

−1 = ek, k = 1, 2, 3;

(39) where G =

 0 0 1

1 0 0

0 1 0

 ,

Ge′′kG
−1 = e′k, k = 1, 2; Ge′′3G

−1 = −e′.

Proof of Assertion 1. Setting V0 = {e0, e3}, V1 = {e0, e1, e3} and V2 = {e0, e2, e3},
we have

V2/V0 = AdH(V1/V0) and su(2)/V0 ' V1/V0 + V2/V0;

cf. [10], p. 97, formula (5). Hence we can see that su(2) has the adjoint commutative

Galois extension of bimodule type.
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Proof of Assertion 2. Choosing τ = G and setting Vi = {ei, e′i, e′′i }, e = 1, 2, 3, we

have

Vi+1 = AdGi
Vi, i = 1, 2, and su(3) = (V1 ⊗ V2 ⊗ V3)/Γ, Γ = {e3};

cf. [10], p. 97, formula (5), and Remark 2. Hence the desired extension follows.

Remark 3. As a summary of noncommutative Galois extension on su(3) we may give

the schematic comparison of that extension in terms of H1 and G, as shown in [10],

p. 106, Fig. 3.

As far as the corresponding binary and ternary Dirac-like operators are con-

cerned, it is important to take into account the commutation relations

(40)
e21 = e22 = e23 = −1,

e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2.

After the extension by e0 = diag[1, 1, 0] we have the Clifford algebra which is iso-

morphic to the quaternion algebra. For e′i and e′′i , i = 1, 2, 3, the above assertions are

still valid. We are led to the following binary Dirac-like operators for {e0, e1, e2, e3}:

D= e0
∂

∂x0
+ e1

∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
,

(41)

D̄= ē0
∂

∂x0
+ ē1

∂

∂x1
+ ē2

∂

∂x2
+ ē3

∂

∂x3
.

The Dirac-like operators for {e′0, e′1, e′2, e′3} and {e′′0 , e′′1 , e′′2 , e′′3} can be obtained in

a similar manner. We can also introduce ternary Dirac-like operators for the above

three quadruples which may be interpreted as operators leading to the ternary equa-

tions of quarks; cf. [10], Section 6 and 7, pp. 52–61, and Section 7 below:

D = ei
∂

∂θ1
+ e′i

∂

∂θ2
+ e′′i

∂

∂θ3
,

D∗ = ei
∂

∂θ1
+ j2e′i

∂

∂θ2
+ je′′i

∂

∂θ3
,(42)

D∗∗ = ei
∂

∂θ1
+ je′i

∂

∂θ2
+ j2e′′i

∂

∂θ3
, i = 1, 2, 3.

We notice a duality structure between binary and ternary Galois extension as well

as between binary particles and ternary particles, as shown in Fig. 2 (Theorem 5 in

[11], p. 83).

Fig. 2: Duality between the collections of binary and ternary Dirac-like operators.
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7. Application to the theory of elementary particles

The present paper gives us new elements for conclusions and discussion at the end

of [11], in particular in the context of Sections 5–8 of that paper.

7.1. The duality of mesons and baryons; cf. Sections 5 and 9 of [11]

A natural model and application of the preceding research is the structure of ele-

mentary particles [1, 2]. We know that mesons and baryons constitute with quarks.

Moreover, we know the facts that each meson constitutes with a quark and an

anti-quark, and that each baryon constitutes with only three quarks or anti-quarks.

Till now we have no understanding of this fact. We can give an understanding of

it using the duality structure of binary and ternary Galois extensions. In [11] and

here we propose a model of generations of particles in terms of Galois extensions.

We assume that quarks and anti-quarks are generated by binary extensions.

Hence we can see that the binary extension generate mesons. Then we have a

ternary Galois extension and baryons are created. From the duality structure between

these extensions, as we have seen in the case of su(3) (see Fig. 2), we conclude that

baryons constitute only particles or anti-particles. The duality structure involved is

precised in [11], p. 82, in Theorem 4 and illustrated by [11], Fig. 4.

7.2. Construction of quark models

The second application is the construction of quark models. We can realize the

Gell-Mann model [3] by using the Galois extension structure on su(3).

At first we notice that we can introduce three kinds of quarks by the binary

Galois extension on su(3). We may identify a quark as an up-quark, down-quark or

strange quark, by

(43) {e0, e1, e2, e3} ⇒ u, {e′0, e′1, e′2, e′3} ⇒ d, or {e′′0 , e′′1 , e′′2 , e′′3} ⇒ s,

respectively. The construction given in [11], Sec. 6.4, pp. 84–85, leads to 10 baryons.

7.3. Introduction of colours

If we wish to introduce a concept of colours, we may consider the successive ternary

extensions

(44) C
[

3
√

1, 3
√

13,
3
√

19

]
' su[ 3

√
19].

Transformations G1, G2, G3 governing the nonion extension of su(3) and the idea

of introducing colours of elementary particles in connection with the transforma-

tions G1, G2, G3 governing the nonion extension of su(3) are given in [11], pp. 91–93

(in particular, see Fig. 14 and Fig. 16 therein), where the corresponding matrices

G1, G2, G3 are given by
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(45) G1 =

 0 1 0

0 0 1

1 0 0

 , G2 =

 0 j2 0

0 0 j

1 0 0

,

 , G3 =

 0 j 0

0 0 j2

1 0 0

 .
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ANALIZA BINARNA I TERNARNA NA ALGEBRZE NONIONÓW

A ALGEBRA su(3)

S t r e s z c z e n i e
Rozpatrywane sa̧ idee rozszerzeń binarnych i ternarnych oraz teoria rozszerzenia jest

rozwijana na algebrez nonionów i na algebrze su(3). Idee binarnych i ternarnych algebr Clif-
forda sa̧ badane przy użyciu teorii Galois. Skonstruowanym obiektom przyporza̧dkowane sa̧
stosowne operatory typu Diraca i operatory typu Kleina-Gordona oraz jest zrekonstruowany
model kwarkowy Gell-Manna.
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POLYNOMIAL CLOSE-TO-CONVEX FUNCTIONS I
PRELIMINARIES AND THE UNIVALENCE PROBLEM

Summary

For δ ∈ [−π/2, π/2], µi ∈ N and distinct points ξi ∈ C, 0 < |ξi| ≤ 1, i = 1, . . . , j,
we introduce the classes of analytic functions f in the unit disk D standardly normalized,
satisfying the condition

Re

{
eiδ

j∏
i=1

(1− ξiz)µif ′(z)

}
≥ 0, z ∈ D,

called polynomial close-to-convex functions. Basic properties of considered classes are dis-
cussed.

Keywords and phrases: univalent function, close-to-convex function, polynomial close-to-
convex function, function convex in one direction

1. Introduction

In this paper we introduce the classes of analytic functions standardly normalized de-
�ned by the condition (2.1). The inequality (2.1) generalizes the well known Robert-
son's characterization [21] of functions convex in one direction, further studied by
many authors (see e.g. [9], [22], [8, pp. 193-206]). Note that in Robertson's formula
recalled as (2.17), appears a quadratic trinomial with roots on the unit circle. What
is interesting, the geometrical property of functions de�ned by (2.17) when roots of
the quadratic trinomial are distinct, is essentially di�erent when they are identical.
After suitably boundary normalization, the �rst case leads to the inequality (2.18);
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the second one to the inequalities (2.19) and (2.20) which correspond to the classes
of functions called convex in the positive (negative) direction of the imaginary (real)
axis (for references see e.g. [3], [15], [16, Chapter VI] and [5]).

In the sequence of papers [12�14] of the second author and in [18] with Yaguchi,
Robertson's formula was generalized by considering polynomials of a degree at most
two with roots outside of the unit disk. Such de�ned classes form subclasses of
close-to-convex functions and have some geometrical properties (see [14]).

In this paper we replace a quadratic trinomial in Robertson's formula by an
arbitrary polynomial PΛ with roots outside of the unit disk. Such generalization is
quite natural and seems to be worth of study. One of the question is to characterize
these PΛ for which functions f satisfying (2.1) are univalent. Then (2.1) can be
treated as a criterium of univalence. This problem is studying in Section 3. Further
discussion on the class of polynomial close-to-convex functions is continued in [11].

Let A denote the class of analytic functions f in the unit disk D := {z ∈ C :

|z| < 1} normalized by f(0) = f ′(0) − 1 = 0. Its subclass of univalent functions is
denoted by S. Let S∗ denote the class of starlike functions, i.e., f ∈ S∗ i� f ∈ A
and

Re
zf ′(z)

f(z)
> 0, z ∈ D \ f−1(0).

Let Sc denote the class of convex functions, i.e., f ∈ Sc i� f ∈ A and

Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0, z ∈ D \ (f ′)−1(0).

For each δ ∈ (−π/2, π/2), let Kδ denote the class of close-to-convex functions with

argument δ, i.e., f ∈ Kδ i� f ∈ A and there exists g ∈ Sc such that

(1.1) Re

{
eiδ
f ′(z)

g′(z)

}
> 0, z ∈ D.

Let

K :=
⋃

δ∈(−π/2,π/2)

Kδ

denote the class of close-to-convex functions. Recall that

Sc ⊂ S∗ ⊂ K ⊂ S.

Given δ ∈ (−π/2, π/2), let P(δ) denote the class of all analytic functions p in
D with p(0) = eiδ, having a positive real part in D. Let P := P(0). The following
observation is well known.

Observation 1.1. Let δ ∈ (−π/2, π/2). Then the following three statements are

equivalent:

(a) p ∈ P(δ);
(b) q = (p− i sin δ)/ cos δ ∈ P;
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(c)

(1.2) p(z) =
eiδ − e−iδω(z)

1 + ω(z)
, z ∈ D,

for some Schwarz function ω, i.e., an analytic self-mapping ω of D keeping the origin

�xed.

For δ ∈ (−π/2, π/2) and x ∈ T let

L̃δ,x(z) :=
eiδ + e−iδxz

1− xz
, z ∈ C \ {1/x},

Lδ,x := (L̃δ,x)|D and Lx := L0,x. Clearly, by (1.2), Lδ,x ∈ P(δ). Let

P0 := {Lx : x ∈ T} .

2. Preliminaries

Let N0 := N ∪ {0}, D := {z ∈ C : |z| ≤ 1} and D
0
:= D \ {0}. For k ∈ N and

1 ≤ j ≤ k let

Λj
k := {{(µi, ξi) : i = 1, . . . , j} :

µi ∈ N,

j∑
i=1

µi = k, ξi ∈ D
0
, ξi1 6= ξi2 , i1 6= i2, i1, i2 = 1, . . . , j

}
.

Particularly,

Λ1
k =

{
{(k, ξ)} : ξ ∈ D

0
}

and

Λk
k = {{(1, ξi) : i = 1, . . . , k} :

ξi ∈ D
0
, ξi1 6= ξi2 , i1 6= i2, i1, i2 = 1, . . . , k

}
.

For k ∈ N let

Λk :=

k⋃
j=1

Λj
k

and for j ∈ N let

Λj :=

∞⋃
k=1

Λj
k.

Let

Λ0 = Λ0 := {{(0, 0)}}.

At the end, let

Λ :=
⋃
k∈N0

Λk.
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For Λ := {(µi, ξi) : i = 1, . . . , j} ∈ Λ \Λ0 let

PΛ(z) :=

j∏
i=1

(1− ξiz)µi , z ∈ C.

For Λ ∈ Λ0 let
PΛ(z) := 1, z ∈ C.

Given k ∈ N0, for each Λ ∈ Λk a polynomial PΛ is of a degree k.
Now we introduce the classes C(δ;Λ) being the subject of our studies.

De�nition 2.1. Let δ ∈ [−π/2, π/2] and Λ ∈ Λ. A function f ∈ A belongs to the
class C(δ;Λ) if and only if

(2.1) Re
{
eiδPΛ(z)f

′(z)
}
≥ 0, z ∈ D.

Let us call functions in C(δ;Λ) as polynomial close-to-convex with respect to Λ

with argument δ. Given Λ ∈ Λ, let

C(Λ) :=
⋃

δ∈[−π/2,π/2]

C(δ;Λ)

be the class of functions called polynomial close-to-convex with respect to Λ. Given
k ∈ N0 and δ ∈ [−π/2, π/2], let

C(k)δ :=
⋃
Λ∈Λk

C(δ;Λ)

be the class of functions called polynomial close-to-convex with argument δ of a

degree k. Given δ ∈ [−π/2, π/2], let

Cδ :=
⋃
k∈N0

C(k)δ

be the class of functions called polynomial close-to-convex with argument δ, and given
k ∈ N0, let

C(k) :=
⋃
Λ∈Λk

C(Λ)

be the class of functions called polynomial close-to-convex a degree k. At the end, let

C :=
⋃
k∈N0

C(k)

be the class of functions called polynomial close-to-convex.

Remark 2.2. (a) When Λ := {(µi, ξi) : i = 1, . . . , j} ∈ Λ \ Λ0, then (2.1) is of the
form

(2.2) Re

{
eiδ

j∏
i=1

(1− ξiz)µif ′(z)

}
≥ 0, z ∈ D.

(b) For Λ ∈ Λ0 the get the class of functions f ∈ A such that

(2.3) Re
{
eiδf ′(z)

}
≥ 0, z ∈ D.
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For short, denote it as C(δ; 0).

For Λ := {(µi, ξi) : i = 1, . . . , j} ∈ Λ \Λ0 let

(2.4) hΛ(z) :=
z

PΛ(z)
=

z∏j
i=1(1− ξiz)µi

, z ∈ D,

and

gΛ(z) :=

∫ z

0

hΛ(t)

t
dt =

∫ z

0

dt∏j
i=1(1− ξit)µi

, z ∈ D.

Clearly,

(2.5) zg′Λ(z) = hΛ(z), z ∈ D.

For Λ ∈ Λ0 let

(2.6) hΛ(z) = gΛ(z) := z, z ∈ D.

Observe now that (2.1) can be rewritten as

(2.7) Re
{
eiδPΛ(z)f

′(z)
}
= Re

{
eiδ
zf ′(z)

hΛ(z)

}
= Re

{
eiδ

f ′(z)

g′Λ(z)

}
≥ 0, z ∈ D.

Observation 2.1. The strict inequality in (2.1) holds if and only if δ ∈ (−π/2, π/2).

Proof. (⇒) Let δ ∈ [−π/2, π/2], Λ ∈ Λ, f ∈ C(δ;Λ) and the strict inequality in (2.1)
holds. Since it holds at z = 0,

Re
{
eiδPΛ(0)f

′(0)
}
= Re

(
eiδ
)
= cos δ > 0,

so δ ∈ (−π/2, π/2).
(⇐) Let δ ∈ (−π/2, π/2). Suppose, on the contrary, that there exist Λ0 ∈ Λ,

f0 ∈ C(δ;Λ0) and z0 ∈ D such that (2.1) with Λ := Λ0 and f := f0 holds, i.e.,

(2.8) Re
{
eiδPΛ0(z)f

′
0(z)

}
≥ 0, z ∈ D,

and the left-hand side of (2.8) equals zero at z0. Then, by the minimum principle
for harmonic functions, the left-hand side of (2.8) vanishes identically in D. Thus

eiδPΛ0
(z)f ′0(z) = ai, z ∈ D,

for some a ∈ R. Particularly, it holds for z = 0, so

eiδPΛ0
(0)f ′0(0) = eiδ = ai.

Thus either δ = −π/2 and a = −1, or δ = π/2 and a = 1, which contradicts the
assumption.
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Theorem 2.2. (i) Let δ ∈ (−π/2, π/2), Λ ∈ Λ and f ∈ A. Then f ∈ C(δ;Λ) if and
only if the function

(2.9) p(z) := eiδPΛ(z)f
′(z), z ∈ D,

belongs to the class P(δ).
(ii)

(2.10) C(−π/2;Λ) = C(π/2;Λ) = {gΛ}.

Proof. (i) Let δ ∈ (−π/2, π/2), Λ ∈ Λ and f ∈ A. De�ne the function p by (2.9).
Then p is analytic in D and

(2.11) p(0) = eiδPΛ(0)f
′(0) = eiδ.

Assume that f ∈ C(δ;Λ). Then the inequality (2.1) holds and, by Observation 2.1,
this inequality is strict. Thus by (2.9) we have

Re p(z) = Re
{
eiδPΛ(z)f

′(z)
}
> 0, z ∈ D.

This with (2.11) yields that p ∈ P(δ).
Vice versa, assume that p given by (2.9) belongs to P(δ). It follows that the

inequality (2.1) holds, which means that f ∈ C(δ;Λ).
(ii) Let δ := −π/2 and Λ ∈ Λ. Suppose that f ∈ C(−π/2;Λ). Then by (2.1) we

have

(2.12) Re {−iPΛ(z)f ′(z)} = Im {PΛ(z)f ′(z)} ≥ 0, z ∈ D.

Since
Im {PΛ(0)f ′(0)} = 0,

by the minimum principle for harmonic functions, the left-hand side of (2.12) van-
ishes identically in D. Thus

PΛ(z)f
′(z) = a, z ∈ D,

for some a ∈ R. Particularly, it holds for z = 0, so

1 = PΛ(0)f
′(0) = a.

Thus

(2.13) PΛ(z)f
′(z) = 1, z ∈ D.

Hence and in view of (2.4) we have

zf ′(z) =
z

PΛ(z)
= hΛ(z), z ∈ D.

Consequently, by (2.5), f = gΛ. Analogously, we prove the case δ := π/2.

Let δ ∈ (−π/2, π/2) and Λ ∈ Λ. Take p ≡ eiδ in D. Clearly, p ∈ P(δ). Setting p
into (2.9) we get (2.13), and hence f = gΛ. Thus gΛ ∈ C(δ;Λ), so taking into account
(2.10) we have



Polynomial close-to-convex functions I 55

Corollary 2.3.

(2.14)
⋂

δ∈[−π/2,π/2]

C(δ;Λ) = {gΛ}.

Historical background

1. The class C(δ; 0), usually denoted as P ′(δ), is well known. It contains functions
called of the boundary rotation with argument δ. On the other hand, the inequality
(2.3) is the famous criterium of univalence due to Noshiro [19] and Warschawski [23]
(see also [8, p. 88]).

2. For Λ := {(1, 1)}, Λ := {(1, 1), (1,−1)} and Λ := {(2, 1)} the inequality (2.1)
was mentioned by Ozaki [20, p. 186] as a criterium of univalence in each case.

3. The classes C(δ;Λ) with Λ := {(1, ξ1)} ∈ Λ, Λ := {(1, ξ1), (1, ξ2)} ∈ Λ and
Λ := {(2, ξ1)} ∈ Λ, were introduced by the second author in [14]. Assuming for
convenience that ξ1, ξ2 ∈ D, write (2.1) as

(2.15) Re
{
eiδ(1− ξ1z)(1− ξ2z)f ′(z)

}
≥ 0, z ∈ D.

For speci�c ξ1, ξ2 these classes were examined in [12], [13], [14] and [18].
4. Setting

ξ1 := αe−i(µ+ν), ξ2 := βe−i(µ−ν), α, β ∈ [0, 1], µ, ν ∈ [0, π],

rewrite (2.15) as

(2.16) Re
{
eiδ
(
1−

(
αe−iν + βeiν

)
e−iµz + αβe−2iµz2

)
f ′(z)

}
≥ 0, z ∈ D,

and denote the class of such functions f by C̃(δ;α, β, µ, ν).
5. When β := α ∈ [0, 1] the inequality (2.16) de�nes the class C̃(δ;α, α, µ, ν) of

functions f satisfying the inequality

Re
{
eiδ
(
1− 2αe−iµ cos(ν)z + e−2iµα2z2

)
f ′(z)

}
≥ 0, z ∈ D,

investigated in [18].
6. For α := 1 and δ := µ− π/2 the last inequality is of the form

(2.17) Re
{
−ieiµ

(
1− 2e−iµ cos(ν)z + e−2iµz2

)
f ′(z)

}
≥ 0, z ∈ D,

and de�nes the class C̃(µ − π/2; 1, 1, µ, ν). The inequality (2.17) was proposed by
Robertson [21] to characterize analytically the class CV(i) of functions convex in one

direction introduced by himself. Partially proof given by Roberston was completed
by Hengartner and Schober [9]. A supplement of their proof was done by Royster and
Ziegler [22] (cf. [8, pp. 193-206]). To complete the proof, Hengartner and Schober [8]
distinguished in the class CV(i) three subclasses, namely, C̃(0; 1, 1, π/2, π/2), C̃(µ−
π/2; 1, 1, µ, 0) and C̃(µ− π/2; 1, 1, µ, π) de�ned, respectively, as

(2.18) Re
{
(1− z2)f ′(z)

}
≥ 0, z ∈ D,

(2.19) Re
{
−ieiµ

(
1− e−iµz

)2
f ′(z)

}
≥ 0, z ∈ D,
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(2.20) Re
{
−ieiµ

(
1 + e−iµz

)2
f ′(z)

}
≥ 0, z ∈ D.

7. Setting ξ1 = ξ2 := e−iδ in (2.15) we get the inequality

(2.21) Re
{
eiδ
(
1− e−iδz

)2
f ′(z)

}
≥ 0, z ∈ D,

which de�nes the class of functions studied by Ciozda [2], [3] and [4], called there
as convex in the negative direction of the real axis. By the analogy to this notion,
functions satisfying (2.19) ((2.20)) were recalled in [15] as convex in positive (nega-
tive) direction of the imaginary axis. Classes de�ned by (2.19)-(2.21) were recently
studied in [16, Chapter VI], [6], [17], [1], [5] and [7].

3. Univalence problem

In this section we present some univalence problem of functions in considered classes.

Theorem 3.1. Let j ∈ N0. If

(3.1) Λ := {(µi, ξi) : i = 1, . . . , j} ∈ Λj

and

(3.2)
j∑
i=1

µi
|ξi|

1 + |ξi|
≤ 1,

then hΛ ∈ S∗.

Proof. The case Λ ∈ Λ0 is obvious, since then by (2.6), hΛ(z) = z, z ∈ D. Let j ∈ N

and Λ ∈ Λj be as in (3.1). From (2.4) we have

(3.3) Re
zh′Λ(z)

hΛ(z)
= Re

{
1− zP ′Λ(z)

PΛ(z)

}

= Re

{
1 +

j∑
i=1

µi
ξiz

1− ξiz

}
= 1 +

j∑
i=1

µiRe
ξiz

1− ξiz
, z ∈ D.

Note that for ξ ∈ D
0
,

Re
ξz

1− ξz
=

1

2

(
ξz

1− ξz
+

ξz

1− ξz

)
=

Re(ξz)− |ξ|2|z|2

|1− ξz|2
≥ −|ξ||z| − |ξ|

2|z|2

(1 + |ξ||z|)2

>
−|ξ| − |ξ|2

(1 + |ξ|)2
= − |ξ|

1 + |ξ|
, z ∈ D.

Hence, from (3.3) and (3.2) we get

Re
zh′Λ(z)

hΛ(z)
> 1−

j∑
i=1

µi
|ξi|

1 + |ξi|
≥ 0, z ∈ D.
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Thus hΛ ∈ S∗.

Observe that for arbitrary ξ1, ξ2 ∈ D,

(3.4)
|ξ1|

1 + |ξ1|
≤ 1

2
,

|ξ1|
1 + |ξ1|

+
|ξ2|

1 + |ξ2|
≤ 1.

This is easily seen by noting that the function

(3.5) [0, 1] 3 r 7→ r

1 + r

is strictly increasing.
Since Λ ∈ Λ1 if and only if Λ = {(1, ξ1)}, ξ1 ∈ D0, and Λ ∈ Λ2 if and only if Λ =

{(1, ξ1), (1, ξ2)} or Λ = {(2, ξ1)}, ξ1, ξ2 ∈ D0, so in view of (3.4) and Theorem 3.1
we have

Corollary 3.2. If Λ ∈ Λk, k = 0, 1, 2, then hΛ ∈ S∗.

Corollary 3.3. Let k ≥ 2. If Λ := {(µi, ξi) : i = 1, . . . , j} ∈ Λk and

(3.6) |ξi| ≤
1

k − 1
, i = 1, . . . , j,

then hΛ ∈ S∗.

Proof. Since, by the monotonicity of the function (3.5) and by (3.6),

|ξi|
1 + |ξi|

≤

1

k − 1

1 +
1

k − 1

=
1

k
,

in view of the fact that
∑j
i=1 µi = k, we obtain
j∑
i=1

µi
|ξi|

1 + |ξi|
≤ 1

k

j∑
i=1

µi = 1.

Applying now Theorem 3.1, we complete the proof. Note that the case k = 2 follows
from Corollary 3.2, also.

Particularly, we have

Corollary 3.4. Let j, l ∈ N be such that jl ≥ 2, and let κ1, . . . , κj ∈ T be distinct

points. If

(3.7) Λ := {(l, κ1/(jl − 1)) , . . . , (l, κj/(jl − 1))} ,

then hΛ ∈ S∗.

For j = 1 and l := k, from the above we have

Corollary 3.5. Let k ≥ 2 and κ ∈ T. If Λ := {(k, κ/(k − 1))} , then hΛ ∈ S∗.
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Observe that for Λ given by (3.7), we have

lim
l→+∞

hΛ(z) = lim
l→+∞

z(
1− κ1

jl − 1
z

)l
. . .

(
1− κj

jl − 1
z

)l
= z exp(κz) =: ϕκ(z), z ∈ D,

where

(3.8) κ :=
1

j

j∑
i=1

κi.

Clearly, ϕκ ∈ S∗.

Corollary 3.6. Let j ∈ N. If Λ := {(µi, ξi) : i = 1, . . . , j} ∈ Λj \Λ1 and

(3.9) |ξi| ≤
1

µij − 1
, i = 1, . . . , j,

then hΛ ∈ S∗.

Proof. Since, from (3.9) and from the monotonicity of the function (3.5), we have

|ξi|
1 + |ξi|

≤

1

µij − 1

1 +
1

µij − 1

=
1

µij
,

so
j∑
i=1

µi
|ξi|

1 + |ξi|
≤

j∑
i=1

µi
1

µij
=

j∑
i=1

1

j
= 1,

and Theorem 3.1 completes the proof.

Theorem 3.7. Let δ ∈ (−π/2, π/2) and j ∈ N0. If (3.1) and (3.2) hold, then

(3.10) C(δ;Λ) ⊂ Kδ.

Moreover

(3.11) C(Λ) ⊂ K.

Proof. Let δ ∈ (−π/2, π/2) and j ∈ N0. Let (3.1) and (3.2) hold. Let f ∈ C(δ;Λ).
By Observation 2.1, the strict inequality in (2.1), so in (2.7) holds, i.e.,

(3.12) Re

{
eiδ
zf ′(z)

hΛ(z)

}
= Re

{
eiδ

f ′(z)

g′Λ(z)

}
> 0, z ∈ D.

Since by Theorem 3.1, hΛ ∈ S∗, so in view of the Alexander relation (2.5), gΛ ∈ Sc.
Thus by (3.12) and (1.1), f ∈ Kδ.
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Note that by (2.14), gΛ ∈ C(δ;Λ), so by (3.10), gΛ ∈ Kδ for every δ ∈ (−π/2, π/2),
and consequently, gΛ ∈ K. Hence, by (2.10) and by (3.10), we get the inclusion (3.11).

Particularly, from the above by using Corollary 3.2, we have

Theorem 3.8. Let δ ∈ (−π/2, π/2). If Λ ∈ Λk, k = 0, 1, 2, then

C(δ;Λ) ⊂ Kδ.

Moreover, (3.11) holds.

Remark 3.9. By (2.10) the classes C(−π/2;Λ) and C(π/2;Λ) with
(i) Λ := {(1, ξ)} ∈ Λ contain only the convex function

gΛ(z) =

∫ z

0

dt

1− ξt
= −1

ξ
log(1− ξz), log 1 = 0, z ∈ D.

(ii) Λ := {(1, ξ1), (1, ξ2)} ∈ Λ contain only the convex function

gΛ(z) =

∫ z

0

dt

(1− ξ1t)(1− ξ2t)

=
1

ξ2 − ξ1
log

1− ξ1z
1− ξ2z

, log 1 = 0, z ∈ D.

(iii) Λ := {(2, ξ)} ∈ Λ contain only the convex function

gΛ(z) =

∫ z

0

dt

(1− ξt)2
=

z

1− ξz
, z ∈ D.

Remark 3.10. Under the assumption of Corollary 3.4, consider the class C(δ;Λ) with
Λ given by (3.7), i.e., the class of functions f ∈ A such that

(3.13) Re

{
eiδ

j∏
i=1

(
1− κi

jl − 1
z

)l
f ′(z)

}
≥ 0, z ∈ D.

By Theorem 3.7, such functions are univalent.
(a) When j = 1 and l := k, (3.13) with κ1 := κ is of the form

Re

{
eiδ
(
1− κ

k − 1
z

)k
f ′(z)

}
≥ 0, z ∈ D.

(b) When l→ +∞ in (3.13), we get the inequality

Re
{
eiδ exp(−κz)f ′(z)

}
= Re

{
eiδ
zf ′(z)

ϕκ(z)

}
≥ 0, z ∈ D,

with κ given by (3.8). The class of such functions f ∈ A is the subject of studies in
the forthcoming paper [10].

A natural question which we can consider, is to describe sets of Λ for which
C(δ;Λ) ⊂ S.
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De�nition 3.11. For δ ∈ [−π/2, π/2] and k ∈ N0 let

U
(k)
δ := {Λ ∈ Λk : C(δ;Λ) ⊂ S} , Uδ :=

⋃
k∈N0

U
(k)
δ ,

U (k) :=
⋃

δ∈[−π/2,π/2]

U
(k)
δ , U :=

⋃
δ∈[−π/2,π/2]

⋃
k∈N0

U
(k)
δ .

From Theorem 3.8 we have

Corollary 3.9.

U (0) = Λ0, U (1) = Λ1, U (2) = Λ2.

Theorem 3.7 and Corollary 3.3 yield

Observation 3.10.{
{(µi, ξi) : j = i, . . . , j} ∈ Λ :

j∑
i=1

µi
|ξi|

1 + |ξi|
≤ 1

}
⊂ U.

For k ≥ 2,{
{(µi, ξi) : i = 1, . . . , j} ∈ Λk : |ξi| ≤

1

k − 1
, i = 1, . . . , j

}
⊂ U (k).
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FUNKCJE WIELOMIANOWO PRAWIE WYPUK�E I
WPROWADZENIE I ZAGADNIENIE JEDNOLISTNO�CI

S t r e s z c z e n i e
W pracy tej zde�niowane s�a klasy funkcji analitycznych unormowanych w kole jed-

nostkowym nazwane funkcjami wielomianowo prawie-wypukªymi. Badane s�a podstawowe
wªasno±ci takich funkcji, mi�edzy innymi rozwa»ane jest zagadnienie jednolistno±ci.
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POLYNOMIAL CLOSE-TO-CONVEX FUNCTIONS II
INCLUSION RELATION AND COEFFICIENT FORMULAE

Summary

We continue the research of [5] by studing the inclusion relation and coe�cient formula
for the classes of polynomial close-to-convex functions.
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4. Inclusion relation

In this section we deal with the problem of inclusion relation between classes C(δ;Λ).
Theorem 4.2 presented below was shown in [6] by a di�erent method of proof than
that used here. For z0 ∈ C and r > 0 let D(z0, r) := {z ∈ C : |z − z0| < r}.

Lemma 4.1. Let δ ∈ (−π/2, π/2). If p ∈ P(δ) is analytic at z0 ∈ T and p(z0) = 0,

then p′(z0) 6= 0, i.e., z0 is the zero of p of the order 1.

Proof. Let δ ∈ (−π/2, π/2) and p ∈ P(δ) satis�es the assumption. Note that a
function D 3 z → p(z0z) is in P(δ), so without loss of generality, consider p ∈ P(δ)
which is analytic at 1 and p(1) = 0. By (1.3) of [5],

(4.1) ψ(z) :=
1− e−iδp(z)

1 + eiδp(z)
, z ∈ D,

is a Schwarz function. Moreover, ψ is analytic at 1 with

ψ(1) =
1− e−iδp(1)

1 + eiδp(1)
= 1.
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Hence and from the well known Julia-Wol�-Carathéodory Theorem (see e.g. [8,
p. 82]) it follows that ψ′(1) > 0. But in view of (4.1) we have

p′(1) = −1

2
eiδψ′(1),

so p′(1) 6= 0. This ends the proof of the lemma. 2

Theorem 4.2. Let δi ∈ (−π/2, π/2) and Λi ∈ Λ for i = 1, 2, be such that (δ1, Λ1) 6=
(δ2, Λ2). Then

C(δ1;Λ1) 6⊂ C(δ2;Λ2).

Proof. Let δ1, δ2 ∈ (−π/2, π/2) and

Λ1 := {(µi, ξi) : i = 1, . . . , j} ∈ Λ,

Λ2 := {(νl, ζl) : l = 1, . . . ,m} ∈ Λ

be such that (δ1, Λ1) 6= (δ2, Λ2). Given x ∈ T, let

(4.2) f̃x(z) := e−iδ1
∫ z

0

L̃δ1,x(t)

PΛ1(t)
dt, z ∈ C \ {1/x, 1/ξ1, . . . , 1/ξj}.

Clearly, f̃x is analytic and

(4.3) eiδ1PΛ1
(z)f̃ ′x(z) = L̃δ1,x(z), z ∈ C \ {1/x, 1/ξ1, . . . , 1/ξj}.

Since PΛ1
does not vanish in D, so by (4.2), fx := (f̃x)|D is analytic in D. Moreover,

as Lδ1,x :=
(
L̃δ1,x

)
|D
∈ P(δ1), from (4.3) and Theorem 2.4 of [5] it follows that

fx ∈ C(δ1;Λ1). Thus
F := {fx : x ∈ T} ⊂ C(δ1;Λ1).

Showing that fx0
/∈ C(δ2;Λ2) for some fx0

∈ F , we prove the theorem.
Let for x ∈ T,

p̃δ2,x(z) := eiδ2PΛ2(z)f̃
′
x(z), z ∈ C \ {1/x, 1/ξ1, . . . , 1/ξj}.

Thus by (4.3) we have

(4.4) p̃δ2,x(z) = ei(δ2−δ1)Q(z)L̃δ1,x(z), z ∈ C \ {1/x, 1/ξ1, . . . , 1/ξj}

where

(4.5) Q(z) :=
PΛ2

(z)

PΛ1(z)
, z ∈ C \ {1/ξ1, . . . , 1/ξj}.

We will show now that
(p̃δ2,x0

)|D /∈ P(δ2)

for some x0 ∈ T. Consequently, Theorem 2.4 of [5] yields

fx0 := (f̃x0)|D /∈ C(δ2;Λ2).
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Note that for z ∈ T \ {1/x} we have

(4.6) Re L̃δ1,x(z) = Re
eiδ1 + e−iδ1xz

1− xz

= Re

{
cos(δ1)

1 + xz

1− xz
+ i sin(δ1)

}
= cos(δ1)Re

1 + xz

1− xz

= cos(δ1)
1− |x||z|
|1− xz|2

= 0.

Hence and from (4.4), for z ∈ T \ {1/x, 1/ξ1, . . . , 1/ξj}, we have

(4.7) Re p̃δ2,x(z) = Re
{
ei(δ2−δ1)Q(z)L̃δ1,x(z)

}
= − (sin(δ2 − δ1)ReQ(z) + cos(δ2 − δ1) ImQ(z)) Im L̃δ1,x(z).

Since |δ1| < π/2, so 1/x 6= −e2iδ1/x. Hence, by (4.6), by the fact that

L̃δ1,x
(
−e2iδ1/x

)
= 0

and by the injectivity of L̃δ1,x, it follows that 1/x and −e2iδ1/x are the end points
of the two disjoint open arcs of T, say I+(x) and I−(x), such that

I+ = L̃−1δ1,x ({iy : y > 0}) , I− = L̃−1δ1,x ({iy : y < 0}) .

Thus

(4.8) Im L̃δ1,x(z) > 0, z ∈ I+(x),

and

(4.9) Im L̃δ1,x(z) < 0, z ∈ I−(x).

Since (δ1, Λ1) 6= (δ2, Λ2), so δ1 6= δ2 and Λ1 = Λ2, or δ1 = δ2 and Λ1 6= Λ2, or
δ1 6= δ2 and Λ1 6= Λ2.

(I) Let δ1 6= δ2 and Λ1 = Λ2. Then Q ≡ 1 and (4.7) reduces to

(4.10) Re p̃δ2,x(z) = − sin(δ2 − δ1) Im L̃δ1,x(z), z ∈ T \ {1/x}.

Take any x0 ∈ T. Note that δ2 − δ1 ∈ (−π, π). When δ2 − δ1 ∈ (0, π), then take
any z0 ∈ I+(x0). Then, in view of (4.8), we have

(4.11) sin(δ2 − δ1) Im L̃δ1,x0
(z0) > 0.

When δ2 − δ1 ∈ (−π, 0), then take any z0 ∈ I−(x0). Then, in view of (4.9), we have
again (4.11). Thus (4.10) is negative for x := x0 and z := z0. By the continuity of
p̃δ2,x0

at z0 it follows that (4.10) is negative for z ∈ D near z0, so (p̃δ2,x0
)|D /∈ P(δ2).

Consequently, by Theorem 2.4 of [5], fx0 /∈ C(δ2;Λ2).

(II) Let Λ1 6= Λ2. Then Q 6≡ 1. Without loss of generality we can assume that the
rational function Q = PΛ2/PΛ1 is of the simplest form, i.e., after reducing common
factors. We consider two cases.

(1) Suppose that there exists z0 ∈ T \ {1/ξ1, . . . , 1/ξj} such that

(4.12) sin(δ2 − δ1)ReQ(z0) + cos(δ2 − δ1) ImQ(z0) 6= 0.
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If (4.12) is positive, then we take any x0 ∈ T in order to z0 ∈ I+(x0), otherwise, we
take any x0 ∈ T in order to z0 ∈ I−(x0). In both cases, by using (4.8) and (4.9),
respectively, we get

(sin(δ2 − δ1)ReQ(z0) + cos(δ2 − δ1) ImQ(z0)) Im L̃δ1,x0
(z) > 0.

Hence we see that (4.7) is negative for z := z0 and x := x0. As in Part (I), by
continuity of p̃δ2,x0

at z0, we deduce that fx0
/∈ C(δ2;Λ2).

(2) Suppose that for every z ∈ T \ {1/ξ1, . . . , 1/ξj},
(4.13) sin(δ2 − δ1)ReQ(z) + cos(δ2 − δ1) ImQ(z) = 0.

Let
Lδ1,δ2 := {w ∈ C : sin(δ2 − δ1)Rew + cos(δ2 − δ1) Imw = 0} .

The set Lδ1,δ2 is a straight line going through the origin. By (4.13) we have

{Q(z) : z ∈ T \ {1/ξ1, . . . , 1/ξj}} ⊂ Lδ1,δ2 .
Hence and by the fact that 0 ∈ Lδ1,δ2 , either
(4.14) 0 ∈ {Q(z) : z ∈ T \ {1/ξ1, . . . , 1/ξj}} ,
or 0 ∈ Q(D). But by (4.5), Q 6= 0 in D, so (4.14) holds. Since {1/ζ1, . . . , 1/ζm} is
the set of all zeros of Q, from (4.14) it follows that 1/ζl ∈ T \ {1/ξ1, . . . , 1/ξj} for
some l ∈ {1, . . . ,m}; say 1/ζ1 ∈ T \ {1/ξ1, . . . , 1/ξj}.

Set x0 := −e2iδ1ζ1. For
z ∈ C \ {−e−2iδ1/ζ1, 1/ξ1, . . . , 1/ξj}

we have

(4.15) p̃δ2,x0
(z) = ei(δ2−δ1)Q(z)L̃δ1,x0

(z)

= ei(δ2−δ1)
∏m
l=1(1− ζlz)νl∏j
i=1(1− ξiz)µi

· e
iδ1(1− ζ1z)
1 + e2iδ1ζ1z

= (1− ζ1z)ν1+1q(z),

where

q(z) :=

∏m
l=2(1− ζlz)νl∏j
i=1(1− ξiz)µi

· eiδ2

1 + e2iδ1ζ1z
.

As δ1 6= ±π/2, and ζ1 /∈ {ξ1, . . . ξj , ζ2, . . . , ζm}, so q(1/ζ1) ∈ C\{0}. Thus there exists
ε > 0 such that p̃δ2,x0 is analytic in D(1/ζ1, ε), so analytic in D∪D(1/ζ1, ε), having
the zero of order ν1+1 ≥ 2 at 1/ζ1 and nonvanishing in D(1/ζ1, ε)\{1/ζ1}.Moreover
p̃δ2,x0(0) = eiδ2 . Since 1/ζ1 is the zero of p̃δ2,x0 of order at least 2, by applying
Lemma 4.1 with δ := δ2 and z0 := 1/ζ1, we conclude that (p̃δ2,x0

)|D /∈ P(δ2).
Consequently, by Theorem 2.4 of [5], fx0

/∈ C(δ2;Λ2), which ends the proof of the
theorem. 2

De�nition 4.3. Let δi ∈ (−π/2, π/2) and Λi ∈ Λ for i = 1, 2. By R (δ1, δ2;Λ1, Λ2) we
denote the largest radius in (0, 1] such that

Re
{
eiδ2PΛ2(z)f

′(z)
}
> 0, z ∈ DR(δ1,δ2;Λ1,Λ2),

for all f ∈ C(δ1;Λ1).
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By Theorem 4.2 we have

Corollary 4.3. Let δi ∈ (−π/2, π/2) and Λi ∈ Λ for i = 1, 2, be such that (δ1, Λ1) 6=
(δ2, Λ2). Then

R (δ1, δ2;Λ1, Λ2) < 1.

Some selected radii R (δ1, δ2;Λ1, Λ2) was calculated in [6] and [7].

5. Coe�cients formulas

In this section we present some relations on coe�cients for functions in C(δ;Λ).
For t ∈ R \ {0} the following formula holds (e.g. [9, str. 47])

(5.1)
1

(1− z)t
=

∞∑
m=0

(
t+m− 1

m

)
zm, z ∈ D.

Let δ ∈ (−π/2, π/2) and

(5.2) Λ := {(µi, ξi) : i = 1, . . . , j} ∈ Λ.

Let f ∈ C(δ;Λ) be of the form

(5.3) f(z) = z +

∞∑
n=1

anz
n, z ∈ D.

By Theorem 2.4 of [5], the function

(5.4) p(z) := eiδPΛ(z)f
′(z), z ∈ D,

belongs to P(δ) so, by Observation 1.1 of [5], the function

(5.5) q(z) :=
1

cos δ
(p(z)− i sin δ), z ∈ D,

belongs to P and is of the form

(5.6) q(z) = 1 +

∞∑
n=1

cnz
n, z ∈ D.

From (5.4) and (5.5) it follows that

(5.7) eiδ
j∏
i=1

(1− ξiz)µif ′(z) = q(z) cos δ + i sin δ, z ∈ D.

Note that when Λ ∈ Λ \ Λ0, then ξi 6= 0, i = 1, . . . , j, in (5.7); and when Λ ∈ Λ0,

then ξ1 = ξ2 = . . . = ξj = 0 in (5.7).
Let us set a1 := 1 and a−n := 0 for n ∈ N0. Under this notation we have
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Theorem 5.1. Let δ ∈ (−π/2, π/2), Λ ∈ Λ be of the form (5.2) and let

k :=

j∑
i=1

µi.

Let for f ∈ C(δ;Λ) of the form (5.3) and q ∈ P of the form (5.6) the equality (5.7)
hold. Then

(i)

(5.8)
k∑

m=0

(−1)m(n+ 1−m)an+1−mAm = cne
−iδ cos δ, n ∈ N,

where A0 := 1 and

(5.9) Am :=
∑
λi∈N0

λi≤µi, i=1,...,j
λ1+···+λj=m

(
µ1

λ1

)
. . .

(
µj
λj

)
ξλ1
1 . . . ξ

λj

j , 1 ≤ m ≤ k.

(ii)

(5.10) an =
1

n

(
Bn−1 + e−iδ cos(δ)

n−1∑
i=1

Bn−1−ici

)
, n ≥ 2,

where B0 := 1 and

(5.11) Bm :=

=
∑

λi∈N0, i=1,...,j
λ1+···+λj=m

(
µ1 + λ1 − 1

λ1

)
. . .

(
µj + λj − 1

λj

)
ξλ1
1 . . . ξ

λj

j .

Proof. (i) Let Λ ∈ Λ \Λ0. Then

j∏
i=1

(1− ξiz)µi = (1− ξ1z)µ1 . . . (1− ξjz)µj

=

(
1−

(
µ1

1

)
ξ1z +

(
µ1

2

)
ξ21z

2 − · · · ±
(
µ1

µ1

)
ξµ1

1 zµ1

)
× · · · ×

(
1−

(
µj
1

)
ξjz +

(
µj
2

)
ξ2j z

2 − · · · ±
(
µj
µj

)
ξ
µj

j zµj

)
= 1−

[(
µ1

1

)
ξ1 +

(
µ2

1

)
ξ2 + · · ·+

(
µj
1

)
ξj

]
z

+

[(
µ1

2

)
ξ21 +

(
µ2

2

)
ξ22 + · · ·+

(
µj
2

)
ξ2j

+

(
µ1

1

)(
µ2

1

)
ξ1ξ2 +

(
µ1

1

)(
µ3

1

)
ξ1ξ3 + · · ·+

(
µ1

1

)(
µj
1

)
ξ1ξj
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+

(
µ2

1

)(
µ3

1

)
ξ2ξ3 +

(
µ2

1

)(
µ4

1

)
ξ2ξ4 + · · ·+

(
µ2

1

)(
µj
1

)
ξ2ξj

+ · · ·+
(
µj−1
1

)(
µj
1

)
ξj−1ξj

]
z2 + . . .

+

[
(−1)k

(
µ1

µ1

)(
µ2

µ2

)
. . .

(
µk
µk

)
ξµ1

1 ξµ2

2 . . . ξ
µj

j

]
zk

=

k∑
m=0

(−1)m


∑
λi∈N0

λi≤µi, i=1,...,j
λ1+···+λj=m

(
µ1

λ1

)
. . .

(
µj
λj

)
ξλ1
1 . . . ξ

λj

j

 zm

=

k∑
m=0

(−1)mAmzm,

where A0 = 1 and Am is given by (5.9). Hence, from (5.7), (5.3) and (5.6) we obtain

(5.12) eiδ
(
1−A1z +A2z

2 − · · ·+ (−1)kAkzk
)

×(1 + 2a2z + 3a3z
2 + · · ·+ (n+ 1)an+1z

n + . . . )

= eiδ + c1 cos(δ)z + c2 cos(δ)z
2 + · · ·+ cn cos(δ)z

n + . . . , z ∈ D.

Thus
eiδ + eiδ(2a2 −A1)z + eiδ(3a3 − 2a2A1 +A2)z

2 + · · ·+

+eiδ
(
(n+ 1)an+1 − nanA1 + · · ·+ (−1)k(n+ 1− k)an+1−kAk

)
zn + . . .

= eiδ + c1 cos(δ)z + c2 cos(δ)z
2 + · · ·+ cn cos(δ)z

n + . . . , z ∈ D.

Hence for 1 ≤ n < k,

(n+ 1)an+1 − nanA1 + (n− 1)an−1A2 − · · ·+ (−1)nAn = cne
−iδ cos δ,

and for n ≥ k,

(n+ 1)an+1 − nanA1 + (n− 1)an−1A2 − · · ·+ (−1)k(n+ 1− k)an+1−kAk

= cne
−iδ cos δ.

The above two formulas can be written as (5.8).
Let now Λ ∈ Λ0. Then k = 0 and the equality (5.12) holds with

A1 = A2 = · · · = Ak = 0.

Thus we get the equality

(5.13) (n+ 1)an+1 = cne
−iδ cos δ,

being the special case of (5.8) for k = 0.

(ii) Let Λ ∈ Λ \Λ0. From (5.7) we get

(5.14) f ′(z) = e−iδ
1∏j

i=1(1− ξiz)µi

(q(z) cos δ + i sin δ) , z ∈ D.
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Using (5.1), for i = 1, . . . , j, we have

1

(1− ξiz)µi
=

∞∑
mi=0

(
µi +mi − 1

mi

)
ξmi
i zmi , z ∈ D1/|ξi|.

Hence and by the fact that 1/|ξi| ≥ 1 for i = 1, . . . , j, we obtain

1∏j
i=1(1− ξiz)µi

=
1

(1− ξ1z)µ1
. . .

1

(1− ξjz)µj

=

( ∞∑
m1=0

(
µ1 +m1 − 1

m1

)
ξm1
1 zm1

)
. . .

 ∞∑
mj=0

(
µj +mj − 1

mj

)
ξ
mj

j zmj



=

∞∑
m=0

 ∑
λi∈N0, i=1,...,j
λ1+···+λj=m

(
µ1 + λ1 − 1

λ1

)
. . .

(
µj + λj − 1

λj

)
ξλ1
1 . . . ξ

λj

j

 zm

=
∞∑
m=0

Bmz
m, z ∈ D,

where B0 = 1 and Bm is given by (5.11). Hence, from (5.14), (5.3) and (5.6), for
z ∈ D we obtain

z + 2a2z
2 + · · ·+ nanz

n + . . .

= ze−iδ
(
1 +B1z +B2z

2 + · · ·+Bnz
n + . . .

)
×
(
eiδ + c1 cos(δ)z + c2 cos(δ)z

2 + · · ·+ cn cos(δ)z
n + . . .

)
=
(
z +B1z

2 +B2z
3 + · · ·+Bn−1z

n + . . .
)

×
(
1 + e−iδ cos(δ)c1z + e−iδ cos(δ)c2z

2 + · · ·+ e−iδ cos(δ)cnz
n + . . .

)
= z +

(
B1 + e−iδ cos(δ)c1

)
z2 + · · ·+

(
Bn−1 + e−iδ cos(δ)

n−1∑
i=1

Bn−1−ici

)
zn + . . . .

Comparing the coe�cients, for n ≥ 2 we get

(5.15) nan = Bn−1 + e−iδ cos(δ)

n−1∑
i=1

Bn−1−ici,

which yields (5.10).
Let now Λ ∈ Λ0. Then k = 0 and the equality (5.15) holds with Bi = 0, i ∈ N,

i.e.,

(5.16) nan = e−iδ cos(δ)B0cn−1 = cn−1e
−iδ cos δ

being the special case of (5.10) for ξ1 = ξ2 = · · · = ξj = 0. Note that (5.16) coincides
with (5.13). 2

The corollary below is a consequence of the relation (5.8).
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Corollary 5.2. Let δ ∈ (−π/2, π/2), Λ ∈ Λ \ Λ0 and f ∈ C(δ;Λ) be of the form

(5.3). Then for n ∈ N holds:

(1) If Λ := {(1, ξ)}, then

(n+ 1)an+1 − nanξ = cne
−iδ cos δ.

Particularly, when Λ = {(1, 1)}, then

(n+ 1)an+1 − nan = cne
−iδ cos δ.

(2) If Λ := {(2, ξ)}, then

(n+ 1)an+1 − 2nanξ + (n− 1)an−1ξ
2 = cne

−iδ cos δ.

Particularly, when Λ = {(2, 1)}, then

(n+ 1)an+1 − 2nan + (n− 1)an−1 = cne
−iδ cos δ.

(3) If Λ := {(3, ξ), then

(n+ 1)an+1 − 3nanξ + 3(n− 1)an−1ξ
2 − (n− 2)an−2ξ

3 =

= cne
−iδ cos δ.

Particularly, when Λ = {(3, 1)}, then

(n+ 1)an+1 − 3nan + 3(n− 1)an−1 − (n− 2)an−2 = cne
−iδ cos δ.

(4) If Λ := {(1, ξ1), (1, ξ2)}, then

(n+ 1)an+1 − nan(ξ1 + ξ2) + (n− 1)an−1ξ1ξ2 = cne
−iδ cos δ.

Particularly, when Λ = {(1,−1), (1, 1)}, then

(n+ 1)an+1 − (n− 1)an−1 = cne
−iδ cos δ.

(5) If Λ := {(1, ξ1), (1, ξ2), (1, ξ3), then

(n+ 1)an+1 − nan(ξ1 + ξ2 + ξ3) + (n− 1)an−1(ξ1ξ2 + ξ1ξ3 + ξ2ξ3)+

−(n− 2)an−2ξ1ξ2ξ3 = cne
−iδ cos δ.

The corollary below is a consequence of the relation (5.10).

Corollary 5.3. Let δ ∈ (−π/2, π/2), Λ ∈ Λ \ Λ0 and f ∈ C(δ;Λ) be of the form

(5.3). Then for n ∈ N holds:

(1) If Λ := {(k, ξ), k ∈ N, then

an =
1

n

[(
k + n− 2

n− 1

)
ξn−1 + e−iδ cos(δ)

n−1∑
i=1

(
k + n− 2− i
n− 1− i

)
ξn−1−ici

]
.

Particularly, when Λ = {(k, 1)}, then

an =
1

n

[(
k + n− 2

n− 1

)
+ e−iδ cos(δ)

n−1∑
i=1

(
k + n− 2− i
n− 1− i

)
ci

]
.
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(a) If Λ := {(1, ξ)}, then

an =
1

n

(
ξn−1 + e−iδ cos(δ)

n−1∑
i=1

ξn−1−ici

)
.

Particularly, when Λ = {(1, 1)}, then

an =
1

n

(
1 + e−iδ cos(δ)

n−1∑
i=1

ci

)
.

(b) If Λ := {(2, ξ)}, then

an = ξn−1 +
1

n
e−iδ cos(δ)

n−1∑
i=1

(n− i)ξn−1−ici.

Particularly, when Λ = {(2, 1)}, then

an = 1 +
1

n
e−iδ cos(δ)

n−1∑
i=1

(n− i)ci

(see [10], [1], [2]).
(c) If Λ := {(3, ξ), then

an =
n+ 1

2
ξn−1 +

1

n
e−iδ cos(δ)

n−1∑
i=1

(n− i)(n+ 1− i)
2

ξn−1−ici.

Particularly, when Λ = {(3, 1)}, then

an =
n+ 1

2
+

1

n
e−iδ cos(δ)

n−1∑
i=1

(n− i)(n+ 1− i)
2

ci.

(2) If Λ := {(1, ξ1), (1, ξ2)}, then

an =
1

n

[
n−1∑
λ=0

ξn−1−λ1 ξλ2 + e−iδ cos(δ)

n−1∑
i=1

(
n−1−i∑
λ=0

ξn−1−i−λ1 ξλ2

)
ci

]
.

Particularly, when Λ = {(1,−1), (1, 1)}, then

an =
1

n

[
n−1∑
λ=0

(−1)n−1−λ + e−iδ cos(δ)

n−1∑
i=1

(
n−1−i∑
λ=0

(−1)n−1−i−λ
)
ci

]
,

i.e.,

a2n =
1

2n
e−iδ cos(δ)

n∑
i=1

c2i−1,

a2n+1 =
1

2n+ 1

(
1 + e−iδ cos(δ)

n∑
i=1

c2i

)
(see [10], [11]).
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(4) If Λ := {(1, ξ1), (1, ξ2), (1, ξ3)}, then

an =
1

n

[ ∑
λ1+λ2+λ3=n−1

ξλ1
1 ξλ2

2 ξλ3
3 +

+ e−iδ cos(δ)

n−1∑
i=1

( ∑
λ1+λ2+λ3=n−1−i

ξλ1
1 ξλ2

2 ξλ3
3

)
ci

]
.

Since |cn| ≤ 2, n ∈ N, (see e.g. [3, Vol. I, p. 80]), from (5.8) we get

Corollary 5.4.

(5.17)

∣∣∣∣∣
k∑

m=0

(−1)m(n+ 1−m)an+1−mAm

∣∣∣∣∣ ≤ 2 cos δ.

Remark 5.5. (a) Note that from (5.10) we have

(5.18) a2 =
1

2

(
B1 + c1e

iδ cos δ
)
,

where by (5.11),

B1 =

j∑
i=1

µiξi.

Thus

|a2| ≤
1

2
|B1|+ cos δ.

Particularly, when B1 = 0, then

|a2| ≤ cos δ;

when |B1| ≤ 2 and δ = 0, then
|a2| ≤ 2.

(b) From Corollary 5.3(2) for the class C(0;Λ), Λ := {(1,−1), (1, 1)}, it follows
that

|an| ≤ 1, n ≥ 2,

(see [4], [3, p. 201]).

Observe that for Λ := {(k, 1)}, k ∈ N, we have

B1 =

j∑
i=1

µi = k,

and then for the class C(0;Λ) by (5.18) we get

(5.19) a2 =
1

2
(k + c1).
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Setting c1 = 2, i.e., taking p := L1 ∈ P, from(5.19) we have

a2 = 1 +
k

2

for the corresponding function f ∈ C(0;Λ). Since for k ≥ 3 we have a2 > 2, the
following result follows.

Theorem 5.5. For every k ≥ 3 and Λ := {(k, 1)},
C(0;Λ) 6⊂ S.
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SQUARE ROOTS OF BICOMPLEX NUMBERS

Summary

The square roots of the bicomplex number A = a + ib + jc + ijd, where a, b, c, d are
real numbers and i, j, ij are the bicomplex units, are found. The solutions of the quadratic
equation X2 + pX + q = 0 of the bicomplex variable X and bicomplex parameters p, q, are
given.

Keywords and phrases: bicomplex number, square root, quadratic equation

The bicomplex numbers are introduced by C. Segre in [5]. Algebraic investigations
of these numbers and of the hyperbolic numbers, which form their subalgebra, are
made in [3], [4], [7]. Functions of bicomplex variable are study in [2], [6].

Let us recall the de�nition of the algebra of bicomplex numbers C(j). It is de�ned
as follows

C(j) = {x+ iy + ju+ ijv : i2 = j2 = −1, ij = ji, x, y, u, v ∈ R}.

The addition and the multiplication by real scalar are de�ned componentwise, and
the multiplication of elements of the algebra is de�ned by opening the brackets
and using the identities of the units i and j. The algebra C(j) is an associative,
commutative algebra with divisors of zero. So are for example the numbers X(ij−1),
where X is an arbitrary bicomplex number. Actually, the product of this number
with ij + 1 is equal to zero.

In the article [3] is proved the following result:
Let

pn(w) = anw
n + an−1w

n−1 + . . .+ a1w + a0

be a polynomial in C(j). Then w = w+ +w−, ai = a+i + a−i , where w+, a
+
i ∈ I(e+)

and w−, a
−
i ∈ I(e−) are elements of the idempotents I(e+) and I(e−),
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e+ =
1 + ij

2
, e− =

1− ij

2
.

Then the equation

pn(w) = 0

is reduced to the system

a+nw
n
+ + a+n−1w

n−1
+ + . . .+ a+1 w+ + a+0 = 0,

a−nw
n
− + a−n−1w

n−1
− + . . .+ a−1 w− + a−0 = 0.

The set of zeros of the polynomial pn(w) = 0 coinsides with the couples (z1, z2) of the
bicomplex solutions of two polynomials with complex coe�cients of order k ≤ n and
l ≤ n, respectively. A consequence is that the number of the zeros of the polynomial
pn(w) when it is a �nite number is no more then the number kl ≤ n2.

In this article we would like to �nd the square roots of bicomplex number

A = a+ ib+ jc+ ijd,

given in real representation, i.e. to solve the equation

(1) X2 = A,

where X = x+ iy+ ju+ ijv and a, b, c, d, x, y, u and v are real numbers. We obtain

(2) (x+ iy + ju+ ijv)2 = a+ ib+ jc+ ijd

and it is true that

(x+ iy + ju+ ijv)2 = x2 + ixy + jxu+ ijxv + iyx

−y2 + ijyu− jyv + jux+ jiuy − u2 − iuv + ijvx− jvy − ivu+ v2

= x2 − y2 − u2 + v2 + 2ixy + 2jxu+ 2ijxv + 2ijyu− 2jyv − 2iuv

= a+ ib+ jc+ ijd.

So the following system of four quadratic equations with four real variables x, y, u, v
and four real parameters a, b, c, d arises

(3) x2 − y2 − u2 + v2 = a,

(4) 2xy − 2uv = b,

(5) 2xu− 2yv = c

(6) 2xv + 2yu = d.

The system of two equations (3) and (6) is equivalent to the following system of
two equations

(x+ v)2 − (y − u)2 = a+ d, i)

(x− v)2 − (y + u)2 = a− d. ii)
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The system of equations (4) and (5) is equivalent to the following system of two
equations

2(y + u)x− 2(y + u)v = b+ c ⇐⇒ 2(y + u)(x− v) = b+ c, iii)

2(y − u)x+ 2(y − u)v = b− c ⇐⇒ 2(u− y)(x+ v) = b− c. iv)

Now, the system i), ii), iii), iv) can be written as two systems of two equations.
The equations i) and iv) gives the system of two equations for the unknown x + v

and y − u as follows

(x+ v)2 − (y − u)2 = a+ d, a)

2(x+ v)(y − u) = b− c. b)

The equations ii) and iii) gives the system of two equations for the unknown x−v
and y + u as follows

(x− v)2 − (y + u)2 = a− d, c)

2(x− v)(y + u) = b+ c. d)

1. Square roots of bicomplex number

1.1. Square roots of bicomplex number a+ ib+ jc+ ijd, when b 6= ±c

Theorem 1. The bicomplex number a+ib+jc+ijd, where a, b, c, d are real numbers

and i, j are the imaginary units of the algebra of bicomplex numbers C(j), in the

case b 6= ±c has 4 square roots given by the formula

X(ε1, ε2) = ε1
1 + ij

2
√
2

√
a+ d+

√
(a+ d)2 + (b− c)2

+iε2 sign (b+ c)
1 + ij

2
√
2

√
−(a− d) +

√
(a− d)2 + (b+ c)2

+iε1 sign (b− c)
1− ij

2
√
2

√
−(a+ d) +

√
(a+ d)2 + (b− c)2

+ε2
1− ij

2
√
2

√
a− d+

√
(a− d)2 + (b+ c)2,

where ε1, ε2 = ±1 and sign (b ± c) are the signs of the nonzero numbers b ± c,

respectively.

Proof. As b 6= c, from the equations a) and b) follows the equation

(7) (x+ v)2 − (b− c)2

4(x+ v)2
= a+ d

and as b 6= −c from the equations c) and d) follows

(8) (x− v)2 − (b+ c)2

4(x− v)2
= a− d.
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From the equation (7) we obtain the biquadratic equation

4(x+ v)4 − 4(a+ d)(x+ v)2 = (b− c)2,

which is equivalent to the equation

(2(x+ v)2 − a− d)2 = (b− c)2 + (a+ d)2.

As we ask the real solutions of this equation, we obtain the solution, satisfying the
inequality

2(x+ v)2 = a+ d+
√
(a+ d)2 + (b− c)2 ≥ 0,

namely,

(9) x+ v = ε1

√
a+ d

2
+

1

2

√
(a+ d)2 + (b− c)2,

where ε1 = ±1.
From the equation (8) we obtain the biquadratic equation

4(x− v)4 − 4(a− d)(x− v)2 = (b+ c)2,

which is equivalent to the equation

(2(x− v)2 − a+ d)2 = (b+ c)2 + (a− d)2.

As we ask the real solutions of this equation, we consider the solution, for which

2(x− v)2 = a− d+
√
(a− d)2 + (b+ c)2 ≥ 0

and �nally

(10) x− v = ε2

√
a− d

2
+

1

2

√
(a− d)2 + (b+ c)2,

where ε2 = ±1.
From the equations (9) and (10) we obtain the following numbers for x and v in

the case b 6= ±c

x =
ε1
2

√
a+ d

2
+

1

2

√
(a+ d)2 + (b− c)2 +

ε2
2

√
a− d

2
+

1

2

√
(a− d)2 + (b+ c)2

and

v =
ε1
2

√
a+ d

2
+

1

2

√
(a+ d)2 + (b− c)2 − ε2

2

√
a− d

2
+

1

2

√
(a− d)2 + (b+ c)2.

To �nd the real numbers y and u in the considered case we work as follows. As
b 6= c from the equations a) and b) follows the equation

(11)
(b− c)2

4(y − u)2
− (y − u)2 = a+ d,

and as b 6= −c from the equations c) and d) follows

(12)
(b+ c)2

4(y + u)2
− (y + u)2 = a− d.
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From the equation (11) we obtain the biquadratic equation

4(y − u)4 + 4(a+ d)(y − u)2 = (b− c)2,

which is equivalent to the equation

(2(y − u)2 + a+ d)2 = (a+ d)2 + (b+ c)2.

As we ask the real solutions of this equation, we obtain

2(y − u)2 = −a− d+
√
(a+ d)2 + (b− c)2 ≥ 0

and �nally using the conditions in the equations (9) and equation a) we obtain

(13) y − u =
ε1√
2
sign(b-c)

√
−(a+ d) +

√
(a+ d)2 + (b− c)2,

where sing (b − c) is equal to 1 when the real number b − c is positive and to −1,
when this number is negative.

We obtain the biquadratic equation from the equation (12)

4(y + u)4 + 4(a− d)(y + u)2 = (b+ c)2,

which is equivalent to the equation

(2(y + u)2 + a− d)2 = (a− d)2 + (b+ c)2.

As we ask the real solutions of this equation, we obtain

2(y + u)2 = −a+ d+
√
(a− d)2 + (b+ c)2 > 0

and �nally

(14) y + u =
ε2
2

sign (b+ c)

√
−(a− d) +

√
(a− d)2 + (b+ c)2,

where sign (b+ c) is equal to the sign of the real nonzero number b+ c.
We obtain the following real numbers y and u from the equations (13) and (14)

y =
ε1

2
√
2
sign (b− c)

√
−(a+ d) +

√
(a+ d)2 + (b− c)2

+
ε2

2
√
2
sign (b+ c)

√
−(a− d) +

√
(a− d)2 + (b+ c)2

and

u =
ε1

2
√
2
sign (b− c)

√
−(a+ d) +

√
(a+ d)2 + (b− c)2

− ε2

2
√
2
sign (b+ c)

√
−(a− d) +

√
(a− d)2 + (b+ c)2,

where sign (b−c) is equal to the sign of the real nonzero number b−c and sign (b+c)

is equal to the sign of the real nonzero number b+ c.
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Then we obtain solution x + iy + ju + ijv in the considered case. The square
roots are the following bicomplex numbers

√
A =

√
a+ ib+ jc+ ijd = x+ iy + ju+ ijv = X(ε1, ε2)

= ε1
1 + ij

2
√
2

√
a+ d+

√
(a+ d)2 + (b− c)2

+iε2 sign (b+ c)
1 + ij

2
√
2

√
−(a− d) +

√
(a− d)2 + (b+ c)2(15)

+iε1 sign (b− c)
1− ij

2
√
2

√
−(a+ d) +

√
(a+ d)2 + (b− c)2

+ε2
1− ij

2
√
2

√
a− d+

√
(a− d)2 + (b+ c)2,

where ε1, ε2 = ±1, sign (b + c) are the signs of the nonzero numbers b + c and
sign (b− c) are the signs of the nonzero numbers b− c.

1.2. Square roots of bicomplex number a+ ib+ jc+ ijd, when b = c 6= 0 and

b = −c 6= 0

Theorem 2. The bicomplex number a+ib+jc+ijd, where a, b, c, d are real numbers

and i, j are the imaginary units of the algebra of bicomplex numbers C(j), in the

case b = c 6= 0 has the following square roots

� in the case a+ d < 0 there exist 4 square roots, given by the formula

X(ε1, ε2) =
√
a+ (i+ j)b+ ijd

= ε1
(1− ij)

2
√
2

√
a− d+

√
4b2 + (a− d)2 + iε2

(1 + ij)

2

√
−a− d

+ iε1
(1− ij)

2
√
2

sign b

√
−(a− d) +

√
4b2 + (a− d)2,

where ε1 = ±1, ε2 = ±1 when a+ d < 0.

� in the case a+ d > 0 there exist 4 square roots, given by the formula

X(ε1, ε2) =
√
a+ (i+ j)b+ ijd

=
1 + ij

2
ε1
√
a+ d+

1− ij

2
√
2
ε2

√
a− d+

√
4b2 + (a− d)2

+
i(1− ij) sign b

2
√
2

ε2

√
−(a− d) +

√
4b2 + (a− d)2,

where ε1 = ±1, ε2 = ±1.
� in the case a = d there exist 2 square roots, given by the formula

X(ε1) =
√
a(1 + ij) + b(i+ j)

=
1− ij

2
ε1

√
a+

√
a2 + b2 +

i(1− ij) sign b

8
ε1

√
−a+

√
a2 + b2,

where ε1 = ±1.
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The proof of the theorem is similar to the proof of the Theorem 1.

Theorem 3. The bicomplex number a+ib+jc+ijd, where a, b, c, d are real numbers

and i, j are the imaginary units of the algebra of bicomplex numbers C(j), in the

case b = −c 6= 0 has square roots as follows

� in the case a− d < 0 there exist 4 square roots, given by the formula√
a+ (i− j)b+ ijd = x+ iy + ju+ ijv = X(ε1, ε2)

=
(1 + ij)√

2
ε1

√
a+ d+

√
4b2 + (a+ d)2 +

i(1− ij)

2
ε1
√
−a+ d+

+
i(1 + ij) sign b

2
√
2

ε2

√
−a− d+

√
4b2 + (a+ d)2,

where ε1 = ±1, ε2 = ±1, a < d.

� in the case a− d > 0 there exist 4 square roots, given by the formula

√
A =

√
a+ (i− j)b+ ijd = x+ iy + ju+ ijvX(ε1, ε2)

= ε1
(1− ij)

2

√
a− d+

1 + ij

2
√
2
ε2

√
a+ d+

√
(a+ d)2 + 4b2

+
i(1 + ij) sign b

2
√
2

ε2

√
−(a+ d) +

√
(a+ d)2 + 4b2,

where ε1 = ±1, ε2 = ±1, a > d.

� in the case a = d there exist 2 square roots, given by the formula

X(ε1) =
√
a(1 + ij) + b(i− j)

=
1 + ij

2
ε1

√
a+

√
a2 + b2 +

i(1 + ij) sign b

8
ε1

√
−a+

√
a2 + b2,

where ε1 = ±1.

The proof of the theorem is similar to the proof of the Theorem 1.

1.3. Square roots of bicomplex number a+ ib+ jc+ ijd, when b = c = 0

Theorem 4. The bicomplex number a+ib+jc+ijd, where a, b, c, d are real numbers

and i, j are the imaginary units of the algebra of bicomplex numbers C(j) in the case

b = c = 0 has square roots as follows

� in the case a < −|d| there exist 4 square roots, given by the formula

√
A =

√
a+ ijd = iy + ju = X(ε1, ε2)

=
i(1− ij)ε1

2

√
−a− d+

i(1 + ij)ε2
2

√
−a+ d,

where ε1 = ±1, ε2 = ±1;
� in the case a > |d| there exist 4 square roots, given by the formula
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√
A =

√
a+ ijd = x+ ijv = X(ε1, ε2)

=
(1 + ij)ε1

2

√
a+ d+

(1− ij)ε2
2

√
a− d,

where ε1, ε2 = ±1;
� in the case d > |a| there exist 4 square roots, given by the formula

√
A =

√
a+ ijd = x(1 + ij) + iy(1− ij) = X1

=
(1 + ij)

2
ε1
√
a+ d+ i

(1− ij)

2
ε2
√
−a+ d,

where ε1, ε2 = ±1;
� in the case |a| > d there exist 4 square roots, given by the formula

√
A =

√
a(1− ij) = x(1− ij) + iy(1 + ij) = X(ε1, ε2)

=
(1− ij)

2
ε1
√
a− d+ i

(1 + ij)

2
ε2
√
−a− d,

where ε1, ε2 = ±1;
� in the case a = d 6= 0 we shall �nd the square roots of the element a(1 + ij)

which belongs to the idempotent I

(
1 + ij

2

)
. In this case there exist 2 square roots,

given by the formula √
A =

√
a(1 + ij) = X(ε1)

=


ε1

1 + ij

2

√
a if a > 0,

iε1
1 + ij

2

√
−a if a < 0,

where ε1 = ±1;
� in the case −a = d 6= 0 we shall �nd the square roots of the element a(1− ij)

which belongs to the idempotent I

(
1− ij

2

)
, in this case there exist 2 square roots,

given by the formula √
A =

√
a(1− ij) = X(ε1)

=


ε1

1− ij

2

√
a if a > 0,

iε1
1− ij

2

√
−a if a < 0,

where ε1 = ±1.

Theorem 5. The algebra of bicomplex numbers C(j) does not admit solutions of

the equation (1) for the bicomplex number A = a+ ib+ jc+ ijd in the case a = b =

c = d = 0, i.e. the equation X2 = 0 does not admit nonzero solutions.

Proof. In this case the system of equations (3), (4), (5), (6) seems as follows

x2 − y2 − u2 + v2 = 0, 2xy − 2uv = 0, 2xu− 2yv = 0, 2xv + 2yu = 0.
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We obtain the equivalent system of equations

(x+ v)2 = (y−u)2, (x− v)2 = (y+u)2, (x+ v)(y−u) = 0, (x− v)(y+u) = 0,

which is equivalent to the following system of four linear equations of �rst order

x+ v + y − u = 0, x− v + y + u = 0,

x+ v − y + u = 0, x− v − y − u = 0.

But this system of linear equations has only the zero solutions.

2. Quadratic equation

We shall write the solutions of the quadratic equation in the algebra C(j) of the
bicomplex numbers, using the �nd above square roots of bicomplex number.

Theorem 6. The quadratic equation

x2 + px+ q = 0

with bicomplex coe�cients

p, q ∈ C(j), p = p0 + ip1 + jp2 + ijp3, q = q0 + iq1 + jq2 + ijq3, pk, qk ∈ R

for k = 0, 1, 2, 3 has the following solutions

x+ = −p

2
+X and x− = −p

2
−X,

where

X =

√
p2

4
− q

is one of the given in section 1 bicomplex square roots of the bicomplex number
1
4p

2 − q.
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PIERWIASTKI KWADRATOWE Z LICZB BI-ZESPOLONYCH

S t r e s z c z e n i e
Wyznaczono pierwiastki kwadratowe z liczby bi-zespolonej A = a + ib + jc + ijd,

gdzie a, b, s, d s�a liczbami rzeczywistymi, i, j, ij za± � jednostkami bi-zespolonymi. Poda-
jemy rozwi�azania równania kwadratowego X2 + pX + q = 0 z niewiadom�a bi-zespolon�a X
i bi-zespolonymi parametrami p, q.

Appendix. Erratum to the paper:

L.N.Apostolova, S.Dimiev, P. Stoev, Hyperbolic hypercomplex ∂̄-operators, hyperbolic CR-
equations, and harmonicity II, Fundamental solutions for hyperholomorphic operators and

hyperbolic 4-real geometry, Bull. Soc. Sci. Lettres �ód¹ Sér. Rech. Déform. 60 (2010),
61�72.

The �rst six lines on the page 65 have to be modi�ed as follows
It is ful�lled dx0dx1dx2dx3 = rsdrdsdt1dt2 and

α̃−1 =
(
ζ̃ + η̃j2

)−1

= (r (cosh t1 + sinh t1j1) + s (cosh t2 + sinh t2j1) j2)−1 =

=
x0(x20 − x21 − x22 − x23) + 2x1x2x3

(x0 + x1 + x2 + x3)(x0 − x1 + x2 − x3)(x0 + x1 − x2 − x3)(x0 − x1 − x2 + x3)
+

+j1
x1(−x20 + x21 − x22 − x23) + 2x0x2x3

(x0 + x1 + x2 + x3)(x0 − x1 + x2 − x3)(x0 + x1 − x2 − x3)(x0 − x1 − x2 + x3)
+

+j2
x2(−x20 − x21 + x22 − x23) + 2x0x1x3

(x0 + x1 + x2 + x3)(x0 − x1 + x2 − x3)(x0 + x1 − x2 − x3)(x0 − x1 − x2 + x3)
+

+j1j2
x3(−x20 − x21 − x22 + x23) + 2x0x1x2

(x0 + x1 + x2 + x3)(x0 − x1 + x2 − x3)(x0 + x1 − x2 − x3)(x0 − x1 − x2 + x3)
.
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ON THE INVERSION THEOREM OF WEI-LIANG CHOW

Summary

According to the famous theorem of Wei-Liang Chow (1949) each analytic subset of
Pm is a projective algebraic set. In the case of an analytic subset of Cm there are di�erent
criteria in order for it to be algebraic. The present author proves three criteria in the
opposite direction.

Keywords and phrases: compact complex analytic variety, complex projective space, pro-
jective algebraic set

1.

In connection with his famous theorem that each analytic subset of Pm is a projective
algebraic set, Wei-Liang Chow [6] (see also [2�5, 7, 8] had proved seven di�erent
criteria, in terms of the behaviour at in�nity, in order for it to be algebraic. Roughly
speaking, every subvariety of a projective space is a projective variety. The present
author proves three criteria in the opposite direction.

2.

Let z ∈ C, w = (w0, w1, . . . , wn) ∈ Cn. Consider the space Pm of all classes of
equivalence in terms of the relation

(w) = (w0, w1, . . . , wm) =

(
w

w0

)
=

(
w1

w0
, . . . ,

wm

w0

)
,

for w0 6= 0. Pm is the complex projective space. We denote the elements of this space
[w] (w 6= 0) and the mapping, which translates a point w into Pm denote
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π : Cm+1 \ {0} → Pm;

π is the mapping of projectivity [1].
Let also w̃ = (w1, w2, . . . , wm), and ϕ be the mapping of transformation to local

coordinates of the rule
ϕ : (z, [w])→ (z, w̃),

which acts as the same ϕ : Cn × Pm → Cn × Cm. Let also

H0 = {[w], w0 6= 0}, and H0 = {[w], w0 = 0}.
Now we consider a pseudopolynomial of m variables, with coe�cients ai(z), i =

1, 2, . . . , n, which are analytic functions, depending of n variables:

Pq(z, w̃) = Pq(z1, . . . , zn, w1, . . . , wm) = a0(z)w̃
q+a1(z)w̃

q−1+· · ·+aq−1(z)w̃+aq(z)

and we put

P ∗
q (z, w) = Pq(z,

w̃

w0
)wq

0.

Correspondingly, let A be the set in Cn × Cm, given by the equation Pq(z, w̃) = 0

and A∗ is the set in Cn × Pm with the condition P ∗
q (z, w) = 0, i.e.

A = {(z, w̃) ∈ Cn × Cm, Pq(z, w̃) = 0},
A∗ = {(z, w) ∈ Cn × Cm+1, P ∗

q (z, w) = 0}

= {(z, (w0, w̃)) ∈ Cn × Cm+1, Pq(z,
w̃

w0
)wq

0 = 0}.

3.

We give here the next conclusion about the analytical sets A and A∗

Proposition 1. The set ϕ−1A is analytical with respect to w in the set Cn ×H0.

Remark 1. Here
Cn ×H0 = Cn × Pm \H0,

means that
H0 = {[w] ∈ Pm, w0 6= 0},

and
H0 = {[w] ∈ Pm, w0 = 0}.

Therefore we consider only such points, for which w0 6= 0.

Remark 2. The set A contains all the rays in Cn × Cm for which w0 6= 0 and
w1

w0
=
w2

w0
= · · · = wn

w0
,

and the mapping ϕ acts from

Cn × Cm+1 \ {w0 = 0} to Cn × Pm \H0

(one ray by ϕ goes to one point).
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Hence the map ϕ−1A is a multivalued map and acts from Pm \H0.

Remark 3. The de�nition of the mapping ϕ is in the sense of local coordinates.

Proof of Proposition 1. Because ϕ is the map of kind to passing to local coordinates
of ϕ−1A, it is an analytic set on the manifold. According to the de�nition of the
analytic set on the manifold, the set ϕ−1A is analytic:

A = {(z, w̃), Pq(z, w̃) = 0}.

4.

Moreover, we have

Proposition 2. The same set ϕ−1A is analytic in Cn × Pm.

Proof. We can represent ϕ−1A as given:

ϕ−1A = A∗ ∩ Cn ×H0 = A∗ \ (Cn ×H0).

Moreover, A∗ is an analytic set in Cn × Pm, the set Cn ×H0 is also analytic, and
according to the properties of these sets the closure of the di�erence of two analytic
sets is analytic set too [3, p. 46]

Proposition 3. The projection π̃ : (z, [w])→ z of every analytic set L in Cn × Pm

is analytic again set in Cn.

Proof. It is evident that the mapping π̃∗ is homeomorphic with the required property
(as the space Pm). Then, using the Remmert's theorem about the property mappings
[4] we conclude that π̃ ∗ L is compact. The proof is complete.

Remark 4.The map f : Y → B is proper if for every compact K ⊂ B the set f−1(K)

is in corresponding connected component of Y .
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O ODWROTNYM TWIERDZENIU WEI-LIANG CHOWA

S t r e s z c z e n i e
Zgodnie ze sªawnym twierdzeniem Wei-Liang Chowa (1960) ka»dy podzbiór analityczny

zespolonej przestrzeni rzutowej Pm jest rzutowym zbiorem algebraicznym. W przypadku
analitycznego podzbioru przestrzeni Cm istniej�a rozmaite kryteria na to, by byª on alge-
braiczny. Obecna autorka dowodzi trzech kryteriów w odwrotnym kierunku.



PL ISSN 0459-6854

B U L L E T I N

DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE �ÓD�

2013 Vol. LXIII

Recherches sur les déformations no. 3

pp. 91�100

Gertruda Ivanova

REMARKS ON SOME MODIFICATION OF THE DARBOUX
PROPERTY

Summary

We say that a function f : R → R has I-ap-Darboux property (f ∈ DI−ap) if for each
interval (a, b) ⊂ R and for each λ between f (a) and f (b) there exists a point x0 ∈ (a, b)
such that f (x0) = λ and f is I-approximately continuous at x0. Obviously, the family
DI−ap is situated between the class D of Darboux functions and the class Ds of functions
with strong �wi�atkowski property. We prove that our family is essentially di�erent from
both these families and from the family introduced by Grande in [2], i.e. from the family
of all functions f : R → R such that for each interval (a, b) ⊂ R and for each λ between
f (a) and f (b) there exists a point x0 ∈ (a, b) for which f (x0) = λ and f is approximately
continuous at x0.

Keywords and phrases: Darboux property, strong �wi�atkowski property, Baire property,
I-approximate continuity

Let D denote the class of Darboux functions. Put

< a, b >= (min{a, b},max{a, b}) .

A function f : R→ R has the strong �wi�atkowski property [3] if for each interval
(a, b) ⊂ R and for each λ ∈< f (a) , f (b) > there exists a point x0 ∈ (a, b) such that
f (x0) = λ and f is continuous at x0. We will use the symbol Ds to denote the class
of functions with strong �wi�atkowski property.

Z.Grande in 2009 [2] considered some modi�cation of strong �wi�atkowski prop-
erty changing the continuity with approximate continuity, i.e. a function f : R →
R has ap-Darboux property if for each interval (a, b) ⊂ R and for each λ ∈<
f (a) , f (b) > there exists a point x0 ∈ (a, b) such that f (x0) = λ and f is ap-
proximately continuous at x0. A family of all functions with ap-Darboux property
we will denote by Dap.
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Let I be a σ-ideal of sets of the �rst category. We introduce the analogous modi-
�cation of strong �wi�atkowski property changing the continuity with I-approximate
continuity, it means with the continuity with respect to the I-density topology in
the domain (see [1, 4�7]).

De�nition 1. We will say that a function f : R → R has I-ap-Darboux property
if for each interval (a, b) ⊂ R and for each λ ∈< f (a) , f (b) > there exists a point
x0 ∈ (a, b) such that f (x0) = λ and f is I-approximately continuous at x0.

We will denote by DI−ap a family of all functions with I-ap-Darboux property.
Obviously if f has strong �wi�atkowski property then f has ap-Darboux property

and I-ap-Darboux property. It is easily seen that

Ds ⊂ Dap ∩ DI−ap ⊂ Dap ∪ DI−ap ⊂ D.

We will prove that all these inclusions are proper. For this purpose we need some
auxiliary lemmas.

If A ⊂ R then A′ denote the complement of A. We will say that the sets of the
form

∞⋃
n=1

(an, bn) or
∞⋃
n=1

[an, bn]

are right interval sets at zero if bn+1 < an < bn for n ∈ N and lim
n→∞

an = 0.

Lemma 1. Let A ⊂ R. If for each n ∈ N and for each interval (a, b) ⊂ [0, 1] with
length equal to 1

n there exists an open interval contained in nA′∩ [0, 1], then 0 is not
a right-hand I-density point of A.

Proof. Let {nm}m∈N be an arbitrary increasing sequence of natural numbers. Since
for each m ∈ N and for each interval (a, b) ⊂ [0, 1] with length equal to 1

nm
the set

(nm·A′) ∩ [0, 1] contains some open interval, so for each k the set

(0, 1) ∩
∞⋃
m=k

(nm ·A′)

contains some open set which is dense in [0, 1]. Therefore

(0, 1) ∩
∞⋂
k=1

∞⋃
m=k

(nm ·A′) = (0, 1) ∩ lim sup
m→∞

(nm ·A′)

contains a set which is residual in [0, 1]. Hence

(0, 1) \ lim sup
m→∞

(nm ·A′) = lim inf
m→∞

(nm ·A) ∩ (0, 1)

is a set of the �rst category. Using lemma 2.1.1. in [1] and from the arbitrariness of
the sequence {nm}m∈N we obtain that 0 is not a right-hand I-density point of A. 2
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Lemma 2. There exists a right interval set A at zero such that 0 is a right-hand
density point of A, and 0 is not a right-hand I-density point of A.

Proof. Let

an =
1

n+ 2
, bn =

1

n+ 1
− 1

(n+ 1)
2
(n+ 2)

for n ∈ N. Put

A =

∞⋃
n=1

(an, bn) .

Observe that 0 is a right-hand density point of A. We have

d+ (A, 0) = lim inf
h→0

m (A ∩ [0, h])

h
= lim inf

n→∞

m
(
A ∩

[
0, 1

n

])
1
n

≥

≥ lim inf
n→∞

(
1− 1

n

)
m
([

1
n+1 ,

1
n

])
+
(
1− 1

n+1

)
m
([

1
n+2 ,

1
n+1

])
+ ...

1
n

≥

≥ lim inf
n→∞

(
1− 1

n

)
m
([
0, 1

n

])
1
n

= 1.

Now we will prove that 0 is not a right-hand I-density point of A. Observe
that the length of the longest interval contained in (n+ 1) ·A ∩ [0, 1] is equal to

n
(n+1)(n+2) , so for each interval (a, b) ⊂ [0, 1] with length equal to 1

n+1 there exists
an open interval contained in (n+ 1) ·A′ ∩ [0, 1]. Consequently, by Lemma 1, zeri is
not a right-hand I-density point of A. 2

Theorem 3. There exists a function f : R→ R such that f has ap-Darboux property
and f has not I-ap-Darboux property, i.e. f ∈ Dap\DI−ap.

Proof. Let {an}n∈N and {bn}n∈N be the sequences de�ned in the previous lemma.
Put

A0 = (−∞, 0] ∪
∞⋃
n=1

(an, bn) ∪ [b1,∞) .

Clearly, d (A0, 0) = 1. Let

f(x) =



1− x for x ≤ 0,

1− 1
n for x ∈ [an, bn], n ∈ N,

0 for x =
an + bn+1

2
, n ∈ N and for x ∈ [b1,∞),

linear on the intervals

[
bn+1,

an + bn+1

2

]
,

[
an + bn+1

2
, an

]
, n ∈ N.

Then
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(i) f is continuous at each point x ∈ R, x 6= 0;
(ii) f is approximately continuous at 0, because f | A0 is continuous at 0 and

d (A0, 0) = 1;
(iii) f has ap-Darboux property: for y ∈ [0,∞) \ {1} function f has the strong

�wi�atkowski property and for y = 1 there exists a point x0 = 0 such that
f (x0) = f (0) = 1 and f is approximately continuous at 0;

(iv) f has not I-ap-Darboux property, f /∈ DI−ap, because f assumes value 1 only
at the point 0 and f is not I-approximately continuous at 0.

In order to prove the last property put C =
{
x ∈ R : f (x) > 1

4

}
. Obviously, for

each n ∈ N and for each interval (a, b) ⊂ [0, 1] with length equal to 1
n there exists an

open interval contained in n·C ′ ∩ [0, 1]. By Lemma 1 zero is not the I-density point
of C. Simultaneously

f−1
((

1

2
,
3

2

))
⊂ C,

so f is not I-approximately continuous at 0, because 0 is not the I-density point of
f−1

((
1
2 ,

3
2

))
. Consequently, f−1

((
1
2 ,

3
2

))
is not open in the I-density topology. 2

Lemma 4. There exists a right interval set B at zero such that 0 is a right-hand
I-density point of B and 0 is not a right-hand density point of B.

Proof. In the construction we will use a symmetric Cantor-type set C contained in
[0, 1] with positive measure α ∈ (0, 1), such that inf C = 0 and supC = 1.

Let G1 be a component interval of [0, 1] \C, concentric with [0, 1], which was
removed in the �rst step of the construction. Let G2 denote the union of the compo-
nent intervals of [0, 1] \C, which were removed in the �rst and second steps. Let Gn
be a union of the component intervals of [0, 1] \C, which were removed in the steps
1, ..., n, n ∈ N.

Put

B =

∞⋃
n=1

(
1

2n
Gn +

1

2n

)
.

Obviously B is a right interval set at zero.
Let us show that 0 is not a right-hand density point of B. For this purpose it

su�ces to show that d+ (B′, 0) > 0. Indeed, for each k ∈ N we have

m (G′k ∩ [0, 1]) > α,

so

m

(
1

2k
(G′k ∩ [0, 1])

)
>

1

2k
·α.

Hence

m

(
B′ ∩

[
0,

1

2n

])
=

∞∑
k=n+1

m

(
1

2k
(G′k ∩ [0, 1]) +

1

2k

)
>

∞∑
k=n+1

1

2k
·α =

α

2n
,

it means d+ (B′, 0) ≥ α > 0.
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Now we will prove that 0 is a right-hand I-density point of B. From Theorem
2.2.2, (iii) in [1] it is su�cient to show that for each increasing sequence {tk}k∈N of
positive numbers tending to in�nity there exists a subsequence

{
tkp
}
p∈N such that

the set

lim inf
p→∞

(
tkp ·B

)
∩ (0, 1) =

∞⋃
m=1

∞⋂
p=m

(
tkp ·B

)
∩ (0, 1)

is residual in [0, 1].
So let {tk}k∈N be an increasing sequence of positive numbers tending to in�nity.

We can assume that t1 > 1.
For k ∈ N put

(1) hk =
1

tk
.

Hence for each k ∈ N there exists exactly one number nk ∈ N such that

hk ∈
[

1

2nk+1
,

1

2nk

)
.

So for k ∈ N we have
1 ≤ hk· 2nk+1 < 2.

Let
{
hkp · 2nkp+1

}
p∈N be a convergent subsequence,

hkp · 2nkp+1 p→∞−−−→ g.

Obviously g ∈ [1, 2],

(2)
1

hkp · 2nkp

p→∞−−−→ 2

g

and 2
g ∈ [1, 2].

Put

G =

∞⋃
n=1

Gn

and

B0 =

∞⋃
n=1

(
1

2n
G+

1

2n

)
.

Evidently G is open and dense in [0, 1] , so B0 is open and dense in [0, 1], too.
Now we will prove that

lim inf
p→∞

(
tkp ·B

)
∩ (0, 1) =

∞⋃
m=1

∞⋂
p=m

(
tkp ·B

)
∩ (0, 1) =

(3)
∞⋃
m=1

∞⋂
p=m

(
1

hkp
·B
)
∩ (0, 1) ⊃

(
2

g
·B0

)
∩ (0, 1) .

Let x ∈
(

2
g ·B0

)
∩ (0, 1). Since B0 is open, so x belongs to some component of

the set
(

2
g ·B0

)
∩ (0, 1).
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We have

B0 =

∞⋃
n=1

((
1

2n
·
∞⋃
k=1

Gk

)
+

1

2n

)
,

Therefore there exists a natural number n0 such that

x ∈ 2

g

(
1

2n0
·G+

1

2n0

)
,

so there exist two natural numbers n0 and m0 such that

(4) x ∈ 2

g

(
1

2n0
·Gm0 +

1

2n0

)
.

Let nkp ≥ m0. Then for m = nkp + n0 we have(
1

hkp
·B
)
∩ (0, 1) =

(
2nkp

hkp · 2nkp
·B
)
∩ (0, 1)

=
1

hkp · 2nkp
·

∞⋃
m=nkp+1

(
2nkp

2m
Gm +

2nkp

2m

)

=
1

hkp · 2nkp
·

∞⋃
m=nkp+1

(
1

2m−nkp
Gm +

1

2m−nkp

)

⊃ 1

hkp · 2nkp
·
(

1

2n0
Gm0

+
1

2n0

)
.

Using (2) we obtain

1

hkp · 2nkp
·
(

1

2n0
Gm0

+
1

2n0

)
p→∞−−−→ 2

g

(
1

2n0
Gm0

+
1

2n0

)
.

Hence and from (1) and (4) it follows that for each su�ciently big p

x ∈
(
tkp ·B

)
∩ (0, 1) .

Therefore

x ∈
∞⋃
m=1

∞⋂
p=m

(
tkp ·B

)
∩ (0, 1) ,

which gives (3). As B0 is open and dense in [0, 1] and 2
g ≥ 1, so

(
2
g ·B0

)
∩ (0, 1)

is also open and dense in [0, 1], so it is residual in [0, 1]. Using (3) we obtain that
lim inf
p→∞

(
tkp ·B

)
∩(0, 1) is residual in the interval [0, 1]. Consequently, 0 is a right-hand

I-density point of B. 2

Theorem 5. There exists a function g : R → R such that g has I-ap-Darboux
property and g has not ap-Darboux property, i.e. g ∈ DI−ap\Dap.

Proof. Analogously as in Theorem 3 we can construct a function g using the set B
from Lemma 4. For this purpose consider a set
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B1 = (−∞, 0] ∪B ∪ [b1,∞) = (−∞, 0] ∪
∞⋃
n=1

(an, bn) ∪ [b1,∞) ,

where an and bn are the ends of the component intervals of B (de�ned in the previous
lemma) such that 0 < ... < an < bn < an−1 < bn−1 < ... < a1 < b1.

Put

g(x) =



1− x for x ≤ 0,

1− 1

n
for x ∈ (an, bn), n ∈ N,

0 for x =
an + bn+1

2
, n ∈ N and for x ∈ [b1,∞),

linear on the intervals

[
bn+1,

an + bn+1

2

]
,

[
an + bn+1

2
, an

]
, n ∈ N.

Then

(i) g is continuous at each point x ∈ R, x 6= 0;

(ii) g is I-approximately continuous at 0, because g | B1 is continuous at 0 and 0

is the I-density point of B1;

(iii) g has I-ap-Darboux property: for y ∈ [0,∞) \ {1} function g has the strong
�wi�atkowski property and for y = 1 we have a point x0 = 0 such that g (x0) =
g (0) = 1 and g is I-approximately continuous at x0.

(iv) g has not ap-Darboux property, because g assumes value 1 only at the point 0
and g is not approximately continuous at zero.

To prove the last property put C =
{
x ∈ R : f (x) < 3

4

}
. Obviously,

C ⊃
∞⋃
n=1

(
bn+1 +

an − bn+1

4
, an −

an − bn+1

4

)
,

and

B′ ∩ (0, b1) =

∞⋃
n=1

[bn+1, an] .

So

m

(
C ∩

[
0,

1

2n

])
≥ 1

2
m

(
B′ ∩

[
0,

1

2n

])
>

1

2
· α
2n
.

Hence d+ (C, 0) ≥ α
2 > 0.

Consequently, 0 is not the density point of the set g−1
((

3
4 ,

5
4

))
and g is not

approximately continuous at 0. 2

Lemma 6. There exists a right interval set E0 such that 0 is a right-hand dispersion
and I-dispersion point of E0.
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Proof. For n ∈ N put

(5) cn =
n+ 1

(n+ 2)!
, dn =

1

(n+ 1)!

and let

E0 =

∞⋃
n=1

[cn, dn] .

Then

lim
n→∞

dn − cn
cn

= lim
n→∞

1
(n+1)! −

n+1
(n+2)!

n+1
(n+2)!

= lim
n→∞

1
(n+2)!

n+1
(n+2)!

= 0

and

lim sup
n→∞

dn+1

cn
= lim
n→∞

1
(n+2)!

n+1
(n+2)!

= lim
n→∞

1

n+ 1
= 0 ∈ [0, 1) .

By Lemma 2.1.4 and Theorem 2.2.2, (iii) in [1] it follows that 0 is a right-hand
I-dispersion of E0.

Simultaneously,

lim sup
h→0

m (E0 ∩ [0, h])

h
= lim sup

n→∞

m (E0 ∩ [0, dn])

dn

≤ lim
n→∞

(dn − cn) + dn+1

dn

= lim
n→∞

2
(n+2)!

1
(n+1)!

= lim
n→∞

2

n+ 2
= 0,

so d+ (E0, 0) = 0. 2

Theorem 7. There exists a function h : R → R such that h has ap-Darboux and
I-ap-Darboux properties, but it has not the strong �wi�atkowski property, i.e.

h ∈ (Dap ∩ DI−ap) \Ds.

Proof. For our purpose we will use the set E0 from the previous lemma. Let

(6) an =
1

(n+ 2)!
, bn =

n+ 1

(n+ 2)!

for n ∈ N and

E = (−∞, 0] ∪
∞⋃
n=1

(an, bn) ∪ [b1,∞) .

Clearly,
∞⋃
n=1

(an, bn) =

(
0,

1

2

)
\E0,

where E0 is a set from the last lemma, so 0 is the density and I-density point of E.
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Put

h(x) =



1− x for x ≤ 0,

1− 1

n
for x ∈ (an, bn), n ∈ N,

0 for x =
an + bn+1

2
, n ∈ N, and for x ∈ [b1,∞),

linear on the intervals

[
bn+1,

an + bn+1

2

]
,

[
an + bn+1

2
, an

]
, n ∈ N.

Then

(i) h is continuous at each point x ∈ R, x 6= 0;

(ii) h is not continuous at 0 and assumes value 1 only at this point, hence h has not
the strong �wi�atkowski property;

(iii) h is approximately continuous at 0, because h | E is continuous at 0 and
d (E, 0) = 1;

(iv) h has ap-Darboux property: for y ∈ [0,∞) \ {1} function h has the strong
�wi�atkowski property and for y = 1 there exists a point x0 = 0 such that
h (x0) = h (0) = 1 and h is approximately continuous at x0;

(v) h is I-approximately continuous at 0, because h | E is continuous at 0 and 0 is
the I-density point of E;

(vi) h has I-ap-Darboux property (the proof in analogous as in 4). 2

Theorem 8. There exists a Darboux function s : R → R such that s has neither
ap-Darboux property nor I-ap-Darboux property, i.e. s ∈ D\ (Dap ∪ DI−ap).

Proof.We can construct a function using the set E described in the previous theorem.
Put

s(x) =



1− x for x ≤ 0,

0 for x ∈ [an, bn], n ∈ N, n ∈ N and for x ∈ [b1,+∞),

1− 1

n
for x =

an + bn+1

2
,

linear on the intervals

[
bn+1,

an + bn+1

2

]
,

[
an + bn+1

2
, an

]
, n ∈ N,

where {an}n∈N and {bn}n∈N are the sequences de�ned in (6).

Then

(i) s is continuous at each point x ∈ R, x 6= 0;

(ii) s has Darboux property;
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(iii) s is not approximately continuous at zero, because d+
( ∞⋃
n=1

(an, bn) , 0

)
= 1;

(iv) s has not ap-Darboux property, because it assumes value 1 only at the point 0
and s is not approximately continuous at 0;

(v) s is not I-approximately continuous at 0, because 0 is the right-hand I-density
point of the set

∞⋃
n=1

(an, bn) ;

(vi) s has not I-ap-Darboux property (analogously as in 4). 2
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UWAGI O PEWNEJ MODYFIKACJI W�ASNÓSCI DARBOUX

S t r e s z c z e n i e
Mówimy, »e funkcja f : R→ R ma I-wªasno±¢ Darboux (f ∈ DI−ap), je±li dla ka»dego

przedziaªu (a, b) ⊂ R i ka»dej liczby λ ∈< f (a) , f (b) > istnieje punkt x0 ∈ (a, b) taki,
»e f (x0) = λ i f jest I-aproksymatywnie ci�agªa w punkcie x0. Oczywi±cie, rodzina DI−ap

znajduje si�e pomi�edzy rodzin�a D funkcji o wªasno±ci Darboux i rodzin�a Ds funkcji o silnej
wªasno±ci �wi�atkowskiego. Pokazali±my, »e rodzina DI−ap istotnie ró»nie si�e od rodziny
wprowadzonej przez Grande w [2], tzn. od rodziny wszystkich funkcji f : R → R takich,
»e dla ka»dego przedziaªu (a, b) ⊂ R i ka»dej liczby λ ∈< f (a) , f (b) > istnieje punkt
x0 ∈ (a, b) taki, »e f (x0) = λ i f jest I-aproksymatywnie ci�agªa w punkcie x0.
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BASIC OPTICAL ILLUSIONS CAUSED BY MOTION

Summary
The basic optical illusions as: stroboscopic effect, bird in a cage phenomenon, effect

of circulating pendulum, permanence of vision effect, waterfall effect, depth of seeing phe-
nomenon and Benhams effect are described and its examples are given. The mentioned
illusions are also explained and experimental method its demonstration are presented. Oc-
currence and significance this illusions in every day life and modern technology are also
discussed.
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1. Introduction

Sight is one of the five senses that a human possesses, apart from hearing, smell,

taste and touch. Undoubtedly, it is one of the most significant senses when it comes

to the amount of the transferred data. it is estimated that 90 % of information is

perceived through sight. This sense presents an adaptability skill in a broad range

to different conditions. Thanks to this, correct perception of things at e.g. various

lightning and distance is possible.

However in some cases, the sense of sight may cause the perceived sensations to

distort, and then we experience optical illusions. One of the factors causing optical

illusions is motion. Aim of this article is to present optical illusions caused by mo-

tion. It turns out that these illusions play an important role in everyday life, while

watching movies or playing computer games.
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2. Stroboscopic effect

Image created by a light stimulus on an eyes retina does not fade out right after this

stimulus stops working. Extinction of the image that emerged takes place after a

period of several hundredths of a second to one tenth of a second after the stimulus

has faded out. This fact, often called “persistence of eye”, has mutual effects on the

vision process [1]. The first one includes causing a sense of motion while watching

images that come after each other quickly, presenting subsequent positions of a given

item.

In order to realize this fact, we will conduct an experiment using Fig. 1. We can

see here the subsequent positions of a simple pendulum that vibrates. How about

copying this picture and cutting it into eight parts. Lets put these parts on each

other – according to the given numbers – and staple, putting the stitch on the left

side, on the marked spots. In this way, we have a small book comprising eight pages.

Fig. 1: Subsequent phases of a simple pendulum motion.

We hold the backbone in fingers of the left hand, and we leaf it through with

fingers of the right hand. Looking at the pages of the book being leafed through, we

experience an illusion that the pendulum vibrates. Our eye perceive the images of

pendulums positions quickly coming after each other as a one picture of a moving

pendulum. The observed effected has been used to project moving images in the

cinema, TV and games. In order to provide the continuity of motion, the cinema

usually uses the projection of 24 frames per second, and TV 50 frames or more.

The second type of the persistence of the eye effects can be noticed while illumi-

nating the moving objects with short, periodical, bursts of lights. It includes causing

a sensation of an item immovability when frequency of the bursts equals with or

is an integral multiple of the items motion frequency. We can spot this effect by

waving a hand quickly, in front of a TV or computer screen. When we wave at a

frequency which is a multiplication of the projected image frequency, we will be able

to see a multiplied, motionless image of the hand. This effect allows to establish the

frequency of an item motion, e.g. of a rotating or vibrating part of machine, based

on the frequency of the bursts of light.

A TV set or computer screen can be also used as an stroboscopic illuminator

in a school physics lab or at home. During some experiments, it allows to watch

motionless or slowed down images of the observed phenomenon, e.g. falling bodies
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or wave motion. The way of observing the falling drops is presented in Fig. 2. The

speed of the creation of drops is regulated by a degree of opening a tap 2, being

located at the output of the vessel with liquid. Time of burst illuminating the drops

can be changed through increasing or decreasing the width of a gap between two

sheets of black paper 5, hiding a screen.

Fig. 2: A system for drops falling observations, in stroboscopic lightning; 1 – a vessel with
liquid, 2 – tap, 3 – drop, 4 – TV or computer screen, 5 – black paper.

3. A bird in a cage

This illusion consist in the fact that two images, quickly presented after each other,

are perceived as a single picture. In order to find it out, lets copy the Fig. 3 and cut

out the rectangle with the obtained images inside. This rectangle should be folded

in half along the dashed line, and the open side should be taped with a transparent

tape. The end of a pencil, with the images taped to it with the same tape, is put in

the folded images. In this way we obtained an item resembling a lollipop [2].

Fig. 3: Images for a bird in a cage observations.

Now, the free end of the pencil should be placed between hands, and the item

should be propelled by moving hands one after another, in a way that makes it

present a quick circular motion. While looking at the images, it will be noticed that

the bird is inside the cage. Actually, it is an illusion caused by a short time interval,

when the images of the cage and the bird are demonstrated. Because of that, the
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eyes are not able to differentiate these pictures, and as a result we see the bird in

the cage, not realizing that it is a mix of two images.

4. Effect of a circulating pendulum

This effect can be easily checked in an experiment as well. We should prepare a pen-

dulum, similar to a simple one, through attaching a modeling paste ball to a piece of

thread. After hanging this pendulum and deviating it from the perpendicular direc-

tion, we can find out that it vibrates in one plane, which vanishes slowly. Therefore,

this phenomena takes place according to our assumptions. Lets prepare glasses with

one glass that is strongly dimmed. Such sunglasses can be easily obtained by taking

one glass from sunglasses. Again, lets deviate the pendulum from the perpendicular

direction and look at it through the prepared glasses.

This time, we will notice that while vibrating, the pendulum gets closer and

moves away, making circles. Therefore, the pendulums motion seems to be a three-

dimensional motion. However, it is just an illusion, because when we take off the

glasses we see that the pendulum still vibrates in one plane. The observed illusion is

cause by different times of perceiving dark and bright pendulum image by the eyes.

Each eye receives different images of the pendulum – one receives a dark and the

second one a bright picture. It turns out that the dark image is perceived slightly later

than the bright one. These two images mix up in the sight center inside brain, which

gives a sensation of three-dimensional motion. The described illusion is also called a

Schwarzschild effect and is sometimes used in some cinemas for a three-dimensional

visualization of an image through special glasses.

5. The permanence of vision

A plastic pipe of 2–3 cm dimension and 25–30 cm length will be necessary for the

next experiment – presenting an optical illusion caused by motion. It may be a pipe

from plastic or metal. Such a pipe can also be easily made by covering an item, e.g. a

handle of a brush, of the given dimension with a sheet of paper, and gluing its edges.

When the glue became and the paper is taken off the handle, the pipe is ready. One

of the pipes ends needs to be closed with a non-transparent disk with a gap, showed

in Fig. 4. Such a disk can be also successfully cut out of a sheet of paper. The teeth,

which are visible on a disks edge, should be folded and glued to the pipe.

Now, we should apply the open end of the pipe to one eye and close the second

eye. Through the gap, we can see just an oblong part of the surroundings in front

of us. This part is limited by the gaps edges. However, if we start to move the pipe

quickly with fingers, we will notice a part of surroundings limited by a round edge

of the pipe, as there was no disk at all. This illusion is caused by the fact that

subsequent images limited by the gap are present on retina, which gives a sensation

of one image limited by the pipes edge.
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Fig. 4: A disk with a gap for permanence
of seeing examination.

Fig. 5: A net of dots for waterfall effect
observation.

6. Waterfall effect

In order to see this effect, we make a copy of a net of dots presented in Fig. 5. Then we

cut the copied disk out of a piece of paper. We will have to make it rotate at a speed

of about 1–2 rotations per second. Then, lets have a look at the unfolded fingers of

a hand. We will notice that they seem to twist in a direction opposite to this of the

disk. This is a waterfall effect, because it is similar to the phenomenon that takes

place when a person stares at falling water, with rocks in the background. If at some

point we take a look at the rocks surrounding the waterfall, we will have a sensation

that they move upwards. It is worth noticing that if the speed of the disk rotation

is too high, the dots will created circles, and we will not spot the described effect.

In order to explain this effect, we should take into account the mutual interaction

of the eyes and sight centers inside the brain. It is assumed that certain parts of the

cortex are stimulated when eyes follow the e.g. right motion. Whereas other parts

are activated when the eyes look at the e.g. left motion. If an item is motionless, or

two objects move in opposite direction at the same speed, the stimulation level of

both centers is the same, and we do not experience the sensation of motion. If then,

we have a look on a motionless object, the centers that are stimulated faster will

present a shorter time of stimulation vanishing than the centers stimulated slower.

As a result, we have a sensation of rotation in opposite direction.

7. The depth of seeing

In order to see this effect, we also copy the object in Fig. 7, and we prepare a disk,

which is rotated in a way described in the case of waterfall effect. Looking at the

surface of the rotating disk, we can spot colorful strips in a shape of an arc. This

effect is explained in the following way. There are three kinds of photoreceptor cells

sensitive to red, green and blue color. Eyes and the brain record the white color
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only when they are stimulated by light in a way that all kinds of photoreceptor cells

show the similar response times. White arc move at different speed on the rotating

disk – the greater the speed, the greater their distance from the center of the disk.

Length of the arcs are also different. As a result, times of response to stimulation

and its vanishing for particular kinds of photoreceptor cells are different, and the

arcs seems to be colored. It is worth adding that the descried effect was discovered in

19th century by Benham – producer of toys, who spotted colorful arcs on a surface

of a spinning top, painted in black and white stripes.

Fig. 6: A spiral for depth of seeing
presentation.

Fig. 7: A figure for Benhams effect
observations.
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PODSTAWOWE Z LUDZENIA OPTYCZNE SPOWODOWANE

RUCHEM

S t r e s z c z e n i e
W artykule opisane zosta ly podstawowe z ludzenia optyczne spowodowane ruchem, takie

jak: efekt stroboskopowy, zjawisko ptaka w klatce, efekt kra̧żacego wahad la, trwa lość widze-
nia, efekt wodospadu, g lȩbokość widzenia oraz dysk Benhams. Wspomniane z ludzenia
zosta ly również wyjaśnione i podano sposoby przeprowadzenia demonstruja̧cych je doświad-
czeń. Omówiono także wystȩpowanie i znaczenie tych z ludzeń w życiu codziennym oraz we
wspó lczesnej technice.
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Summary
Structural transformation of amorphous material surface is related to energy thresholds,

either in the potential energy, 10 keV deposited by Highly Charged Ion (HCI) or with the
threshold in electronic energy loss, 5 keV/nm transferred by Swift Heavy Ion (SHI). In this
work, in order to look for structural and magnetic transformations, thin foils of amorphous
alloy Fe73Si16B7Cu1Nb3 (VP800) were irradiated with slow heavy ions (200 keV Ar and N)
at doses 1010 and 1011 Ar/cm2. With the use of ex-situ Mössbauer spectroscopy (CEMS) Fe
and Fe(Si) clusters accompanied by Fe3Si nano-crystals were found in the samples irradiated
at lower ion doses, whereas rather amorphous structures can be spotted in samples more
heavily implanted ions.
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1. Introduction

Amorphous alloys can crystallize partially, if an appropriate amount of energy is
supplied [1�3]. Recently, crystallization induced by 5GeV Pb ions at low �uency
in amorphous alloys which exhibit two steps thermal crystallization (like Finemet)
was reported [4], against absence of the e�ect in alloys su�ering only a single step
thermal crystallization. In this case only secondary (without primary) crystallization
phase was observed, probably in some correlation with absence of Cu. Crystallites
of 1�4 nm size were formed around amorphous ion track of 6�8 nm in diameter,
thus a single ion converts material from initially amorphous to other amorphous
and crystalline structures roughly within 100 nm2 area [4].
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During slowing down of a SHI or impact of a HCI its energy is faster deposited to
the material through electronic excitations (10−15 s), than subsequently transferred
to the lattice through electron-phonon coupling (10−13 s) [5�6]. This can locally cause
rapid heat-cooling pulse, with the peak temperature of thousands of K.

We look for a similar phase transformation induced in surface of amorphous alloy
by impact of slow heavy ion [7].

2. Experimental setup

The samples used in this study were 20µm thick, amorphous ribbons prepared by a
rapid cooling (107K/s) with the melt-spinning technique. It was checked with X-ray
di�raction (XRD) and with transmission Mössbauer spectroscopy (TMS) that ini-
tially the foils were amorphous (with small addition of nano-crystals of Fe3Si) and
with di�erential scanning calorimetry (DSC) that they exhibit two step crystalliza-
tion [2�3]. The irradiation with Ar and N ions were performed at normal incidence
under a controlled ion �ux lower than 109 ions/cm2/s with Cockroft-Walton type
accelerator working e�ectively in the voltage range from 50 to 300 kV. It is capable
to provide on the sample ion beam current density from 1nA/cm2 up to 1µA/cm2,
measured by the Faraday cup. In VP800 alloy Ar ions have a rate of energy deposi-
tion into electronic and nuclear processes of Se∼Sn∼778 eV/nm [8], in a very short
time scale of 10−13 s, required to stop the ion.

MS experiments were performed in the constant acceleration mode with 57Co:Rh
(6.3 keV X-rays and 14.4 keV γ-rays calibration lines) source of 50mCi activity.
CEMS was based on detection of 7.3 keV Fe conversion e−, penetrating roughly
200 nm surface layer by LEK-2 He+5% CH4 gas �ow detector at room temperature.
The CEMS data acquisition was based on MOSIEK analyzer and for signal process-
ing the CAMAC system combined with Tukan 8k analyzer was used. Spectra were
analyzed with RECOIL [9].

The 20µm thick Fe73Si16B7Cu1Nb3 foils after surface cleaning with Ar ion sput-
tering were transferred through the air to the reaction chamber of 10−6 hPa, �xed
on LN2 cryostat and irradiated at low current of 1 nA/cm2 with 200 keV Ar ions
at the �uency 1010 and 1011Ar/cm2. Subsequently, the foils were again transferred
through the air to the CEMS reaction chamber of 10−9 hPa for the ex-situMössbauer
analysis.

In this work are presented results for Ar incident beam at 200 keV energy and
simulations from SRIM for bought Ar and N for 200 keV.

3. Results of SRIM calculations

The plot in Fig. 1 shows the �nal distribution of the ions in the target calculated
by STRIM [7]. The average ion ranges in VP800 are about 100 nm for Ar ions and
230 nm for N ions.
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The �nal distribution of the recoils atoms of Fe, Si and B from the VP800 target
structure are presented in Fig. 2. This plot is updated after each ion. For Ar 200 keV
ions the distribution has maximum at about 70 nm for each recoiled atoms. For N
200 ions the maximum are shifted to 200 nm for the same incident energy of ions.
Also the shape of distribution is much di�erent.

Fig. 1: Depth distribution of energy absorbed from 200 keV Ar and N ions by atoms in
Fe73Si16B7Cu1Nb3 amorphous alloy.

Fig. 2: The distribution of the recoils atoms of Fe, Si and B from the VP800 for 200 keV
energy of Ar and N ions beam.

In Fig. 3 are the direct energy loss by the ion to the various target atoms. This
energy loss, plus the direct energy loss of the ion to the target electrons, sum to the
energy loss of the ion into the target. The distribution displays maxima at about
70 nm for Ar ions and about 200 nm for N baem. The e�ciency of the energy absorp-
tion ranges from 3.57 keV/atom-B to 103 keV/atom-Fe per single Ar ion impact. Rel-
atively smaller values are obtained for N ions: 1.47 keV/atom-B to 38.6 keV/atom-Fe.
These two distributions show the channels of local heating.
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The Fig. 4 contains the energy given up to the target electrons. The data relating
to �Ions� is the direct energy transferred from the ion to the target electrons. The
data relating to the �Recoils� is energy transferred from recoiling target atoms to the
target electrons. For 200 keV Ar up to 130 nm more energy for ionization of target
atoms are given by incident ions, up to 60 nm it is more then 50%. For 200 keV N
ions this almost all energy for ionization of target atoms are given by incident ions
for all depth.

Fig. 3: The direct energy loss by the 200 keV Ar and N ions to the various target atoms.

Fig. 4: The energy loss by 200 keV Ar and N ions for ionization of the target atoms.

4. Results of CEMS experiments

CEMS spectra obtained for pristine foil reveal amorphous structure which is char-
acterized by set of hyper�ne parameters and structure factors analyzed previously
in detail [2, 3] in dependence on temperature ranging from 70K up to 1200K and
backwards.
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With the use of scanning calorimetry, scanning thermo-magnetometry (TM),
X-ray di�raction and with transmission Mössbauer spectrometry it was shown that
during conventional thermal treatment the bulk thick VP800 su�ers a set of struc-
tural and magnetic transformations correlated with each other [3] and is character-
ized by set of speci�c parameters, like activation energy for crystallization, the Curie
temperatures or hyper�ne �elds and isomer shifts, and other parameters [3].

The surfaces irradiated at the dose of 1010 Ar/cm2 are statistically within 1%
covered with 100 nm2-size spots, where ions hit the surface, whereas the spots over-
lapping begins at 1012Ar/cm2 causing massive structural and magnetic destruction.
This latter implanted dose, distributed over 100 nm penetration depth, results in the
average Ar concentration of 1 ppm, which can in�uence phase transformations. Dur-
ing stopping within 10−13 s the whole 200 keV energy of each Ar ion is transferred to
electrons contained in 8 · 103 nm3 and subsequently shared among 5 · 105 atoms. It
results in increase of lattice temperature to 3 ·103K, which in turn induces magnetic
and structural phase transitions of the subsurface region. The penetration depth of
100 nm for 200 keV Ar ion is comparable to the mean range of conversion electrons,
which allows for CEMS analysis of the whole irradiation region.

CEMS spectra from foils irradiated at doses from 1010Ar/cm2 to 1012Ar/cm2,
reveal tiny e�ect which can be unambiguously correlated with impact of ion beam.

For untreated foil the CEMS spectra reveal a broadened Zeeman sextet ascribed
to the primary amorphous phase and 5% of Fe3Si nano-crystals Fig. 5. For foil
radiated at 3 · 1010Ar/cm2 and 3 · 1011Ar/cm2, with the remaining of amorphous
phase the Fe3Si phase have bigger contribution, relative to dose Fig. 6. This e�ect
can be correlated to grown of Fe3Si crystals in amorphous matrix or creation of new
Fe3Si crystals in the neighborhoods of ion trace, but this should be investigated by
XRF in the future. The dependence on irradiation dose suggests that the sextets are
related to crystalline parts of the alloy produced under impact of Ar ions. Based on
hyper�ne parameters the multiplets were identi�ed to come from Fe3Si nano-crystals.

Fig. 5: CEMS from Fe73Si16B7Cu1Nb3 (amorphous phase with sextets from Fe3Si) irradi-
ated with 200 keV Ar ions, analysed with RECOIL [9].
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Fig. 6: CEMS from Fe73Si16B7Cu1Nb3 radiated at 3 · 1010 Ar/cm2 and 3 · 1011 Ar/cm2

(amorphous phase with sextets from Fe3Si), analysed with RECOIL.

The amorphous phase (and amorphous remainder) is characterized mainly by
distribution of the hyper�ne magnetic �eld which reveals weak (10T) and strong
(22T) �eld components related to two basically distinct magnetic neighbourhood
of Fe nuclei. Table 1 shows the calculated from CEMS spectra percentage values
amorphous and crystalline phases in the sample before and after the irradiation of
argon ions beam.

Tab. 1: Percentage values amorphous and crystalline phases in the sample VP800.
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Fig. 7: Distribution of the hyper�ne �eld of amorphous phase and amorphous remainder in
VP800 irradiated (A) and radiated (B) � 3 · 1010 Ar/cm2 and (C) 3 · 1011 Ar/cm2, analysed
with RECOIL.

It can be seen that the actual structural and magnetic composition of the sur-
face is a result of at least two concurrent processes: creation of structures caused
by heating-cooling pulses due to energy lost by the ion and disintegration of the
structures due to kinematic amorphisation by HI impact.

5. Conclusions

It was demonstrated that impact of a relatively slow and relatively heavy ion can
cause structural and also magnetic transformations of the amorphous alloys surface,
the e�ect which up to now, in metals and isolators [5, 6], has been reserved only for
slow HCI and fast HI and restricted by energy thresholds.
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ANALIZA METODA� CEMS PRZEMIAN FAZOWYCH
WYWO�ANYCH BOMBARDOWANIEM NISKOENERGETYCZNYMI
CIE��KIMI JONAMI POWIERZCHNI VP800

S t r e s z c z e n i e
Przej±cia fazowe na powierzchni materiaªów amor�cznych zwi�azane s�a z przekroczeniem

energii progowej, ok. 10 keV dla energii potencjalnej przekazywanej przez wysokonaªad-
owany jon lub ok. 5 keV/nm strat energii kinetycznej dla przyspieszonych ci�e»kich jonów.
W pracy u»yty zostaª stop amor�czny Fe73Si16B7Cu1Nb3 (VP800) w postaci cienkiej folii
(20µm), który nast�epnie na±wietlono jonami Ar o energii 200 keV dla dwóch dawek: 1010

jonów/cm2 i 1011 jonów/cm2. Nast�epnie przeprowadzono pomiary za pomoc�a spektrometru
mössbauerowskiego elektronów konwersji wewnetrznej CEMS, które ujawniªy powstaªe w
wyniku bombardowania powierzchni VP800 jonami Ar krystalitów Fe3Si w przeciwie«stwie
do amor�zacji powodowanej przez bombardowanie jonami o wy»szych energiach.
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