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9. Envoi par la poste: protégez le manuscript à l’aide de cartons.
10. Les auteurs recevront une copie de fascicule correspondant à titre gratuit.
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Summary

Abstract should be written in clear and concise way, and should present all the main

points of the paper. In particular, new results obtained, new approaches or methods applied,

scientific significance of the paper and conclusions should be emphasized.

1. General information

The paper for BULLETIN DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES
DE �LÓDŹ should be written in LaTeX, preferably in LaTeX 2e, using the style (the
file bull.cls).

2. How to prepare a manuscript

To prepare the LaTeX 2e source file of your paper, copy the template file in-
str.tex with Fig1.eps, give the title of the paper, the authors with their affilia-
tions/addresses, and go on with the body of the paper using all other means and
commands of the standard class/style ‘bull.cls’.

2.1. Example of a figure

Figures (including graphs and images) should be carefully prepared and submitted
in electronic form (as separate files) in Encapsulated PostScript (EPS) format.

Fig. 1: The figure caption is located below the figure itself; it is automatically centered and
should be typeset in small letters.

2.2. Example of a table

Tab. 1: The table caption is located above the table itself; it is automatically centered and
should be typeset in small letters.

Description 1 Description 2 Description 3 Description 4

Row 1, Col 1 Row 1, Col 2 Row 1, Col 3 Row 1, Col 4
Row 2, Col 1 Row 2, Col 2 Row 2, Col 3 Row 2, Col 4

[4]



2.3. “Ghostwriting” and “guest authorship” are strictly forbiden

The printed version of an article is primary (comparing with the electronic version).
Each contribution submitted is sent for evaluation to two independent referees before
publishing.

3. How to submit a manuscript

Manuscripts have to be submitted in electronic form, preferably via e-mail as attach-
ment files sent to the address zofija@uni.lodz.pl. If a whole manuscript exceeds
2 MB composed of more than one file, all parts of the manuscript, i.e. the text
(including equations, tables, acknowledgements and references) and figures, should
be ZIP-compressed to one file prior to transfer. If authors are unable to send their
manuscript electronically, it should be provided on a disk (DOS format floppy or
CD-ROM), containing the text and all electronic figures, and may be sent by reg-
ular mail to the address: Department of Solid State Physics, University of
Lodz, Bulletin de la Société des Sciences et des Lettres de �Lódź, Pomorska
149/153, 90-236 �Lódź, Poland.
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10. J. �Lawrynowicz, K. Nôno, and O. Suzuki, Binary and terna-
ry Clifford analysis vs. non-commutative Galois extensions. II.
The correspondence between binary and ternary field operators 109–118



Professor
Pomarz Tamrazov

* 17.6.1933 † 11.2.2012

Promarz Tamrazov
in memoriam

vol. II





PL ISSN 0459-6854

B U L L E T I N
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SOME MAGNETIC PROPERTIES OF BILAYER WITH ROUGH
AND DISORDERED INTERFACES

Summary
The interlayer exchange coupling (IEC) is an important property determining magnetic

characteristics of multilayers. The influence of spacer thickness, roughness and structural
ordering on interfaces on IEC have been shown on the basis of some theoretical predictions.
The Green function method applied to the Hamiltonian of layered system allows to find
Curie temperature, magnetization profiles and B parameter in T 3/2 Bloch’s law.

Keywords and phrases: interlayer exchange coupling, roughness, Bloch’s law

1. Introduction

Magnetic properties of bilayer consisting of two magnetic layers separated by a non-
magnetic metal spacer have been studied both from theoretical and experimental
point of view for many years. Especially, many papers were devoted to the interlayer
exchange coupling (IEC) as a quantity determining the other magnetic characteris-
tics. The possibility of technical applications of very thin layers and/or multilayers
is the reason for introducing some parameters describing roughness and structural
ordering in the interfaces in theoretical models of such systems. In this paper we
take into consideration two types of parameters modifying the IEC describing the
roughness and electron wave scattering.

The Green function method applied to the Hamiltonian of layered system in the
first order approximation allows us to find some magnetic characteristics like Curie
temperature, magnetization profiles and parameter B in the T 3/2 Bloch’s law.
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2. Theoretical model of the bilayer exchange coupled
with rough interface system

We consider the bilayer consisting of two ferromagnetic layers and nonmagnetic
spacer. The thickness of each magnetic layer equal to N and spacer - d is given by
the number of monoatomic planes. We assume the Hamiltonian for this system as
the sum of the exchange, Zeeman and anisotropy term in the form [18]:

H = −1
2

∑
νjν′j′

Jνjν′j′SνjSν′j′ − gμBHeff

∑
νj

Szνj −
1
2

∑
νjν′j′

Aνjν′j′SνjSν′j′ ,(1)

where ν ∈ (1, 2N) denotes the number of monatomic plane and j defines the position
of a lattice point in the plane ν. Jνjν′j′ is exchange parameter equal to J12 for ν = N

or N + 1 and J in the other cases. The anisotropy parameter Aνjν′j′ consists of the
uniaxial A, interface AI and surface As anisotropy parameters, respectively. The
effective field Heff contains the external uniform field, the demagnetizing field and
the uniaxial bulk anisotropy field. We applied the standard Green function procedure
in the first order approximation described in [19] to such system and calculated Curie
temperature, magnetization profiles and parameter B in Bloch’s law T 3/2

m(T ) = m0(1 −BT 3/2).(2)

3. Interlayer exchange coupling

In many theoretical models IEC can be calculated as the total energy difference
between the parallel and antiparallel configurations of magnetization in both mag-
netic layers using ab initio method [1, 2], semi-empirical tight-binding scheme [3]
and quantum well model [4–7]. These methods are difficult for numerical calculation
because the difference of energy for different orientation of magnetization vector is
several orders of magnitude smaller than the total energy of such system.

Other possibilities are given by model proposed by Bruno [8, 9] in the frame of
scattering theory of electron wave or Bruno and Chappert [10, 11] based on gen-
eralization of RKKY scheme. We show calculation of IEC parameter for two last
models considering the influence of structural disorder in the interface described by
roughness and scattering parameters.

3.1. Roughness parameter

The generalization of the RKKY theory proposed by Bruno and Chappert [10, 11]
gives the dependance of IEC on the spacer thickness in the form:

J12 = −1
2

( A
V0

)2
V0

(2π)3

∫ π
a

−π
a

f2(qz)dqzχ(qz) exp(iqzz).(3)

χ(qz) is the nonuniform susceptibility and depends on the material parameters of
spacer and V0 is the atomic volume.
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The distribution function f(qz) plays an important role in the model introduced
by Wang, Levy and Fray [12]. for ideal flat interfaces this function is equal to one
and for rough interfaces takes the form

f(qz) =
∞∑

n=−∞
pne

iqzna/2.(4)

pn denotes the probability of finding a magnetic atom at distance n times a/2 away
from the average position of the surface. In practice, we take that p1 = p−1 = r and
p0 = 1−2r while all pn for the other n are equal to 0. The choice of values for pn must
grant separation of magnetic layers in spite of possibility of finding magnetic atoms
in the spacer material. This implies a minimal thickness of spacer layer. Parameter
r changes from 0 for flat to 0.25 for rough interface and can be related to the root
mean square rms [13,14] of deviation from perfectly flat interface by r = 2 rms2/a2.

The other form of distribution function is given by Solid-on-Solid (SOS) and
Discrete Gaussian (DG) model [15]. They are usually used for description of the
dynamical growth of a layer and can be applied to the static case. In this formal-
ism the layer is treated as a twodimensional matrix filled by atomic columns. The
interaction between columns with hight hi is done by the Hamiltonian [16]:

H = J/2
∑
i

∑
δ

(hi − hi+δ)2 + y
∑
i

(1 − cos2πhi) − Δμ
∑
i

hi,(5)

where Δμ is chemical potential and y - weight which favors integer values of hi.
The time evaluation of such system is described by the Fokker-Planck equation

for the probability P ({hi}, t) of some configuration of {hi} in the moment t. Taking
into consideration the correlation function Gij we can show the probability P ({hi}, t)
in the form:

P ({hi}, t) = exp

⎡
⎣−1

2

∑
i

∑
j

(hi − h(t))G−
ij1(t)(hj − h(t))

⎤
⎦ .(6)

The Fourier transformation of this formula gives us distribution function f(qz).

3.2. Effect of alloying

The roughness in the interface region can be treated as an intermixing of different
atoms caused by an alloying process. Theoretical model proposed by Bruno [8] for the
perfect flat interfaces can be adopted to the disordered alloy in the interface region.
This model is based on the reflection and transmission amplitudes of electron wave.
Disorder in the interface modifies a specular and diffuse scattering of electron in the
interface [17]. The interlayer exchange coupling is proportional to the function

f(α′, α′′; kFd) =
1

(kFd)2
{[(1 − α′′)2 − α2]sin(2kFd)

+2α′(1 − α′′)cos(2kFd)},(7)
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Fig. 1: The influence of a) roughness parameter r and b) roughness distribution in the
interface on the interlayer exchange coupling in the function of spacer thickness d. r equal
to 0 denotes the flat interface. Increasing of this value is related to a rougher interface.

Fig. 2: The interlayer exchange coupling for chosen values of diffuse scattering parameter
α′′ as a function of specular scattering parameter α′ and spacer thickness d.

where kF denotes the Fermi wave vector. Two additional parameters α′ and α′′ are
connected to the specular and diffuse scattering, respectively. They are a real and
imaginary part of dimensionless complex parameter α = α′+iα′′ and it is convenient
that α = 0 denotes a perfect interface.

The dependence of IEC on the spacer thickness is connected to the value and
sign of scattering parameters, which should be properly limited. Simple consideration
leads to statement that α′ may change sign and can be related to the concentration
of magnetic atoms in the interface. From the physical point of view the positive
value of α′′ properly provides damping of IEC.

4. Numerical results

It is known from previous theoretical [1,4,5,20] and experimental [21–23,34] consid-
erations that the interlayer exchange coupling is a decreasing and oscillating function
of spacer thickness. We suppose that roughness is the damping parameter for the
IEC. Its oscillation amplitude has a universal d−2 decay [25]. Results in the Fig. 1a
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Fig. 3: The dependance of Curie temperature on the spacer thickness and different models
of roughness (a) and (b) magnetisation profiles for α′ equal to -0.5, 0.0 and 0.5.

presented for the model with r parameter confirm our expectation and give good
values of period of oscillation in comparison to the theoretical and experimental
results [26–31] but we can not observe a phase shift in the oscillation of IEC. It is
necessary to notice that the negative values of IEC in this figure are related to the
ferromagnetic interaction between magnetic layers. The results obtained in the frame
of SOS and DG models confirm previous observations and additionally the small shift
of the phase of oscillation is observed (Fig. 1b). Presented values of IEC are in good
agreement with [32, 33] especially taking into consideration findings from [21,34].

The interlayer exchange coupling calculated in the frame alloying model has
similar oscillating character as was earlier mentioned. The phase of oscillation and
phase shift is connected to the specular scattering parameter α′. The damping of
IEC is related here to two reasons: change of spacer thickness and diffuse scattering.
All those dependencies can be observed in Fig. 2, where the exchange coupling is
presented as a function of spacer thickness d and specular scattering parameter for
three different values of diffuse scattering parameter α′′.

The IEC is an important property of a layered system. The oscillating and de-
creasing character can also be observed in behavior of other characteristics of such
systems. In the Fig. 3 we present the comparison for Curie temperature calculated
using the IEC from considered models. The influence of roughness and alloying in
the interface on the value of Curie temperature is not significant but disordered in-
terface shifts the phase of oscillation. As we expected the oscillation period is equal
to half of period of IEC. Our results are in good agreement with results presented
in [36, 37].

The same oscillating character with period equal to half of IEC oscillation period
can be observed for magnetization of one chosen magnetic layer numbered by ν

for different spacer thickness. As can be expected the damping of magnetization of
the whole system in given temperature is connected with disorder in the interface.
The more significant modification of magnetization profile is observed only in the
interface region.
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The parameter B from Bloch’s low (2) may be very interesting from the experi-
mental point of view. Using calculated IEC parameter we obtain that B ∼ 10−5K3/2

which is in good agreement with values achieved in experiment [38–40].
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W�LASNOŚCI MAGNETYCZNE DWUWARSTW Z SZORSTKA̧
I ROZPORZA̧DKOWANA̧ MIȨDZYWIERZCHNIA̧

S t r e s z c z e n i e
Miȩdzywarstwowe sprzȩżenie wymienne jest istotnym czynnikiem określaja̧cym w�lasnoś-

ci magnetyczne wielowarstw. W pracy, na bazie teoretycznych przewidywań pokazano
wp�lyw grubości przek�ladki, szorstkości miȩdzywierzchni oraz uporza̧dkowania struktural-
nego na zachowanie siȩ miȩdzywarstwowego sprzȩżenia wymiennego. Zastosowana w obli-
czeniach metoda funkcji Greena dla Hamiltonianu opisuja̧cego uk�lad warstwowy pozwala
wyznaczyć temperaturȩ Curie, profile namagnesowania oraz parametr B w prawie Blocha.
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BAIRE CATEGORIES AND WIMAN’S INEQUALITY
FOR THE ANALYTIC FUNCTIONS

Summary
Let f(z) =

∑+∞
n=0 anzn (z ∈ C) be an analytic function in the unit disk and ft be an

analytic function of the form ft(z) =
∑+∞

n=0 aneiθntzn, where t ∈ R, θn ∈ N, and h be a

positive continuous on (0, 1) function increasing to +∞ and such that
∫ 1

0
h(r)dr = +∞.

We prove that if the sequence (θn)n≥0 satisfies the inequality

(∗) lim n→+∞
1

ln n
ln

θn

θn+1 − θn
≤ δ ∈ [0, 1/2),

then for every analytic functions f almost surely for t there exists a set E = E(δ, t) ⊂ (0, 1)
such that

∫
E

h(r)dr < +∞ and

(∗∗) lim r→1−0
r/∈E

ln Mf (r, t) − ln μf (r)

2 ln h(r) + ln ln{h(r)μf (r)} ≤ 1 + 2δ

4 + 3δ
,

where Mf (r, t) = max{|ft(z)| : |z| = r}, μf (r) = max{|an|rn : n ≥ 0} for r ∈ [0, 1).

Keywords and phrases: random analytic functions, Wiman-Valiron’s type inequality, Baire
categories

1. Introduction

Let H be the class of positive continuous on the interval (0, 1) increasing to +∞
functions and such that

∫ 1

0
h(r)dr = +∞.
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For a measurable set E ⊂ (0, 1), the h-measure of E is defined by

h-meas (E)
def
=

∫
E

h(r)dr,

where h ∈ H. It is clear that h-meas((0, 1)) = +∞.

Let f be an analytic function in the unit disc D = {z : |z| < 1} of the form

f(z) =
∑+∞

n=0
anz

n.(1)

For analytic function f in the unit disc D and for r ∈ (0, 1) by

Mf (r) = max{|f(z)| : |z| = r} and μf (r) = max{|an|rn : n ≥ 0}
we denote the maximum modulus and maximal term of the series (1) respectively.
Denote also

Gf (r) =
∑+∞

n=0
|an|rn, Sf (r) =

(∑+∞
n=0

|an|2r2n
)1/2

,

Δh(r, f) =
lnMf (r) − lnμf (r)

2 lnh(r) + ln2{h(r)μf (r)} ,

E(η, f, h) =
{
r ∈ (0, 1): Mf (r) > μf (r)(h2(r) ln{h(r)μf (r)})η

}
,

where lnk x
def
= ln(lnk−1 x) (k ≥ 2), ln1 x

def
= lnx.

From results in [1] follows that for h(r) = (1− r)−1 and for any analytic function
f in D of the form (1) there exists a set E ⊂ (0, 1) of finite logarithmic measure, i.e.
h-meas(E) < +∞ with the function h(r) = (1 − r)−1, such that

lim r→1−0
r/∈E

Δh(r, f) ≤ 1
2
.(2)

In [2] the similar statement is proved with arbitrary function h ∈ H for which
either lnh(r) = O(ln2Gf (r)) or ln2Gf (r) = O(ln h(r)) (r → 1 − 0).

In [3] it is noted that the constant 1/2 in the inequality (2) in general cannot be
replaced by a smaller number. Indeed, if

g(z) =
+∞∑
n=1

exp{√n}zn,

then for h(r) = (1 − r)−1 we have

lim r→1−0
Mg(r)

h(r)μg(r) ln1/2{μg(r)h(r)} ≥ C > 0.

In connection with this the following question arises naturally: how can one
describe the “quantity” of those analytic functions, for which inequality (2) can be
improved?

In the article [4] it is proved that in some probability sense for “majority” of
analytic functions the constant 1/2 in the inequality (2) can be replaced by 1/4.
Similar statement is proved in [2] in reference to the inequality (2) with any function
h ∈ H described above.
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At the same time, the classes of random analytic functions considered in [2], [4]
don’t include all analytic functions of the form

ft(z) =
+∞∑
n=0

ane
iθntzn,(3)

where (θn)n≥0 is an arbitrary sequence of nonnegative integers. Note that f0(z) ≡
f(z).

We suppose that the sequence (θn)n≥0 satisfies inequality

θn+1

θn
≥ q > 1 (n ≥ 0).(4)

In the case of q ≥ 2 analytic functions of the form (4) satisfies the conditions of
theorems from [2], [4] mentioned above.

We also remark that the possibility of improvement of Wiman-Valiron’s inequal-
ity for entire functions of the form (3) were considered earlier by M. Still [5] and
P. Filevych [6] (see also [7]). A similar question for the class of entire functions of
two variables was concidered in the papers [8], [9] and [10]. In [11] “quantity” those
entire functions for which classical Wiman-Valiron’s inequality can be improved, is
described in sense Baire categories.

Here we consider formulated question in the class of analytic functions in D of
the form (3). Proved theorems complement in this case theorems from [2,4] and are
analogues of the statements from [5] and [11].

2. Auxiliary lemmas

We need Lemma 2 from [5] (see also [6]).

Lemma 2.1. [5] If a sequence (θn)n≥0 satisfies the condition (4), then for all se-
quences (an)n≥0, an ∈ C, and all β > 0, N ≥ 0 we have

P0

({
t ∈ [0, 2π] : max

0≤ψ≤2π

∣∣∣
N∑
k=0

ake
ikψeiθkt

∣∣∣ ≥ AβqSN ln1/2N
})

≤ N−β,

where Aβq is a constant which depends only on β and q, SN =
∑N

n=0 |an|2, P0 = m
2π ,

m is Lebesgue measure on the real line.

Lemma 2.2. [4] Let k(r) be continuous increasing to +∞ on (0, 1) function, open
set E ⊂ (0, 1) such that there exist the sequence 0 < p1 ≤ ...

≤ pn → 1 (n → +∞) outside E. Then there exists an sequence 0 < r1 ≤ ...

≤ rn → 1 (n → +∞) such that for all n ∈ N : 1) rn /∈ E; 2) ln k(rn) ≥ n
2 ; 3) if

(rn; rn+1) ∩ E �= (rn, rn+1), then k(rn+1) ≤ ek(rn).
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Lemma 2.3. [2] Let ϕ1(x) and ϕ2(x) be positive continuous increasing to [0,+∞)
such that ∫ +∞

0

dx

ϕi(x)
< +∞ (i ∈ {1, 2}), h ∈ H

and
g1(x) = lnGf (ex) (x < 0).

Then there exists a set E ⊂ (0, 1) such that h-meas(E) < +∞ and for all r ∈ (0, 1)\E
we get

g′′1 (ln r) ≤ h(r)ϕ2(h(r)ϕ1(g1(ln r))).

We also denote

A(r) = g′1(ln r) =
d lnGf (r)
d ln r

=
+∞∑
n=0

n|an|rn
Gf (r)

,

B2(r) = g′′1 (ln r) =
+∞∑
n=0

n2|an|rn
Gf (r)

−A2(r).

Lemma 2.4. For h ∈ H and all ε > 0 there exists a set E ⊂ (0, 1) such that
h-meas(E) < +∞ and for all r ∈ (0, 1)\E we have

A(r) ≤ h(r) ln{h(r)μf (r)} ln1+ε
2 {h(r)μf (r)},

B2(r) ≤ h2+ε(r) ln{h(r)μf (r)} ln2+ε
2 {h(r)μf (r)}.

Proof. Let (Ω,A, P ) be a probability space which consists the discrete random vari-
able ξ with distribution

P (ξ = n) =
|an|enx
Gf (ex)

.

Then the mean Mξ = g′1(x) and the variance Dξ = g′′1 (x).
Let x = ln r < 0. Using Chebychev’s inequality we get

P (|ξ − g′1(x)| <
√

2g′′1 (x) ) ≥ 1/2,

i.e.

g(x) ≤ 2
∑

|n−g′1(x)|<
√

2g′′1 (x)

|an|exn ≤

≤ 2μf (r)
∑

|n−g′1(x)|<
√

2g′′1 (x)

1 ≤ 2μf (r)(2
√

2g1′′(x) + 1).(5)

For fixed ε1 > 0, ε2 > 0 we define

E1 = {x < 0: g′′1 (x) > h(ex)g1′(x)(ln g′1(x))1+ε1 , g′1(x) ≥ 2},
E2 = {x < 0: g′1(x) > h(ex)g1(x)(ln g1(x))1+ε2 , g1(x) ≥ 2}.
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So, ∫
E1

⋃
E2

h(ex)dx =
∫
E

h(r)
r
dr < +∞,

thus
∫
E
h(r)dr < +∞, where E is the image of the set E1

⋃
E2 by mapping r = ex.

Therefore, h-measE =
∫
E
h(r)dr < +∞. Then from (5) we obtain as r → 1−0, (r /∈

E)

g(ln r) ≤ 2μf (r)
(

2
√

2
√
h(ex)g′1(x) ln1+ε1 g′1(x) + 1

)
≤

≤ 4μf(r)
(√

2h2(ex)g1(x) ln1+ε2 g1(x) ln
1+ε1

2

{
h(ex)g1(x) ln1+ε2 g1(x)

}
+1

)
≤

≤ 6μf (r)h(r)
√
g1(x) ln

1+ε2
2 g1(x) ln

1
2+ε1{h(r)g1(x)},

g1(x) = ln g(x) ≤ ln 6 + ln{h(r)μf (r)} + ln g1(x) + ln2{h(r)μf (r)},
g1(x) ≤ 2 ln{h(r)μf (r)}.

Now for δ > 2(ε1 + ε2) we have

Gf (r) ≤ μf (r)h(r) ln1/2{h(r)μf (r)} ×
×(

ln2{h(r)μf (r)} ln{h(r) ln{h(r)μf (r)}}) 1+δ
2 ,

Mf(r)≤Gf (r)≤μf (r)h(r) ln1/2{h(r)μf (r)} ln1/2+δ h(r) ln1+δ
2 {h(r)μf (r)},(6)

g1(x) = (1 + o(1)) ln{h(r)μf (r)}, r → 1 − 0, (r /∈ E).

If we choose in Lemma 2.3 ϕi(x) = (x + 2) ln1+ε0/2(2 + x), i ∈ {1, 2}, then we
get outside a set of finite h-measure

A(r) ≤ h(r)ϕ(g1(ln r)) ≤ h(r)g1(ln r) ln1+ε0 g1(ln r) ≤
≤ h(r) ln{h(r)μf (r)} ln1+ε

2 {h(r)μf (r)},
B2(r) ≤ h(r)ϕ2(h(r)ϕ1(g1(ln r))) ≤

≤ h(r)h(r)ϕ1(g1(ln r)) ln1+ε0(h(r)ϕ1(g1(ln r))) ≤
≤ h2(r)g1(ln r) ln1+ε0 g1(ln r) ln1+ε0{h(r)g1(ln r) ln1+ε0 g1(ln r)} ≤

≤ h2+ε(r) ln1+ε{h(r)μf (r)}.
The Lemma is proved.

3. Classes of analytic functions in which the Wiman-Valiron
type inequality (2) can be almost surely improved

In the sequel, the notion “almost surely” will be used in the sense that the corre-
sponding property holds almost everywhere with respect to Lebesgue measure on
the real line. Here we will prove the following theorem.

Theorem 3.1. If f(z, t) is an analytic function of the form (3) and a sequence
(θn)n≥0 satisfies condition (4), then for all δ > 0 and almost surely for t there exists
a set E(δ, t) ⊂ (0, 1) such that h-meas(E(δ, t)) < +∞ and the maximum modulus
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Mf (r, t) = Mft(r) = max
|z|≤r

|ft(z)|

satisfies the inequality

Mf(r, t) ≤ μf (r)
√
h(r) ln1/4{h(r)μf (r)} ln3/4+δ h(r) ln1+δ

2 {h(r)μf (r)}(7)

for r ∈ (0, 1)\E(δ, t).

We note that from inequality (7) it follows that

lim r→1−0
r/∈E

Δh(r, ft) = lim r→1−0
lnMf(r, t) − lnμf (r)

2 lnh(r) + ln2{h(r)μf (r)} ≤ 1
4
.(8)

Proof. Let (Ω,A, P ) be a probability space which consists a random variable X =
X(ω) : Ω → Z+ with the distribution P (X = n) = |an|rn/Gf(r). Using Markov’s
inequality for the random variable X with mean value MX = A(r) we get

∑
n≥C

|an|rn
Gf (r)

= P (X ≥ C) ≤ MX

C
=
A(r)
C

.

Let C = C(r) = A(r)h(r) ln1/2+δ{h(r)μf (r)}, C1(r) = h2(r) ln2{h(r)μf (r)}. By
Lemma 2.4 C1(r) > C(r) for r ∈ (r0, 1)\E. Using (6) we have

∑
n≥C1(r)

|an|rn ≤
∑

n≥C(r)

|an|rn ≤ A(r)Gf (r)

A(r)h(r) ln1/2+δ{h(r)μf (r)} ≤

≤ h(r)μf (r) ln1/2+δ h(r) ln1/2+δ{h(r)μf (r)}
h(r) ln1/2+δ{h(r)μf (r)} = μf (r) ln1/2+δ h(r)(9)

for r /∈ E, where E is the set of finite h-measure.
We put k(r) = h(r)μf (r) in Lemma 2.2 and let (rk)k≥0 be the sequence for which

consequences of this lemma are valid. We denote by Fk the set of t ∈ R such that

W (rk) = max
0≤ψ≤2π

∣∣∣ ∑
n≤[C1(rk)]

anr
n
k e
inψeiθnt

∣∣∣≥ AβqS[C1(rk)](rk) ln1/2[C1(rk)].

It follows from Lemma 2.1 with β = 2 that

+∞∑
k=1

P (Fk) ≤
+∞∑
k=1

1
[C1(rk)]2

≤
+∞∑
k=1

1
[ln{μf(rk)h(rk)}]2

≤
+∞∑
k=1

4
k2

< +∞.

Then by Borel-Cantelli’s lemma for k ≥ k0(t) and almost surely for t ∈ R we
obtain

W (rk) < AqS[C1(rk)](rk) ln1/2[C1(rk)].(10)
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From inequalities (6), (10) and S[C1(r)](r) ≤Mf (r)μf (r) it follows that

W (rk) <
√
μf (rk)

√
μf (rk)h(rk) ln1/4{h(rk)μf (rk)} ×

× ln1/4+2δ/3 h(rk) ln1/2+2δ/3
2 {h(rk)μf (rk)} ln1/2(h2(r) ln2{h(r)μf (r)}) ≤

≤ μf (rk)
√
h(rk) ln1/4{h(rk)μf (rk)} ln3/4+3δ/4 h(rk) ln1+3δ/4

2 {h(rk)μf (rk)}.(11)

Since Mf(r, t) ≤ ∑
n≥C1(r)

|an|rn +W (r), from (9) and (11) we get

Mf(rk, f) ≤ μf (rk)
√
h(rk) ln1/4{h(rk)μf (rk)} ×

× ln3/4+4δ/5 h(rk) ln1+4δ/5
2 {h(rk)μf (rk)}.(12)

We suppose that rk2(t) ∈ (0, 1) is some number outside the set E. Then for r ∈
(rp, rp+1), p > k2(t) by Lemma 2.2 we obtain

μf (rp+1)h(rp+1) ≤ eμf (rp)h(rp) ≤ eμf (r)h(r),(13)

μf (rp+1) = h(rp+1)
μf (rp+1)
h(rp+1)

≤ eh(rp)
μf (rp)
h(rp+1)

≤ eh(r)
μf (r)
h(rp+1)

≤ eμf (r),(14)

h(rp+1) =
μf (rp+1)h(rp+1)

μf (rp+1)
≤ e

μf (r)h(r)
μf (rp+1)

≤ eh(r).(15)

Finally, from (12) we have for r ∈ (rp, rp+1)

Mf(r, t) ≤Mf (rp+1, t) ≤
≤ μf (r)

√
h(r) ln1/4{h(r)μf (r)} ln3/4+δ h(r) ln1+δ

2 {h(r)μf (r)}
almost surely for t ∈ R. The Theorem 3.1 is proved.

By L we denote the class of increasing to +∞ functions l(x) on [0,+∞). Let

γ(l) = lim x→+∞
ln l(x)

lnx
.

Now we consider the class of analytic functions of the form (3), for which the
sequence (θn)n≥0 satisfies the condition

θn+1

θn
≥ 1 +

1
ϕ(n)

, ϕ ∈ L.(16)

What constant instead of 1/4 can we put in the inequality (8) for this class of
analytic functions? Under which conditions on the function ϕ(x) does the inequality
(8) hold? We give answer to these questions in Corollaries 3.1 and 3.2.

Firstly, we note that in order to get sharper inequality than (2) function ϕ(x)
cannot increase rapidly. Indeed, if ϕ(x) = x, then we may choose

θn = n, h(r) = (1 − r)−1 and g(z) =
+∞∑
n=0

e
√
nzn.

As it is known from [3],
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Mg(r, t) = max{|g(r, t)| : |z| ≤ r} = max
0≤ψ≤2π

∣∣∣
+∞∑
n=0

anr
neinteinψ

∣∣∣=

= max
0≤ψ≤2π

∣∣∣
+∞∑
n=0

anr
nein(t+ψ)

∣∣∣= max
0≤ψ≤2π

∣∣∣
+∞∑
n=0

anr
neinψ

∣∣∣=
= Mg(r) ≥ C1μg(r)h(r) ln1/2{μg(r)h(r)},

when r → 1 − 0 and t ∈ R. So, in order to improve inequality (2) ϕ(x) must satisfy
the condition γ(ϕ) < 1.

Theorem 3.2. Let ft(z) be an analytic function of the form (3), h ∈ H, se-
quence (θn)n≥0 satisfy condition (16), where ϕ ∈ L. If v ∈ L and γ(v) ≤ 1/4,
then almost surely for t ∈ R, all ε > 0 there exists a set E(ε, t) ⊂ (0, 1) such that
h-meas(E(ε, t)) < +∞ and for r ∈ (0, 1)\E(ε, t) we have

Mf(r, t) ≤
√
h(r) ln h(r)μf (r) ln1/4{h(r)μf (r)} ln1+ε{lnh(r) ln{h(r)μf (r)}} ×

(17)

×
(
v
(

8h2(r) ln{h(r)μf (r)}
)

+ϕ
1
2

(h 3
2 (r) ln

5
4 {h(r)μf (r)} ln1+ε

2 {h(r)μf (r)}
v(h(r) ln{h(r)μf (r)})

))
.

In order to prove this theorem we need a lemma from [6].

Lemma 3.5. [6] If (θn)n≥0 satisfies condition (16), then for all β > 0

P
(

max
0≤ψ≤2π

∣∣∣∑N

k=1
ake

ikψeiθkt
∣∣∣≥ Aβ

{
ϕ(N)SN lnN

}1/2)
≤ N−β ,

where Aβ is a constant which depends only on β.

Proof of Theorem 3.2. By Lemma 2.4 we obtain outside the set of finite h-measure

A(r) ≤ h(r) ln{h(r)μf (r)} ln1+ε
2 {h(r)μf (r)}.(18)

We put C(r) = A(r)T (r), where

T (r) =

√
h(r) ln1/4{h(r)μf (r)}

v(h2(r) ln{h(r)μf (r)})
.

Then from (18) we have

C(r) = A(r)T (r) ≤ h(r) ln{h(r)μf (r)} ln1+ε
2 {h(r)μf (r)}T (r) =

=
h3/2(r) ln5/4{h(r)μf (r)} ln1+ε

2 {h(r)μf (r)}
v(h2(r) ln{h(r)μf (r)})

= C1(r).
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Now using Markov’s inequality we get

∑
n≥C1(r)

|an|rn ≤
∑

n≥C(r)

|an|rn ≤ Gf (r)
T (r)

≤

≤ h(r)μf (r){lnh(r) ln{h(r)μf (r)}}1/2 ln1+δ{lnh(r) ln{h(r)μf (r)}}√
h(r) ln1/4{h(r)μf (r)} ×

×v(h2(r) ln{h(r)μf (r)}) =

= μf (r)
√
h(r) ln h(r) ln1/4{h(r)μf (r)} ln1+δ{lnh(r) ln{h(r)μf (r)}} ×

×v(h2(r) ln{h(r)μf (r)}).(19)

Let

k(r) = h(r)μf (r) and (rk)k≥0

be the sequence for which consequences of Lemma 2.2 are valid. Denote by Gk the
set of such t ∈ R, for which

W1(rk) = max
0≤ψ≤2π

∣∣∣ ∑
n≤[C1(rk)]

anr
n
k e
inψeiθnt

∣∣∣≥

≥ Aβ

(
ϕ([C1(rk)])S[C1(rk)](rk) ln[C1(rk)]

)1/2

,

where

S2
f (r) =

+∞∑
n=0

|an|2r2n.

Since γ(v) ≤ 1/4, we have

C1(r) >
h3/2(r) ln5/4{h(r)μf (r)} ln1+ε

2 {h(r)μf (r)}
(h2(r) ln{h(r)μf (r)})1/4

>

> h(r) ln{h(r)μf (r)} ln1+ε
2 {h(r)μf (r)} > ln{h(r)μf (r)}.

So, by Lemma 2.2 ln k(rn) > n/2, i.e. ln{h(rn)μf (rn)} > n/2. Then

C1(rn) > ln{h(rn)μf (rn)} > n/2.

Using Lemma 3.1 with β = 2 we get

+∞∑
k=1

P (Gk) <
+∞∑
k=1

1
Nβ(rk)

<

+∞∑
k=1

4
k2

< +∞.

Now by Borel-Cantelli’s lemma for k ≥ k2(t) and almost surely t ∈ R we obtain

W1(rk) < Aβ

(
ϕ([C1(rk)])S[C1(rk)](rk) ln[C1(rk)]

)1/2

.
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Using the inequality S2
f (r) ≤ Gf (r)μf (r), we obtain

W1(rk) <
√
h(rk) lnh(rk)μf (rk) ln1/4{h(rk)μf (rk)} ×

× ln1+δ{lnh(rk) ln{h(rk)μf (rk)}} ×

×ϕ1/2
(h3/2(rk) ln5/4{h(rk)μf (rk)} ln1+δ

2 {h(rk)μf (rk)}
v(h2(rk) ln{h(rk)μf (rk)})

)
.(20)

It follows from (20) and (17) that

Mf(rk, t) ≤
√
h(rk) lnh(rk)μf (rk) ln1/4{h(rk)μf (rk)} ×

× ln1+δ{lnh(rk) ln{h(rk)μf (rk)}}
(
v(h2(rk) ln{h(rk)μf (rk)}) +

+ϕ1/2
(h3/2(rk) ln5/4{h(rk)μf (rk)} ln1+δ

2 {h(rk)μf (rk)}
v(h2(rk) ln{h(rk)μf (rk)})

))
.

Using (13)–(15) we get for r ∈ (rp, rp+1)

Mf(r, t) ≤
√
h(r) ln h(r)μf (r) ln1/4{h(r)μf (r)} ×

× ln1+2δ{lnh(r) ln{h(r)μf (r)}}
(
v(8h2(r) ln{h(r)μf (r)}) +

+ϕ1/2
(h3/2(r) ln5/4{h(r)μf (r)} ln1+2δ ln{h(r)μf (r)}

v(h2(r) ln{h(r)μf (r)})

))
.

Theorem 3.2 is proved.

In the case when
lnϕ(x) = o(ln2 x), x→ +∞

we have the following corollary.

Corollary 3.1. Let ft(z) be an analytic function of the form (3), h ∈ H, a sequence
(θn)n≥0 satisfy condition (16), where ϕ ∈ L and lnϕ(x) = O(ln2 x), x→ +∞. Then
there exists a set E(δ, t) ⊂ (0, 1) such that h-meas(E(δ, t)) < +∞ and almost surely
for t ∈ R we get

lim r→1−0
r/∈E

Δh(r, ft) ≤ 1
4
.

Corollary 3.2. Let ft(z) be an analytic function of the form (3), h ∈ H, sequence
(θn)n≥0 satisfy condition (16), where ϕ ∈ L and

γ(ϕ) = lim n→+∞
1

lnn
ln

θn
θn+1 − θn

≤ δ ∈ [0, 1/2).(21)

Then for all analytic functions ft there exists a set E(δ, t) ⊂ (0, 1) such that h-meas
(E(δ, t)) < +∞ and almost surely for t ∈ R we have

lim r→1−0
r/∈E

Δh(r, ft) ≤ 1 + 3δ
4 + 2δ

.
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Proof. If γ(ϕ) = δ ∈ [0, 1/2), then we may choose v(x) = xα, α ∈ [0, 1/4). So,

ln v(8h2(r) ln{h(r)μf (r)}) = (α+ o(1))(2 lnh(r) + ln2{h(r)μf (r)}),

ln
(
ϕ1/2

(h3/2(r) ln5/4{h(r)μf (r)} ln1+ε
2 {h(r)μf (r)}

v(h2(r) ln{h(r)μf (r)})

))
≤

≤(1+o(1))
(3δ

4
lnh(r)+

5δ
8

ln2{h(r)μf (r)}−δα lnh(r)− δα

2
ln2{h(r)μf (r)}

)
=

=
(3δ

8
− δα

2
+ o(1)

)
2 lnh(r) +

(5δ
8

− δα

2
+ o(1)

)
ln2{h(r)μf (r)} ≤

≤
(5δ

8
− δα

2
+ o(1)

)
(2 lnh(r) + ln2{h(r)μf (r)}).(22)

From the equation α = 5δ
8 − δα

2 we may choose α = 5δ
4(2+δ) and get as r → 1 − 0

lnMf (r, t) ≤ (1 + o(1))
(1

2
lnh(r) + lnμf (r) +

+
1
4

ln2{h(r)μf (r)} + α(ln h(r) + ln2{h(r)μf (r)})
)
.

Therefore,

lim r→1−0
r/∈E

Δh(r, ft) = lim r→1−0
r/∈E

lnMf(r, t) − lnμf (r)
2 lnh(r) + ln2{h(r)μf (r)} ≤

≤ 1
4

+ α =
1
4

+
5δ

4(2 + δ)
=

1 + 3δ
4 + 2δ

.

Corollary 3.2 is proved.

So, we can improve inequality (2) for all analytic functions of the form (3) and
all h ∈ H, when γ(ϕ) < 1/2. As it is remarked above, this inequality cannot be
improved, if γ(ϕ) ≥ 1. Can we improve inequality (2) for all analytic functions of
the form (3) by condition γ(ϕ) < 1?

Corollary 3.3 gives a positive answer to this question by some choice of the
function h(r).

Corollary 3.3. Let ft(z) be an analytic function of the form (3),

h ∈ H : ln2 μf (r) = o(lnh(r)), r → 1 − 0,

a sequence (θn)n≥0 satisfy condition (16), where ϕ ∈ L and

γ(ϕ) = lim n→+∞
1

lnn
ln

θn
θn+1 − θn

≤ δ ∈ [0, 1).(23)

Then for all analytic functions ft there exists a set E(δ, t) ⊂ (0, 1) such that h-meas
(E(δ, t)) < +∞ and almost surely for t ∈ R

lim r→1−0
r/∈E

Δh(r, ft) ≤ 1 + 2δ
4 + 2δ

.
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Proof. It follows from (22) that

ln
(
ϕ1/2

(h3/2(r) ln5/4{h(r)μf (r)} ln1+ε
2 {h(r)μf (r)}

v(h2(r) ln{h(r)μf (r)})

))
≤

≤
(3δ

8
− δα

2
+ o(1)

)
2 lnh(r) +

(5δ
8

− δα

2
+ o(1)

)
ln2{h(r)μf (r)} ≤

≤
(3δ

8
− δα

2
+o(1)

)
2 lnh(r)≤

(3δ
8
− δα

2
+ o(1)

)
(2 lnh(r)+ln2{h(r)μf (r)}).

From equation

α =
3δ
8

− δα

2
we choose α =

3δ
4(2 + δ)

and

lim r→1−0
r/∈E

Δh(r, ft) = lim r→1−0
r/∈E

lnMf(r, t) − lnμf (r)
2 lnh(r) + ln2{h(r)μf (r)} ≤

≤ 1
4

+ α =
1
4

+
3δ

4(2 + δ)
=

1 + 2δ
4 + 2δ

.

Corollary 3.3 is proved.

4. Baire’s categories and Wiman-Valiron’s type inequality
for analytic functions

Let h ∈ H and θ = (θn)n≥0 be a fixed sequence satisfying condition (21), such that
γ(ϕ) ≤ δ. Similarly to [11], we define the following sets

F1h(f, θ, E) =
{
t ∈ R : lim r→1−0

r/∈E
Δh(r, ft) ≤ 1 + 3δ

4 + 2δ

}

F2h(f, θ) =
{
t ∈ R :

(
∀ η > 1 + 3δ

4 + 2δ

)[
h-meas(E(η, ft, h)) < +∞]}

F3h(f, θ) =
{
t ∈ R : lim r→1−0Δh(r, ft) ≤ 1 + 3δ

4 + 2δ

}
,

F4h(f, θ) =
{
t ∈ R : lim r→1−0Δh(r, ft) ≤ 1 + 2δ

4 + 2δ

}
.

By Corollary 3.2 we conclude that for analytic functions in D there exists the set
E(f) of finite h-measure such that the set F1h(f, θ) is “large” in the sense of Lebesque
measure. Therefore, we obtain some information on sets F2h(f, θ), F3h(f, θ).

Similarly to [11], the following question arises naturally: does there exists a set
E = E(f) of the finite h-measure such that the set F1h(f, θ, E) is residual in R for
every analytic function f?

We recall that a set B ⊂ R is called residual in R, if its complement B = R\B is
a set of the first Baire category in R. It is clear, that if the answer to the question
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is affirmative, then the sets F2h(f, θ), F3h(f, θ) are residual in R. However for some
analytic function the set F1h(f, θ, E) is a set of the first Baire category (see similar
assertion for the entire function f(z) = ez in [11]). It follows from the following
theorem.

Theorem 4.3. Let a sequence (θn)n≥0 satisfy condition (4),

f(z) =
+∞∑
n=0

en
ε

zn, ε ∈ (0, 1), and h(r) = (1 − r)−1.

Then there exists a constant C = C(θ, ε) > 0 such that for all sequences (rn)n≥0

increasing to 1 the set

F3 =
{
t ∈ R : lim n→+∞

Mft(rn)

h(rn)μf (rn) ln1/2{h(rn)μf (rn)} ≤ C
}

is a set of the first Baire category.

Lemma 4.6. [12] For every q > 1 there exist positive constants A = A(q) and
B = B(q) such that for each interval I ⊂ R and every trigonometrical polynomial

Q(t) =
N∑
n=1

cne
iλnt, 0 < λ1 < λ2 < . . . < λN ,

for which

|I| ≥ B

λ1
> 0 and

λn+1

λn
≥ q, 1 ≤ n ≤ N − 1,

there exists a point t0 ∈ I such that

ReQ(t0) ≥ A
∑N

n=1
|cn|.

Proof of Theorem 4.1. For the function

f(z) =
+∞∑
n=1

exp{nε}zn, ε ∈ (0, 1)

(see [3]) there exists C0(ε) ∈ (0, 1) such that we have

C−1
0 (ε)

μf (r)
1 − r

≥ Mf (r)√
lnMf (r)

≥ C0(ε)
μf (r)
1 − r

, r → 1 − 0.

Then we obtain as r → 1 − 0

lnMf (r) − 1
2

ln2Mf (r) ≥ lnC0(ε) + ln
μf (r)
1 − r

, lnMf (r) ≥ ln
μf (r)
1 − r

,

Mf (r) ≥ C0(ε)
μf (r)
1 − r

ln1/2 μf (r)
1 − r

.(24)
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Let (rn)n≥0 be sequence some increasing to 1. We put A = A(q) and B = B(q) are
the constants from Lemma 4.1,

C(ε) = AC0(ε), q = inf{θn+1

θn
: n ≥ 0}.

We consider the sequence of the numbers (Cn(ε))n≥0 increasing to C(ε). Define the
set

Fmk =
{
t ∈ R : (∀l ≥ k)

[
Mft(rl) ≤ Cm(ε)

μf (rl)
1 − rl

ln1/2 μf (rl)
1 − rl

]}
.

where integers k ≥ 0, m ≥ 0 are fixed. For fixed r ∈ (0, 1) we consider the function

α(t, ϕ) =
∣∣∣∑+∞

n=0
exp{iθnt+ nε + inϕ}rn

∣∣∣,
which is continuous in R2 and periodic in the variables t and ϕ. Then the function

β(t) = max
ϕ

α(t, ϕ) = Mf (r, t)

continuous at every point t ∈ R. We remark, that the set Fmk is closed in R.

Now we prove that the set Fmk is everywhere dense. Consider an arbitrary interval
I ⊂ R, |I| > 0 and show that it contains some point t0 from the set Fmk.

Let us choose p ≥ 1, δ > 0 such that

|I| ≥ B

θp
, 1 − 2δ >

√
Cm(ε)
C(ε)

.(25)

Using (24), we may define

x1 =x1(ε)=inf
{
r ∈ (0, 1):

+∞∑
n=0

exp{nε}rn≥(1 − 2δ)C0(ε)
μf (r)
1 − r

ln1/2 μf (r)
1 − r

}
,

x2 = x2(ε) = inf
{
r ∈ (0, 1):

p∑
n=0

exp{nε}rn ≤ A

A+ 1
δ

+∞∑
n=0

exp{nε}rn
}
.

Now choose the integers l ≥ k and s > p such that inequalities

rl > max{x1, x2},
+∞∑

n=s+1

exp{nε}rnl ≤ A

A+ 1
δ

+∞∑
n=0

exp{nε}rnl(26)

hold. By Lemma 2.2 there exists a point t0 in the interval I such that

Re
( s∑
n=p

eiθnt0+nε

rnl

)
≥ A

s∑
n=p

exp{nε}rnl .(27)
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Using the definitions of x1, x2 from (24)–(27) we deduce

Mf (rl, t0) = max
ϕ

|ft0(rleiϕ)| ≥

≥ |ft0(rl)| ≥ Re ft0(rl) ≥ Re
( s∑
n=p

exp{iθnt0 + nε}rnl
)
−

−
∑

n/∈[p,s]

exp{nε}rnl ≥ A

s∑
n=p

exp{nε}rnl −
∑

n/∈[p,s]

exp{nε}rnl =

= A
+∞∑
n=0

exp{nε}rnl − (1 +A)
∑

n/∈[p,s]

exp{nε}rnl ≥

≥ A

+∞∑
n=0

exp{nε}rnl − (1 +A)
2A

1 +A
δ

+∞∑
n=0

exp{nε}rnl =

= A(1 − 2δ)
+∞∑
n=0

exp{nε}rnl ≥ C(ε)
C0(ε)

(1 − 2δ)2C0(ε)
μf (rl)
1 − rl

ln1/2 μf (rl)
1 − rl

≥

≥ Cm(ε)
μf (rl)
1 − rl

ln1/2 μf (rl)
1 − rl

.

Therefore, t0 ∈ Fmk. Since the set Fmk is closed in R and its complement Fmk is
everywhere dense, the set Fmk is nowhere dense. Hence

F3 =
+∞⋃
m=0

+∞⋃
k=0

Fmk

is a set of the first Baire category. Theorem 4.1 is proved.

Theorem 4.2. If sequence (θn)n≥0 satisfies condition (21) and h ∈ H, then for
every analytic function f the set F3h(f, θ) is residual in R.

Proof. Let f be an arbitrary analytic function in D. We consider the sequence
(cn)n≥0 such that

cn ↓ 1 + 3δ
4 + 2δ

, n→ +∞.

Fix integers m ≥ 0, k ≥ 0 and define the set

Gmk =
{
t ∈ R : Mf (r, t) ≥ μf (r)

(1 − r)cm
lncm

μf (r)
1 − r

, ∀r > 1 − 1
k + 1

}
.

As it has been proved above, for every fixed r ∈ (0, 1) function β(t) = Mf (r, t)
is continuous at every point t0 ∈ R. Then the set Gmk is closed in R. By Corollary
3.2 the set Gmk is everywhere dense. Therefore, Gmk is nowhere dense and

G =
+∞⋃
m=0

+∞⋃
k=0

Gmk

is a set of the first Baire category. So, F3h(f, θ) = G residual set in R. Theorem 4.2
is proved.
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Theorem 4.3. If sequence (θn)n≥0 satisfies condition (23) and h ∈ H, then for
all analytic functions f such that ln2 μf (r) = o(ln h(r)), r → 1− 0, the set F4h(f, θ)
is residual in R.
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KATEGORIE BAIRE’A I NIERÓWNOŚĆ WIMANA
DLA FUNKCJI ANALITYCZNYCH

S t r e s z c z e n i e
Niech f(z) =

∑+∞
n=0 anzn (z ∈ C) bȩdzie funkcja̧ analityczna̧ w kole jednostkowym i

niech ft bȩdzie funkcja̧ analityczna̧ postaci ft =
∑+∞

n=0 aneiθntzn, gdzie t ∈ R, θn ∈ N, h zaś

jest dodatnia̧ funkcja̧ cia̧g�la̧ na odcinku (0, 1), rosna̧ca̧ do +∞ i taka̧, że
∫ 1

0
h(r)dr = +∞.

Dowodzimy, że jeśli cia̧g (θn)n≥0 spe�lnia nierówność (*), to dla każdej fukcji analitycznej
f dla prawie każdego t istnieje taki zbiór E = E(δ, t) ⊂ (0, 1), że

∫
E

h(r)dr < +∞ oraz za-
chodzi oszacowanie (**), gdzie Mf (r, t) = max{|ft(z)| : |z| = r}, μf (r) = max{|an|rn : n ≥
0} dla r ∈ [0, 1).
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CONFORMAL INVARIANCE IN THE THREE-DIMENSIONAL (3D)
ISING MODEL AND QUATERNIONIC GEOMETRIC PHASE
IN QUATERNIONIC HILBERT SPACE

Summary
Based on the quaternionic approach developed by one of us [Z.-D. Zhang, Phil. Mag. 88

(2008), 3097.] for the three-dimensional (3D) Ising model, we study in this work conformal
invariance in three dimensions. We develop a procedure for treating the 3D conformal field
theory. The 2D conformal field theory is extended to be appropriate for three dimensions,
within the framework of quaternionic coordinates with complex weights. The Virasoro al-
gebra still works, but for each complex plane of quaternionic coordinates. The quaternionic
geometric phases appear in quaternionic Hilbert space as a result of diagonalization pro-
cedure which involves the smoothing of knots/crossings in the 3D many-body interacting
spin Ising system. Possibility for application of conformal invariance in three dimensions on
studying the behaviour of the world volume of the brane, or the world sheet of the string
in 3D or (3+1)D, is briefly discussed.

Keywords and phrases: Ising lattice, quaternionic phase, quaternionic Hilbert space, con-
formal invariance in 3 dimensions

1.

It is well known that in the context of a physical system with local interactions,
conformal invariance is an immediate extension of scale invariance, a symmetry
under dilations of space [1]. Conformal transformations are dilations by a scaling
factor that is a function of position (local dilations) [2]. The study of conformal
invariance in two dimensions was initiated by Belavin, Polyakov and Zamolodchikov,
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which combined the representation theory of the Virasoro algebra with the idea
of an algebra of local operators [3]. Conformal field theories not only provide toy
models for genuinely interacting quantum field theory, but also play a central role
in string theory [4] where two-dimensional (2D) scale invariance appears naturally.
The vibrations of a string with internal degrees of freedom can be studied within
a conformal field theory, from the point view of the world sheet. A classification of
the 2D conformal field would provide useful information on the classical solution
space of string theory [5]. Conformal field theories also describe critical phenomena
at the critical point of the second-order phase transitions in two dimensions, where
the correlation length diverges [5]. The partition function of a statistical mechanics
model can be closely related to the knot polynomials by matrix elements of the
braiding matrices of an associated rational conformal field theory, or alternatively,
the matrix elements of the R-matrix of a quantum group [6, 7].

The critical point of the 2D Ising model, as a canonical example, is described by
a conformal field theory, since every scale-invariant 2D local quantum field theory is
actually conformal invariant. The high-temperature disordered phase and the low-
temperature ordered phase in the 2D Ising model are related by a duality of the
model, and the second order phase transition occurs at the self-dual point [8].

A finite number of parameters ((d+1)(d+2)/2) are needed to specify a conformal
transformation in d spatial dimensions [1]. The consequence of this finiteness is that
in three or more dimensions, conformal invariance does not turn out to give much
more information than ordinary scale invariance [5]. It is commonly accepted that
the exception is in two dimensions, where the number of parameters specifying local
conformal transformations is infinite. In two dimensions, the conformal algebra be-
comes infinite dimensional, leading to significant restrictions on the 2D conformally
invariant theories [5]. It means that an infinite variety of conformal transformations
exist in 2D, which, although not everywhere well defined, are locally conformal [1]:
they are holomorphic mappings from the complex plane (or part of it) onto itself. A
local field theory should be sensitive to local symmetries, even if the related trans-
formations are not globally defined. It is local conformal invariance that enables
exact solutions of 2D conformal field theories [1]. This is the reason for the success
of conformal invariance in the study of 2D critical systems.

2.

One of us (ZDZ) [9] has worked on the three-dimensional (3D) Ising model, us-
ing a quaternionic approach, which has recently found favour with mathemati-
cians [10–12]. It was pointed out in Ref. [9, 13, 14] that the framework of the statis-
tical mechanics for 3D Ising magnets should include the time, being in the (3 + 1)
dimensional Euclidean spacetime. This argument is based on a fact that the tem-
perature in statistical mechanics is actually the time in quantum field theory [15].
This is because the Euclidean time interval can be consistently identified with β.
There are serious challenges to the validation of the ergodic hypothesis in the 3D
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many-body interacting spin systems, like the 3D Ising model, where the topologic
contributions to the partition function as well as correlation functions and other
physical quantities cannot be negligible [9, 13, 14]. In a more recent work [16], we
represented a detailed analysis of temperature-time duality in the 3D Ising model. It
was pointed out that the time necessary for the time averaging must be infinite, be-
ing comparable with or even much far than the time of measurement of the physical
quantity of interests, because the topologic effects are non-local so that an efficient
sweep of the ensemble by any of its microstates should be infinite since the number
of these microstates is infinite [16]. Therefore, the integrand of the partition function
of the 3D Ising model should be performed in four dimensions, since one needs to
take the time average by the integrand in the fourth dimension.

In this work, we develop a procedure for treating the 3D conformal field theory.
We study the conformal invariance in the 3D Ising model by the quaternionic ap-
proach developed in Ref. [9] and discuss the quaternionic geometric phase in quater-
nionic Hilbert space. We uncover that for treating the 3D conformal field theory,
the representation theory of the Virasoro algebra and the algebra of local operators
should be combined with the quaternionic geometric phase in quaternionic Hilbert
space. The decomposition of 3D conformal blocks to 2D conformal blocks can be
done by the utilization of Jordan-von Neumann-Wigner procedure [17].

The success of studying the 3D Ising model within the (3 + 1)D framework pro-
vides a chance to understand deeper conformal invariance and conformal transfor-
mations in three dimensions. From another point of view, it is anticipated that the
procedure for the exact solution of the 3D Ising model enables local conformal invari-
ance in three dimensions. It is possible to remove the finiteness parameters needed
to specify a conformal transformation in three dimensions, so that the conformal
algebra becomes infinite dimensional. This implies that, in order to maintain local
conformal invariance in three dimensions, the exact solution of the 3D Ising model
should possess the character of the exact solution of the 2D Ising model, as what
Zhang proposed in Ref. [9]. Indeed, the exact solution of the 3D Ising model, followed
by means of two conjectures, has the main feature of the Onsager’s exact solution
of the 2D Ising model, while the only difference between the solutions in 3D and 2D
is the appearance of weight factors in the partition function and eigenvectors within
the (3 + 1)D quaternionic framework [9].

3.

The conformal group in d-dimension is the subgroup of coordinate transformations
that leaves the metric invariant up to a scale change [1, 3–5],

gμν(x) → g′μν(x′) = Λ(x)gμν(x).(1)

Here we consider the space Rd with flat metric gμν(x) = ημν(x) with signature
(p, q) and line element ds2 = gμνdx

μdxν . For d > 2, the conformal algebra is iso-
morphic to SO (p+ 1, q + 1) (Ref. [5]). Actually, the conformal group admits a nice
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realization acting on Rp,q, stereographically projected to Sp,q, and embedded in the
light cone of Rp+1,q+1 (see Ref. [5]).

The 2D conformal field theory is naturally defined on a Riemann surface (or
complex curve), i.e., on a surface possessing suitable complex coordinates. In the
case of the sphere, the complex coordinates can be taken to be those of the com-
plex plane that cover the sphere except for the point at infinity. The quaternionic
approach developed in Ref. [9] provides a possibility to deal with the 3D conformal
field theory in the bases of the Hilbert space with suitable quaternionic coordinates.
Here we suggest that the Hilbert space of the 3D Ising model, so-called complexi-
fied quaternionic Hilbert space, provides the important information of the conformal
field theory in three or (3 + 1) dimensions. So the correlation functions in the 3D
Ising systems and also the 3D conformal field theory depend on the quaternionic
parameters. The conformal invariance in the 3D Ising model can be studied also
with the quaternionic coordinates. In what follows, we will illustrate how to process
the conformal transformation in three dimensions.

For a 3D many-body interacting system, like the 3D Ising model or the 3D con-
formal field theory, we need to decompose 3D conformal blocks to 2D conformal
blocks by the utilization of Jordan-von Neumann-Wigner procedure [17], which can
be realized by introducing an additional dimension, performing a unitary transfor-
mation as a rotation in higher dimensions, and constructing a quaternionic basis
together with weight factors [9]. The normalized eigenvectors (eq. (33) in Ref. [9]),
proposed for the 3D Ising model, are quaternionic eigenvectors (also see Ref. [10, 11,
12] for the mathematical outlook). The complexified weight factors have significance
of topological phases as revealed in Ref. [9, 13, 14]. Actually, the quaternionic bases
found for the 3D Ising model in Ref. [9] are complexified quaternionic bases. One
refers to Ref. [18] for details of complexified quaternion, Ref. [19, 20, 21] for quater-
nionic quantum mechanics, and Ref. [22] for quaternion and special relativity. The
use of Clifford structures and the P. Jordan structures can make the way of applying
the quaternion structure more elegant and simpler [10–12]. Jordan algebras with its
multiplication A ◦ B = 1

2 (AB + BA) instead of the usual matrix multiplication AB
replaces in an elegant way the desire of looking for commutative subalgebras of the
algebra constructed and for combinatorial properties. Such desire is one of the main
obstacles in solving exactly the 3D Ising model. We believe that it is also the case
for the 3D conformal field theory.

4.

For the 3D conformal field theory, therefore, one can define the quaternionic coor-
dinates

q = x0 + iw1x
1 + jw2x

2 + kw3x
3 and q̄ = x0 − iw1x

1 − jw2x
2 − kw3x

3.

Here wi (i = 1, 2, 3) are complex weight factors on the imaginary coordinates of
the quaternionic bases. The 3D conformal transformations can thus be decomposed
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into three 2D conformal transformations that coincide with the analytic coordinate
transformations zi → fi(zi) and z̄i → fi(z̄i) (i = 1, 2, 3), the local algebra of each of
which is infinite dimensional as what we have for the 2D conformal field theory. In
the complexified quaternionic coordinates, we have

ds2 = dqdq̄ →
3∑
i=1

∣∣∣∣∂fi∂zi

∣∣∣∣
2

|wi|2dzidz̄i.(2)

Therefore, the 2D conformal field theory can be generalized to the 3D conformal
field theory in such a way: Each imaginary coordinate in the quaternionic coordinates
and the real coordinate construct the complex coordinates for the 2D conformal field
theory. We can study the conformal invariance within such complex coordinates,
keeping in mind that there are complex weight factors wi (i = 1, 2, 3) for each
imaginary coordinate in the quaternionic coordinates. The differences between eq. (2)
for the 3D conformal field theory and that for the 2D conformal field theory in
literature [1, 3–5] are as follows: 1) the summation w.r.t. i and 2) the phase factors
wi.

The conformal transformation in three dimensions can be written as

τi −→ Aiτi =
aiτi + bi
ciτi + di

(3)

with the matrix

Ai =
(
ai bi
ci di

)
,

where aidi − bici = 1,
Again, i = 1, 2 or 3 corresponds to the complex plane constructed by the real

coordinate and one of the three imaginary coordinates of quaternionic bases. Al-
though each conformal transformation in eq. (3) for three dimensions has the same
feature as the conformal transformation for two dimensions in literature [1,3–5], one
should notice that there are three different conformal transformations performed in
the quaternionic bases for a 3D system.

5.

Following the procedure for the 2D conformal field theory [1, 3–5], the energy-
momentum tensor in the 3D systems (in (3 + 1)D framework) can be expanded
as

L(z) =
3∑
i=1

∞∑
n=−∞

|wi|Re|eiφi |Lniz
−n−2
i(4)

with the commutator as

[Lmi , Lni ] = (mi − ni)Lmi+ni +
c

12
mi(m2

i − 1)δmi+ni,0;(5)

here i = 1, 2, 3. Once again, the summation w.r.t i and the phase factors wi appear
in eq. (4) for the 3D conformal field theory, which do not exist in that for the 2D
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conformal field theory in literature [1,3–5]. In eq. (4), however, because only the real
part of the phase factors appears, the complex weight factors wi are replaced by
|wi|Re|eiφi |, where φi are phases [see Ref. [13] for details of topological phases in the
3D Ising model]. The famous Virasoro algebra still works, but here for each complex
plane of quaternionic coordinates in the complexified quaternionic Hilbert space. The
parameter c is the central charge, which is the same for different complex planes of
a model, c = 1/2 for the Ising model. Note that if the theory contains a Virasoro
field, the states transform in representation of the Virasoro algebra, rather than just
of the Lie algebra of sl(2, C) corresponding to the Mobius transformation [4].

For the 2D conformal field theory, the scaling dimension is given by Δ = h+ h̄,
here h and h̄ are known as the conformal weights of the state, which are independent
(real) quantities. We have h = h̄ = 1

16 , and Δ = 1
8 , and there is a relation between

the scaling dimension Δ and the critical exponent η, based on the formalism of the
correlation function: η = 2Δ + 2− d. For the 2D Ising model, η = 1/4 and Δ = 1/8.
For the 3D Ising model, the critical exponent η is found to be 1/8 in Ref. [9]. Thus,
one has Δ = 9/16.

Then, we discuss the physical essential of the phase factors wi appearing in
eq. (2) and eq. (4) above for the 3D conformal transformation. In the physics of
gauge theories, Wilson lines correspond essentially to the space-time trajectory of
a charged particle, i.e., so-called world histories of mesons or baryons [6]. Under a
change of framing, the expectation values of Wilson lines are multiplied by a phase
e2iπha , where ha is the conformal weight of the field. A twist of a Wilson line is
equivalent to a phase, while a braiding of two Wilson lines from a trivalent vertex
is also equivalent to a phase. The skein relation for Wilson lines in the defining
N-dimensional representation of SU(N) can be found in Ref. [6]. In Ref. [9, 13, 14],
Zhang proposed that the complex weight factors, i.e., the topological phase factors
exist in the 3D Ising model. These topological phase factors may have the same origin
of the phase in the expectation values of Wilson lines as those obtained by a change of
framing in gauge theories. This is because the procedure for diagonalization involves
the smoothing of knots/crossings in the 3D Ising system. Therefore, the phase factors
wi appearing in eq. (2) and eq. (4) above for the 3D conformal transformation may
have the same origin as those in the expectation values of Wilson lines [as well as
the 3D Ising model]. For further understanding, one may refer also to Ref. [23] for
a nonadiabatic geometric phase in quaternionic Hilbert space, and Ref. [24] for a
quaternionic phase and coherent states in quaternionic quantum mechanics.

6.

In 2D conformal field theory, canonical quantization on a circle S gives a physical
Hilbert space Hs. A vector Ψ ∈ Hs is a suitable functional of appropriate fields on
S, which corresponds to a local field operator OΨ. There is a relation in conformal
field theory between vectors in the Hilbert space and local operators. A 3D analog
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of such relation between states and local operators can be found also, as shown
in Ref. [6]. However, according to the quaternionic approach developed for the 3D
Ising model, some new features are uncovered for relation between states and local
operators in 3D systems. Usually, the physical Hilbert space obtained by quantization
in (2 + 1) dimensions can be interpreted as the space of conformal blocks in (1 + 1)
dimensions [25]. Analogously, the physical Hilbert space obtained by quantization in
(3 + 1) dimensions can be interpreted still as the space of conformal blocks in three
(1 + 1) dimensional complex planes of the quaternion coordinates.

We summarize here the procedure we developed above for treating the 3D con-
formal field theory:

1) Introducing an additional dimension to construct a (3+1)-dimensional frame-
work to form the quaternionic coordinates.

2) Performing a unitary transformation, as a rotation in (3 + 1)-dimensions, to
represent states and operators in the (3 + 1)-dimensional complexified quaternionic
Hilbert space.

3) Introducing complex weight factors as topological phase factors wi, for smooth-
ing knots/crossings.

4) The decomposition of 3D conformal blocks to 2D conformal ones.
5) Dealing with 2D conformal blocks in each complex plane of quaternionic co-

ordinates in the complexified quaternionic Hilbert space.
6) accounting the summation w.r.t. i of 2D conformal blocks in three complex

planes together with the contributions of the phase factors wi.

7.

Next, we discuss briefly the connection with the string theory: The world sheet is the
2D surface that the string sweeps out as it propagates through space-time, which
can be described by a 2D-conformal field theory. Namely, conformal theories on
the plane are often considered as string vacua, the nonfluctuating flat space version
of some string theories, serving as toy models for quantum string theory [1]. The
square Ising model on a closed Riemann surface with deformed squares, representing
positive or negative curvature, is instrumental in investigations of quantum gravity
of the coupling of a matter (Ising) theory to fluctuations of space-time geometry An
interesting problem is how to understand the behaviour of the brane as it sweeps
out in space-time.

Our understanding is: we need to describe of world volume of the brane in the
(3 + 1)D framework as what one of us (ZDZ) did in Ref. [9] for the 3D Ising model.
In this sense, suitable quaternionic coordinates with complexified weight factors
should be introduced and then conformal invariance in three dimensions (actually in
(3 + 1)D) can be utilized to study the behaviour of the world volume of the brane.
This can be related with the observable universe, which could be a brane, i.e., a
(3 + 1) surface, embedded in the bulk, i.e, a (3 + 1 + d)-dimensional spacetime, with
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standard-model particles and fields trapped on the brane, while gravity is free to
access the bulk [26].

8.

In conclusion, quaternion-based functions developed in Ref. [9] for the 3D Ising
model, which is related to the quaternionic sequence of Jordan algebras implied by
the fundamental paper of Jordan, von Neumann, and Wigner [17], can be utilized
to study the conformal invariance in dimensions higher than two. The 2D conformal
field theory can be generalized to be appropriate for three dimensions, within the
framework of the quaternionic coordinates with complex weights. The 3D conformal
transformations can be decomposed into three 2D conformal transformations, where
the Virasoro algebra still works, but only for each complex plane of quaternionic
coordinates in the complexified quaternionic Hilbert space. Then one needs to per-
form the summation w.r.t. i of 2D conformal blocks in three complex planes together
with the contributions of the phase factors wi. Similar to 2D conformal field theo-
ries, local conformal invariance in 3D (though it is limited in each complex plane
of quaternionic coordinates) enables exact solutions of 3D conformal field theories.
The success of studying 3D critical systems, such as the 3D Ising model in Ref. [9],
is due to this conformal invariance. The scaling dimension Δ is predicted to be 9/16
for the 3D Ising model, to be contrasted with the known value 1/8 for the 2D Ising
model. We discuss the physical essential of the phase factors wi appearing in eq. (2)
and eq. (4) for the 3D conformal transformation, and suggest that they may have
the same physical significance with those in the expectation values of Wilson lines
[as well as the 3D Ising model]. Possibility of utilizing the present results for confor-
mal invariance in three dimensions and quaternionic geometric phase in quaternionic
Hilbert space for studying the behaviour of the world volume of the brane, or the
world sheet of the string in 3D or (3 + 1)D, is briefly discussed. The present work
is helpful for better understanding classical, conformal and topological field theories
in high dimensions [27, 28].
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NIEZMIENNICZOŚĆ KONFOREMNA TRÓJWYMIAROWEGO (3D)
MODELU ISINGA A KWATERNIONOWA FAZA GEOMETRYCZNA
W KWATERNIONOWEJ PRZESTRZENI HILBERTA

S t r e s z c z e n i e
Bazuja̧c na kwaternionowym podej́sciu opracowanym przez jednego z nas [Z.-D. Zhang,

Phil. Mag. 88 (2008), 3007] dla trójwymiarowego (3D) modelu Isinga, obecnie badamy
konforemna̧ niezmienniczość w trzech wymiarach. Wypracowujemy procedurȩ rozwijania
3D-konforemnej teorii pola. 2D-konforemna teoria pola jest rozszerzona tak, by stosowa�la
siȩ do trzech wymiarów w zakresie struktury wspó�lrzȩdnych kwaternionowych z wagami ze-
spolonymi. Algebra Virasoro jest wcia̧ż stosowalna, lecz dla każdej p�laszczyzny zespolonej
wspó�lrzȩdnych kwaternionowych. Kwaternionowe fazy geometryczne pojawiaja̧ siȩ w kwa-
ternionowej przestrzeni Hilberta w wyniku procedury diagonalizacji, w która̧ w�la̧czone
jest wyg�ladzanie wȩz�lów/przeciȩć w wielowymiarowo oddzia�luja̧cym 3D-uk�ladzie spinów
Isinga. Jest również krótko rozważana możliwość stosowania konforemnej niezmienniczości
w trzech wymiarach zachowania siȩ objȩtości warstwy świata, wzglȩdnie warstwy struny
świata w modelu 3D lub (3 + 1)D.
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ERRONEOUS SOLUTION OF THREE-DIMENSIONAL (3D) SIMPLE
ORTHORHOMBIC ISING LATTICES

Summary
Thirteen follow-up papers by Zhang and March perpetuate the errors of a 2007 paper by

Zhang, which was based on an incorrect application of the Jordan-Wigner transformation
and presents final expressions that contradict rigorously established exact results. The
presentation given here can be used as a brief mathematical introduction to the Ising
model for nonexperts.

Keywords and phrases: Ising lattice, quaternionic phase, quaternionic Hilbert space, con-
formal invariance in 3 dimensions

1. Introduction

In a very long paper [1] published in 2007 Z.-D. Zhang claims to present the exact
solution of the free energy per site and of the spontaneous magnetization of the
three-dimensional Ising model in the thermodynamic limit. This claim has been
shown to be false [2–7] and we shall show here that very little original work, if any,
in [1] can be salvaged.

The principal reason why the outcomes of [1] are wrong is that they contradict
exactly known series expansion results [2, 5]. Several references were cited in [2, 5]
which show that [1] violates rigorously established theorems. As these cited theo-
rems are formulated for very general lattice models with rather general interactions,
requiring complicated notations and such concepts as Banach spaces and Banach
algebras, it takes some effort to check that every needed detail is there to make the
proof rigorous.
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Therefore, we present here a simpler self-contained presentation, restricted to the
three-dimensional Ising model on a simple cubic lattice, which can be used as a short
introduction for nonexperts interested in this model.

Definition 1. The isotropic Ising model on Z 3
n , a periodic n × n × n lattice with

N = n3 sites i = (ix, iy, iz) on a 3-torus, is defined by its configuration space

T
3 ⊃ Z

3
n → {±1}N , i �→ σi = ±1, for i ∈ Z

3
n ,(1)

and its interaction energy

HN : Z
3
n → C, HN = HN ({σi}) = −J

∑
〈i,j〉

σiσj −B
∑
i

σi,(2)

where the sum over 〈i, j〉 is over all nearest-neighbor pairs of sites i and j, J is the
interaction strength and B is the scaled magnetic field. Sites i and j are nearest-
neighbor (nn) sites, if and only if

(ix − jx, iy − jy, iz − jz) = (±1, 0, 0), (0,±1, 0), or (0, 0,±1) mod n.(3)

Remark 1. The generalization to the orthorhombic lattice is straightforward,
replacing n by n, n′, n′′ and J by J, J ′, J ′′ for the three lattice directions. We
consider the isotropic lattice for the sake of simplicity of arguments, as this
special case suffices to disprove Zhang’s claims [1].

Definition 2. Given a function A ≡ A({σ}) of the spin configuration, its expectation
value is

〈A〉N =
1
ZN

∑
{σi=±1}

A e−βHN , 〈A〉 = lim
N→∞

〈A〉N ,(4)

where the partition function,

ZN =
∑

{σi=±1}
e−βHN ,(5)

is a state sum taken over all 2N spin configurations, while β = (kT )−1 with T the
absolute temperature and k Boltzmann’s constant. If β, J , and B are real, then
ρ({σ}) = e−βHN/ZN is the Boltzmann-Gibbs canonical probability distribution.

Definition 3. The free energy per site fN and its infinite system limit f are given by

−βfN =
1
N

logZN , f = lim
N→∞

fN ,(6)

whereas the spontaneous magnetization is defined by

I = lim
B↓0

lim
N→∞

〈σi0 〉N = lim
B↓0

lim
N→∞

1
ZN

∑
{σi=±1}

σi0 e−βHN ,(7)

with i0 any of theN lattice sites, as the lattice is chosen periodic. The pair-correlation
function of spins at sites i and j is 〈σiσj〉.



Erroneous solution of three-dimensional (3D) simple orthorhombic Ising lattices 47

Remark 2. As in [1], we shall concentrate on the zero-field (B = 0) thermody-
namic limit (limN→∞). The order of limits in (7) was used implicitly in Yang’s
paper [8] on the spontaneous magnetization of the square-lattice Ising model [9–11].
With the opposite order of limits the result is identically zero. An alternative
definition is I2 = lim〈σiσj〉|B=0 in the limit of infinite separation of sites i and
j [12].

In [1] Zhang starts out mimicking the treatment of the two-dimensional Ising
model by Onsager and Kaufman [9–11], in order to calculate the free energy,
magnetization and pair correlation of the three-dimensional case. Even though Zhang
made two early errors in [1], while transforming to Clifford algebra operators and
treating boundary terms [5], he claims [6] that these are overcome by two
conjectures. But these conjectures are based on no serious evidence whatsoever and
the resulting expressions for the free energy and magnetization [1] are demonstrably
incorrect, as they fail the series test [2, 5].

First, in section 2, a detailed account will be given of the rigorous results of
the 1960s violated by Zhang’s work. Theorems 2 and 3 provide rigorous proof of the
correctness of the series test. Then, in section 3, further comments will be presented,
including several on the follow-up work by March and Zhang [13–25], which contain
several additional errors and misleading statements.

2. Some rigorous results of the 1960s revisited

2.1. Free energy per site of a finite system vs. its large-system limit

In recognizing the criticisms to which his work in [1] has been subjected in
[2, 4, 5, 7], Zhang (supported more recently by Norman H. March) has argued that
the usual high-temperature series expansions [26], renormalization group treatments
[27,28], and Monte Carlo simulations [29,30], fail to apply in the vicinity of infinite
temperature owing to singular behavior and Yang–Lee zeros [31,32] present even in
the thermodynamic limit.

Hence, it is argued, such criticisms are not applicable as a basis for criticizing
the quite different conclusions he has reached. See specifically the claims Zhang has
made in the second paragraph of [3], and in the second half of page 766 of [6], as
well in section 5 of [16], second half of page 534. The aim of this section is to show
specifically by a detailed mathematical analysis that there is no credibility at all in
these claims.

In fact, five decades ago several theorems were published and supported by
fully rigorous proofs that underpin the validity of the criticisms of Zhang’s work,
see, e.g., [33, 34] for review. Nevertheless, let us here take the reader through a
simplified treatment especially tailored to apply to the point at issue, namely, the
statistical mechanics of the Ising model on a cubic lattice with periodic boundary
conditions.
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The proof of the thermodynamic (infinite system-size) limit of the free energy
typically uses the following lemma, see e.g. (2.15) in [33]:

Lemma 1.

| log Tr eA − log Tr eB| ≤ ‖A−B‖, for A and B hermitian.(8)

Proof. The proof follows immediately working out

log Tr eA − log Tr eB =
∫ 1

0

d

dh
log Tr eB+h(A−B)dh =

∫ 1

0

Tr (A−B)eB+h(A−B)

Tr eB+h(A−B)
dh,

where the last integrand is an expectation value. (In this paper we only need to
consider the commuting case that A and B are diagonal matrices.)

Theorem 1. The free energy per site fN converges uniformly to a limit f as the
system size becomes infinite for βJ real and bounded.

Proof. In order to prove this we must estimate |fN − fM | for N,M > N0, with
N0 sufficiently large. Here we do that only for periodic cubic lattices N = n3,
M = m3 and compare with the larger periodic cubic lattice of size NM = (nm)3.
By changing a subset of the interactions we can change the larger lattice into N

identical cubes of the size M lattice, or the other way around. The proof is then
provided by counting the changed interactions and by using Lemma 1. In our case,
the trace in the lemma is just the sum over spin configurations and the norm the
maximum over all configurations.

Remark 3. Lemma 1 can also be used to show that the free energy f does not depend
on boundary conditions in the large system limit with different shapes than cubes,
provided it is taken in the sense of van Hove, see e.g. [33, 34] for details.

Remark 4. The proof of Theorem 1 gives a rigorous bound on the difference of the
free energy per site of a finite system and its large-system limit. It can therefore
be used to estimate the accuracy of finite-size calculations using e.g. Monte Carlo
simulations.

2.2. Analyticity of the correlation functions and their thermodynamic
limits

Lemma 2. The partition function ZN (5) is a Laurent polynomial in eβJ , so that
βfN is singular only for the zeros of this Laurent polynomial and for eβJ = ∞. As
ZN is a sum of positive terms for real βJ , it cannot have zeros on the real axis.

We will show that the zero closest to βJ = 0 (or eβJ = 1) in the complex βJ plane
is uniformly bounded away, i.e. ZN �= 0 for all |βJ | < K0 and all N for some fixed
K0. This means that fN can be expanded in a power series in βJ that is absolutely
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convergent for |βJ | < K0 and uniform in N . It is well known that more and more
coefficients become independent of N as N increases. Together this implies that the
limiting f also has a power series in βJ with radius of convergence at least K0.

We continue by deriving a lower estimate for K0. Most proofs of the analyticity of
free energies and correlation functions use linear correlation identities of Schwinger–
Dyson type, known under such names as the BBGKY hierarchy, Mayer–Montroll or
Kirkwood–Salzburg equations. We could use [35] and [36]. But instead, let me give
an alternative proof using an identity of Suzuki [37, 38], restricted to the isotropic
Ising model on a simple cubic lattice with periodic boundary conditions and of
arbitrary size, as this method also can be used to generate the coefficients of the high-
temperature series. More precisely, using the canonical definition of the expectation
value of a function A ≡ A({σ}) of the spin configuration, we have the correlation
identity [37, 38]:

Lemma 3. (M. Suzuki, 1965 [37, 38])

〈 m∏
i=1

σji

〉
N

=
1
m

m∑
k=1

〈( m∏
i=1
i�=k

σji

)
tanh

(
βJ

∑
l nn jk

σl

)〉
N

,(9)

where j1, . . . , jm are the labels of m spins and l runs through the labels of the six
spins that are nearest neighbors of σjk .

Proof. The proof of (9) is easy summing over spin σjk in the numerator of the
expectation value, i.e.,

∑
σjk

=±1

σjk eβJ
∑

l nn jk
σjk

σl = tanh
(
βJ

∑
l nn jk

σl

) ∑
σjk

=±1

eβJ
∑

l nn jk
σjk

σl .(10)

Averaging over k has been added in (9), so that all spins are treated equally, consis-
tent with the periodic boundary conditions. The lemma is also valid without that.

Next we use

Lemma 4.

tanh
(
βJ

6∑
l=1

σl

)
= a1

∑
(6)

σl + a3

∑
(20)

σl1σl2σl3 + a5

∑
(6)

σl1σl2σl3σl4σl5 ,(11)

where the sums are over the 6, 20, or 6 choices of choosing 1, 3, or 5 spins from the
given σ1, . . . , σ6. It is easy to check that the coefficients ai are

a1 =
t(1 + 16t2 + 46t4 + 16t6 + t8)

(1 + t2)(1 + 6t2 + t4)(1 + 14t2 + t4)
, a3 =

−2t3

(1 + t2)(1 + 14t2 + t4)
,

a5 =
16t5

(1 + t2)(1 + 6t2 + t4)(1 + 14t2 + t4)
, t ≡ tanh(βJ).(12)
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The poles of the ai are at t = ±i, t = ±(
√

2± 1)i, and t = ±(
√

3± 2)i. It can also be
verified, e.g. expanding the ai in partial fractions, that the series expansions of the
ai in terms of the odd powers of t alternate in sign and converge absolutely as long
as |βJ | < arctan(2 −√

3) = π/12.

Proof. Clearly, the tanh in (11) can be expanded as done. Replacing all six spins, σl by
−σl, shows that no terms with an even number of spins occur. Also,
permutation symmetry allows only three different coefficients. Multiplying (11) with
one, three, or five spins σl and then summing over all 26 = 64 spin states, is one
way to derive (12). It is then straightforward to verify the following partial fraction
expansions,

a1,5 =
1
24

( p1t

1 + (p1t)2
+

p2t

1 + (p2t)2
)
±

√
2

8

( p3t

1 + (p3t)2
+

p4t

1 + (p4t)2
)

+
1
3

p5t

1 + (p5t)2
,

a3 =
1
24

( p1t

1 + (p1t)2
+

p2t

1 + (p2t)2
)
− 1

6
p5t

1 + (p5t)2
,(13)

p1,2 = 2 ±
√

3, p3,4 =
√

2 ± 1, p5 = 1, (p1p2 = p3p4 = 1).(14)

The remaining statements of the lemma follow from these expansions.
We can now prove the following two theorems for magnetic field B = 0:

Theorem 2. The correlation functions 〈∏m
i=1 σji 〉N and their thermodynamic

limits 〈∏m
i=1 σji〉 are analytic, having series expansions in t or βJ with radius of

convergence bounded below by (17) and uniformly convergent for all N including
N = ∞. Let d be the largest edge of the minimal parallelepiped containing all sites
j1, . . . , jm. Then the coefficient of tk with k < n−d for the lattice with N = n3 sites
equals the corresponding coefficient for larger N , including the one for N = ∞.

Proof. We can assume that m > 0 and even, since for m odd we have

〈
m∏
i=1

σji 〉N ≡ 0

as it both is invariant and changes sign under the spin inversion σi → −σi for all
sites i.

The system of equations (9)–(12) can be viewed as a linear operator on the vector
space of linear combinations of all correlation functions of the 3-dimensional Ising
model. It is easy to estimate the norm of this operator. Using the alternating sign
property of the ai’s, it is easy to verify that a1, a3, and a5 can all be written as
t times a series in t2, which three series consist of positive terms only when t is
imaginary. This means that each |ai| is maximal for given |t| when t is imaginary
and within the radius of convergence, i.e. p2 in (14).
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From the 32m terms in the right-hand side (RHS) of (9) after applying (11), it
follows then that we only need to study

6a1 + 20a3 + 6a5 =
2t(t2 + 3)(3t2 + 1)

(1 + t2)(1 + 14t2 + t4)
(15)

for purely imaginary t to find the desired upper bound r for the norm. Setting t = ix
with 0 < x < 2 −√

3 to stay within the first pole of (15), we next define

r =
2x(3 − x2)(1 − 3x2)

(1 − x2)(1 − 14x2 + x4)
, for x = |t|.(16)

We then have that the RHS of (9) is bounded by rM , where M = max |〈σ · · ·σ〉| with
the maximum taken over all 32n pair correlations in the RHS. (Obviously, M ≤ 1 if
β ≥ 0 and real, but we shall not use this.) We can easily show that r < 1 for

|t| < (
√

3 −
√

2)(
√

2 − 1) = 0.131652497 · · · , or

|βJ | < arctan[(
√

3 −
√

2)(
√

2 − 1)] = 0.130899693 · · · .(17)

To prove analyticity of 〈∏m
i=1 σji 〉N as a function of β at β = 0, we apply (9) to it.

Then we apply (9) to each of the 32m new correlations, and we keep repeating this
process ad infinitum. Since σ2

i = 1, we will from some point on regularly encounter
the correlation with m = 0, i.e. zero σ factors, for which 〈1〉 = 1, so that the iteration
process ends there. Each other correlation (with m > 0) vanishes with at least one
power of t, as can be seen comparing e.g. (9) and (12). We conclude that the iteration
process generates the high-temperature power series in t to higher and higher orders,
for arbitrary given size N of the system.

To get the partial sum of the series to a given order, we only need to keep the
contributions for which the iteration process has ended and expand all occurring ai
as series in t. The sum of the absolute values of the terms is bounded by

∑
rj <∞

when (17) holds. However, the original correlation function is meromorphic with a
finite number of poles away from the real t axis for any finite N . Thus for sufficiently
high order of series expansion in t, the remainder term is arbitrarily small. The only
possible conclusion is that we have proved convergence of the series expansion of
〈∏m

i=1 σji 〉N in powers of t, uniform in N with a finite radius of convergence in the
complex t and β planes bounded below by (17).

To prove the final statement of the theorem for finite N , we notice that the above
iteration process generates new correlations with the range of the positions j of the
spins extended by one in a given direction. As long as we do not go around a cycle
(periodic boundary condition) of the 3-torus, we do not notice any N -dependence.
It takes at least n− d iteration steps to notice the finite size of the lattice.

Combining the convergence uniform in N with the fact that more and more
coefficients converge with increasing N , we conclude that 〈∏m

i=1 σji 〉N converges to
a unique limit as N → ∞ for |t| < 2−√

3, with the properties stated in the theorem.
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2.3. The reduced free energy and its thermodynamic limit

Theorem 3. The reduced free energy βfN for arbitrary N and its thermodynamic
limit βf are analytic in βJ for sufficiently high temperatures. They have series
expansions in t or βJ with radius of convergence bounded below by (17) and
uniformly convergent for all N including N = ∞. The first n − 1 coefficients of
these series for N = n3 equal their limiting values for N = ∞.

Proof. To prove analyticity of βf in terms of β at β = 0 it suffices to study the
internal energy per site or the nearest-neighbor pair correlation function, as

uN =
1
N

〈HN 〉N =
∂(βfN )
∂β

= −3J〈σ0,0,0σ1,0,0〉N ,(18)

as follows from (5) and (6). Here σ0,0,0 and σ1,0,0 can be any other pair of neighboring
spins. The proof then follows from Theorem 2 and integrating the series for uN , using
ZN |β=0 = 2N , implying limβ→0 βfN = − log 2.

Remark 4. Adding a small magnetic field B and generalizing the steps in the above,
we can conclude that all correlation functions are finite for small enough |β| and
|βH |, so that there are no Yang–Lee zeros [31, 32] near the H = 0 axis for small
β and H . The proof can also be generalized to the case that the interactions are
anisotropic, i.e. J, J ′, J ′′ as in [1]. Then ZN is a Laurent polynomial in each of eβJ ,
eβJ

′
, and eβJ

′′
, etc.

Remark 5. Similar results can be derived for the low-temperature series, for
example after applying the Kramers–Wannier duality transform to the high-temper-
ature regime of the dual system with spins in the centers of the original cubes and
with four-spin interactions around all cube faces perpendicular to the edges of the
original lattice [39].

Remark 6. It is straightforward to calculate the first few high-temperature
series coefficients of the free energy by the method described in this section, with or
without using the averaging in (9). They agree with the long series reported in [26]
and earlier works cited there. Zhang’s free energy formula claimed for all finite
temperatures [1] does not agree, as already the coefficients of κ2 ≡ t2 in (A12) and
(A13) of [1] differ. Zhang’s excuse that there are two expansions, one for finite β and
one for infinitesimal β, violates general theorems, that apply to more general models
than the Ising model [4, 5]. Here this excuse is invalidated in detail by Theorem 3.

Remark 7. Zhang’s spontaneous magnetization series is obviously wrong. In three
dimensions one should have I − 1 = O(x6), with x ≡ e−βJ in the low-temperature
limit, x → 0 (J > 0), as each spin has six nearest neighbors [5], rather than eight,
which would result in the four-dimensional I − 1 = O(x8) presented by Zhang in
(103) of [1].
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Remark 8. The finite radius of convergence of the series expansions about β = 0
is also hinted at by the fact that the zeros of ZN for T = ∞ occur for B = ±i∞,
βB = ±iπ/2 [7]. For fixed temperature T or β = 1/kT and βJ > 0 real the zeros
of ZN lie on the unit circle in the complex e−2βB plane [32], all located at −1
at infinite temperature [7] and spreading out with decreasing temperature until
the zeros “pinch” +1 on both sides of the unit circle at and below the critical
temperature, in agreement with the theory of Yang and Lee [31, 32]. Zhang’s claim
that this pinching at +1 also occurs at β = 0 [1,3,6,16] is disproved by Theorem 3.

Corollary 1. As pointed out already in [2, 4, 5], all final results of [1] are proven
wrong, as they do not agree within a finite radius of convergence with the well-
known series expansion coefficients. This also means that the conjectures of [1] are
falsified.

3. Further remarks and objections

3.1. Two series expansions for the same object

In appendix A of [1] Zhang claims to reproduce the first 22 terms of the high-
temperature series for the free energy. But this is no more than reverse engineering,
fitting the known coefficients [26] to an integral transform (A.1) or (74) in [1] giving
the first few coefficients of the weight functions as given in (A.2). There is no more
information than the series results provided by others, so that this does not constitute
a new result, as explained in [2, 5].

As this construction this way is based on a conjectured integral transform of
weight functions that can only be reconstructed from a few known series coefficients,
it cannot be considered an exact solution. Knowing this, Zhang conjectures ad hoc
above (A.3) on page 5400 another choice for the weight functions, namely wx =
1, wy = wz = 0, leading to another high-temperature series for non-infinitesimal
temperatures, in violation of the rigorous result on the uniqueness of the series
expansion presented in section 2. This is not sound mathematics [2].

3.2. Citations by other authors

The outcomes of [1] have been criticized in [29, 30], as they disagree with recent
high-precision Monte Carlo calculations presented there. Both the position of the
critical point and the values of the critical exponents differ from the ones in [1],
while the results of [29,30] agree with those of many others obtained by a variety of
methods [28].

One paper on a decorated three-dimensional Ising model [40], mapping this model
exactly to the Ising model on a cubic lattice, used Zhang’s free energy [1] as an
approximate result in the analysis. The experimental paper [41] states that their
result for the critical exponent Δ = 2.0 ± 0.5 is consistent with [1]. However, the
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reported error bar is so large that this means nothing. Moreover, paper [42] on the
Heisenberg model only briefly cites [1] as an Ising reference.

The authors of [43, 44] learned from [1] the quaternion setup of the transfer
matrix of the three-dimensional Ising model, which was well-known earlier, see e.g.
[45–47].1 In Zhang’s work [1] this is treated before the first error occurs with the
Jordan–Wigner transformation to Clifford algebra operators. His P ’s and Q’s do not
anticommute [5, 6].

3.3. Advertising wrong critical exponents

Klein and March took the exact Ising critical exponents for dimensions d = 1, 2, 4
together with the proposal of [1] for d = 3 and made an ad hoc fit [48] for all real
1 ≤ d ≤ 4. However, they failed to compare with the results from ε-expansion [27,28],
where ε = 4−d. This is a serious shortcoming, as the [48] formulae disagree with the
ε-expansion exponents for small ε and fail the one foremost explicit test available. It
may also be noted that the extrapolated Ising exponents for d = 3 from ε-expansion
agree with those extracted from series expansions and Monte Carlo calculations [28],
while differing from those presented in [1].

March and Zhang have followed this paper [48] up with thirteen publications,
thus perpetuating the errors of the original work [1]. Some of these works compare
Zhang’s critical exponents with those from experiments on CrBr3 and Ni [13, 14].
Nickel is known to have Heisenberg exchange interactions and its critical exponent
β is about the accepted value for the three-dimensional Heisenberg model, which is
also about Zhang’s value wrongly claimed for Ising.

Comparing experiments with models needs a discussion of the interactions in
the experimental compounds, whether Ising or Heisenberg, isotropic or anisotropic,
short-range or long-range, etc. No such analysis was presented. The same objection
can be brought up about section 2 of [20].

In [15] critical exponents for the two- and three-dimensional q-state Potts model
are discussed. Those for d = 2 are by now well established, but the values presented
for d = 3 cannot all be correct, as for the Ising case q = 2 the exponents of [1] have
been used.

In [18,19] a new formula for critical exponent δ is given, improving the one in [48].
The same objection still applies, as again no comparison with ε-expansion is made.

It is implied by the theory of Yang and Lee [31, 32], that the best experimental
results on Ising exponents are to be expected from measurements on liquid-gas tran-
sitions in simple substances. March and Zhang have admitted that the exponents
of [1] fail this test, see section 3 of [20]. Their suggestion that the experiment needs
to be redone carries no credibility, as the critical exponents measured in a number
of similar experiments are indeed typical for Ising, see section 3.2.2 of [28].

1Maddox only published his final formula for the free energy [45]. The details were

discussed in a special session, where also his error (the same as Zhang’s first error [5]) was

discovered.
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3.4. Singularity of free energy at T = ∞
Several statements in section 5 of [16] repeat and expand on statements in [1, 3, 6]
contradicting rigorous theorems discussed in section 2 above. For example, while it
is correct that the free energy f diverges at T = ∞, this does not correspond to a
physical singularity, as the combination βf is to be used. Indeed, e−βf relates to the
normalization of the Gibbs ensemble probability distribution and βf is the principal
object of Theorem 3. Multiplying βf with kT results in f having a convergent
Laurent expansion with a leading pole at T = ∞ that has no physical significance.
Another point is discussed in Remark 2.3 in section 1.

3.5. False argument for α = 0

Paper [17] addresses tricritical behavior. The authors claim that the logarithmic
divergence of the specific heat, α = 0 (log) at tricritical points in three dimensions,
supports the similar value reported in [1] for the Ising critical behavior. However,
this reasoning is flawed lacking any theoretical basis and contradicts the accepted
value α = 0.110 ± 0.001, see eq. (3.2) and tables 3–7 of [28].

3.6. The ε = d − 2 expansion

In papers [21, 22] on Anderson localization the authors say that ε = d − 2 is not
a small parameter for d = 3, just like ε = 4 − d of the ε-expansion is not. This
ignores that the best ε-expansion extrapolation results agree remarkably well with
those from series, Monte Carlo, and experiment [28]. This argument to support [1]
is again not valid.

3.7. Higher dimensions

The combinatorial sums defining the 3-dimensional Ising model involve commuting
spin variables and an interaction energy that is a function of these spins. There is
no reason to introduce time and quantum mechanics in this classical system, as is
done in [23]. On the other hand, introducing the transfer matrix changes one space
coordinate to (discrete) imaginary time. After “Wick rotation” to real time the 3-
dimensional Ising model relates to a (2+1)-dimensional quantum system. The fourth
dimension introduced in [1] has only been used to obtain wrong results violating
rigorous results.

3.8. Fractal dimensions based on wrong results

In [24] Zhang and March write down some proposals for fractal dimensions. However,
the values given for dimension 3 are based on incorrect results of [1].
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3.9. Unfounded Virasoro algebra

The most recent paper [25] uses the weight factors of [1] to introduce a Virasoro
algebra in 3+1 dimensions. This is ad hoc and the notations in equation (5) and
seven lines below (6) there are not mathematically sound. To take the real part
of the absolute value of a phase factor instead of just writing 1 makes no sense.
Also, the Virasoro algebra relates to an infinite dimensional symmetry, which is only
consistent with conformal symmetry in two dimensions, see e.g. [49]. Therefore, [25]
has fundamental errors.
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Summary
This paper is a Response to Professor Perk’s recent Comment (arXiv:1209.0731 and the

preceding article in this journal). We point out that the singularities of the reduced free
energy βf , the free energy per site f and the free energy F of the 3D Ising model differ
at β = 0. The rigorous proof presented in the Perk’s Comment is only for the analyticity
of the reduced free energy βf , which loses its definition at β = 0. Therefore, all of his
objections lose the mathematical basis, which are thoroughly disproved. This means that
the series expansions cannot serve as a standard for judging the correctness of the exact
solution of the 3D Ising model. Furthermore, we note that there have been no comments
on the topology-based approach developed by Zhang for the exact solution of the 3D Ising
model.

Keywords and phrases: Ising lattice, quaternionic phase, quaternionic Hilbert space, con-
formal invariance in 3 dimensions

1.

This paper is a Response to Professor Perk’s recent Comment [1] on the exact
solution of the three-dimensional (3D) Ising model, derived by one of us (ZDZ) based
on two conjectures [2], and our recent paper on conformal invariance in the 3D Ising
model [3] (and other earlier published papers). Firstly, we would like to point out
that it is hard for us to find anything new in this new Comment, comparing with
his three-years-old Comment/Rejoinder (and arXiv posting) [4, 5]. He repeats his
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objections published in [4, 5], though this time they have been formulated in more
mathematical forms. We think that in this paper, it is unnecessary to repeat all of
Zhang’s responses in [6,7], and to refute point-to-point Perk’s objections to follow-up
papers by Zhang and March.

One of the main objections Perk repeated is that the solution obtained in [2]
was wrong, because it was based on an incorrect application of the Jordan-Wigner
transformation. However, as Zhang responded in [7], this error in the application of
the Jordan-Wigner transformation does not affect the validity of the putative exact
solution, since the solution is not derived directly from it. The Conjecture 1, i.e.,
the approach proposed in [2] for dealing with the topological problems of the 3D
Ising model by a rotation in an additional dimension, can be applied directly to the
corrected formulation after the correct application of the Jordan-Wigner transfor-
mation. We emphasize here that the Conjecture 1 serves for the topologic problems
existing in the 3D Ising model (not for the incorrect formula published in [2]). There
have been no comments on this topology-based approach underlying the derivation
yet.

2.

Other main objections in Perk’s recent Comment [1] and his previously published
Comment/Rejoinder [4,5] are limited to the outcome of the calculations in [2]. These
objections are based on a misjudgment that the exact solution of the 3D Ising model
must pass the series test, and the solution found in [2] contradicts so-called exactly
known series expansion results. Such argument is based on a belief that there are
rigorously established theorems for the convergence of the high-temperature series.
However, as pointed out already in [6,7], all the well-known theorems for the conver-
gence of the high-temperature series are rigorously proved only for β (= 1/kBT ) > 0,
not for infinite temperature (β = 0). Exactly infinite temperature has been never
touched in those theorems cited in [1,4,5,8] for the free energy per site f of general
lattice models with general interactions, since there is a possibility of the existence
of a singularity at β = 0. For instance, Lebowitz and Penrose indicated clearly in
p. 102 of their paper [9] that there is no general reason to expect a series expansion
of p or n in powers of β to converge, since β = 0 lies at the boundary of the region E
of (β, z) space. Their proof includes β = 0 only for hard-core potential in section II
of their paper [9], not for the Ising model discussed in other sections. Lebowitz and
Penrose at the end of the section II used a word of ’implies’ as referred to Gallavotti
et al.’s work [10]. However, although Gallavotti et al. proved that the radius of con-
vergence is greater than zero, but once again their proof does not touch β = 0 [10],
since the inequality just above (1), i.e.,∑

T∩X−φ, T �=φ
|Kβφ′(X,T )| ≤ [exp(eβ‖φ

′‖ − 1) − 1]

is invalid for β = 0.
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Although it is evident that the general theorems above fail in a rigorous proof
for the convergence of the high-temperature series at β = 0, Perk still insists to
carry out a proof restricted to the 3D Ising model on a simple cubic lattice [1].
In [1], he made an effort to prove rigorously Theorem 2.9, which is then used as a
sword to disprove the exact solution of [2]. Unfortunately, this sword is made of wax!
Perk claimed that Theorem 2.9 proves rigorously the analyticity of the reduced free
energy βf in terms of β at β = 0. However, as will be described in details below,
the reduced free energy βf loses its definition at β = 0, and furthermore, it has
different behaviour with the free energy per site f . Actually, some mathematical
tricks have been performed carefully in his procedure, in order to cover the truth
that the analyticity of the free energy per site f in terms of β at β = 0 cannot be
proved rigorously. Such tricks first appear in Definition 1.4, which defines the free
energy per site fN and its infinite system limit f by Eq. (6), but in form of −βfN .
Then Lamma 2.5 goes on perpetrating the fraud to discuss the singularity of βfN ,
and finally to prove Theorem 2.9 ’rigorously’ for βf .

3.

In what follows, we will discuss in detail the singularities of the free energy at/near
infinite temperature (see also [7] and its arXiv posting 0812.0194). The key issue
here is that the behaviours of the reduced free energy βf , the free energy per site
f and the free energy F differ at β = 0. Furthermore, both the reduced free energy
βf and the free energy per site f lose their definitions at β = 0 so that one has to
face directly the behaviour of the free energy F at β = 0.

Let us start from the initial point of the problem to discuss the origin of the
singularities at/near infinite temperature. The total free energy of the system is:

F = U − TS = −kBT lnZ.

The singularities in the free energy and other thermodynamic consequences (such as
the entropy, the internal energy, the specific heat, the spontaneous magnetization,
etc.) originate from the singularities of the partition function Z. This is why Yang
and Lee discussed the phase transition by evaluating the distribution of roots of
the grand partition function (i.e., Z = 0) in their general theory [11, 12]. In order
to describe infinite systems, one usually normalizes the extensive variables that are
homogeneous of degree one in the volume, by the volume V (or the number of
particles N), keeps the density (i.e. the number of particles per volume) fixed and
takes the limit for V (or N) tending to infinity. In this sense, one usually defines the
thermodynamic limit (N → ∞) for the free energy per site f by

f = F/N = −kBT lnλ with λ = Z1/N .

By such a procedure, it is expected that one can establish the fact that f converges
uniformly to its common limit as N → ∞, namely, it is performed with an assump-
tion (or expectation) that f is finite [11–14]. In this way, one can easily avoid to deal
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with the total free energy F = −NkBT lnλ of the system, which shows singularities
at any temperature as N → ∞ and if lnλ is finite. However, at infinite temperature
(T = ∞), there still exists a singularity in the free energy per site f that is equal
to negative infinite in the case that lnλ is positive and finite. Using the value of the
3D Ising model λ = 2, one also finds that

f = −kBT ln 2 = −kB ln 2T

has a singularity at T = ∞. This is inconsistent with the assumption for the def-
inition of the free energy per site f , and therefore, such definition loses physical
significance at T = ∞. This fact also indicates clearly that β = 0 is a special point,
differing with other temperatures. It is clear that one has to face directly the total
free energy F to study the singularities of the system at T = ∞.

4.

The total free energy of the system can also be written as F = kBT lnZ−1. Therefore,
besides the roots of the partition function Z, one should also discuss the roots
of Z−1. Writing z ≡ exp(−2βH) and keeping βH fixed in the limit β → 0, the
partition function of an arbitrary lattice with N sites for the Ising model becomes
Z = (z1/2 +z−1/2)N [5]. It is easily seen that z1/2 +z−1/2 > 1 satisfies the condition
for the zeros of the reciprocal of the partition function, i.e.,

Z−1 = (z1/2 + z−1/2)−N .

So, the infinite-temperature zeros of Z−1, i.e., Z−1 → 0, occur at z = 1 as N → ∞,

Z = 2N → ∞. Or more explicitly speaking, the zeros are located at β = 0, z = 1.
This point of view can be supported by the fact that the singularity behavior of
the logarithmic function lnx in the two cases of x = 0 and x = ∞ correspond to
those in the logarithmic function ln y with y = 1/x in two cases of y = ∞ and
y = 0, respectively. It indicates that both singularities at the two limits of Z = 0
and Z = ∞ are actually the same, except for a minus sign, and considerable interest
should be paid to both of them. In Definition 1.4 of [1], the negative sign was carefully
moved to the left-hand-side of Eq. (6), to avoid the discussion on zeros of Z−1. But,
if one would always try to conceal singularities of lnZ−1 by mathematical tricks, one
would find similar tricks to remove singularities of lnZ also to violate the Yang-Lee
Theorem [11,12]. The singularities of the free energy F and the free energy per site
f at β = 0 suggests that two different forms could exist for the high-temperature
series expansions of the free energy per site f .

Perk argued in [5] that such singularities of the whole system are not of physical
significance, which should be removed by using the reduced free energy per site
βf . Perk now admits in page 10 of [1] that the free energy per site f diverges at
T = ∞, but he still insists that this does not correspond to a physical singularity,
as the combination βf is to be used. So, it is important to evaluate whether one
can use the reduced free energy βf at T = ∞. As stated in Perk’s Rejoinder (and
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arXiv posting) [5], the reduced free energy per site βf is often rewritten as βf =
φ({Ki}, h) = φ({βJi}, βH) with some function φ. But the error in [1, 5] is easily
seen as follows: One needs to set β = 1 to reach an equivalent between βf and f .
Setting β = 1 equalizes to T = 1/kB �= ∞. Therefore, the necessary and sufficient
condition for using the dimensionless parameters Ki = βJi, (i = 1, 2, 3) and h = βH

and setting β = 1 is β �= 0. Thus, setting β = 1 is loss of generality for β = 0, and the
replacements Ji → βJi, H → βH and f → βf are validated only for β → 0 (not for
β = 0). Clearly, all discussions in the Perk’s Rejoinder [5] and recent Comment [1]
for the reduced free energy βf are only valid at the limit β → 0, but not ’exactly’ at
infinite temperature (β = 0). Clearly, the intrinsic characters of singularities of the
zero at infinite temperature are quite different from those at finite temperatures,
which cannot be disregarded by the usual process of removing the singularity at
finite temperatures by using −βf .

5.

From the Yang-Lee Theorem [11,12] and the findings above, in the 3D Ising model
there indeed exist three singularities:

1) H = 0, β = βc;

2) H = ±i∞, β → 0;

3) H = 0, β = 0.

The third singularity is usually concealed in literature by setting Z1/N and di-
viding the total free energy F by N (equally, disregarding the singularity of zeros of
Z−1). The point of β = 0 has been avoided during the procedure of rigorous proof of
all the previous theorems for the analyticity of the free energy per site f and also for
the convergence of the high-temperature series. The difficulty has been bypassed by
using the dimensionless parameters Ki = βJi, (i = 1, 2, 3) and h = βH and setting
β = 1. We point out here that the third singularity has physical significance: The
3D Ising system experiences a change from a ’non-interaction’ state at β = 0 to an
interacting state at β > 0. This change of the states is similar to a ’switch’ turning
off/on all the interactions at/near infinite temperature, resulting in the change of
the topologic structures and the corresponding phase factors [2, 6, 7]. The topologic
difference of β = 0 and β → 0 requires the different dimensions (3D and (3 + 1)D,
respectively) for describing the many-body interacting Ising system. These also sup-
port that the high-temperature series expansions of the free energy per site f can
have two different forms for infinite temperature and finite temperatures, as revealed
in [2].

In Section 3 of [1], Perk raised some further remarks and objections on other
follow-up papers of [2]. We rebut these criticisms briefly as follows:

The transfer matrix V for the 3D Ising model consists of two kinds of contri-
butions: those reflecting the local arrangement of spins and others reflecting the
non-local behaviour of the knots. Any procedure (like, low- and high-temperature



66 Z.-D. Zhang and N. H. March

expansions, Monte Carlo method, expansions, renormalization group, etc.), which
takes only the local spin configurations into account (without topological contribu-
tions), cannot be correct for the 3D Ising model. This is because the global (topolog-
ical) effect exists in the 3D Ising system so that the flopping of a spin will sensitively
affect the alignment of another spin located far from it (even with infinite distance).
These approximation methods have close relations with the same shortcomings, and
thus they obtain the close results, but all far from the exact solution. If one used
the exact solution of [2] as a standard, the difference between the exact solution
and these approximation approaches would be the good evaluation of the non-local
contributions of the 3D Ising model. Whether the exact solution can predict the
unknown terms of the usual high-temperature expansions is not important, since
such expansions are valid only at temperatures very close to infinite temperature,
where the global effect can be neglected. The important thing here is that the exact
solution can predict all the terms of another high-temperature series for all finite
temperatures, which take into account the topologic contribution of knots (inter-
nal factors) in transfer matrixes. On the other hand, the exact solution of the 3D
Ising model does not need to fit with the low-temperature series. This is because the
low-temperature series diverges, which suggests that it is falsified and the validity
of its leading term is also doubted. The lack of information of the global behaviours
of the 3D Ising system is the root of such divergence in the falsified well-known
low-temperature series.

6.

It is true that after “Wick rotation” to real time the 3D Ising model relates to a
(2+1)-dimensional quantum system. But what we proposed in [2, 3, 6, 7, 15] is more
than “Wick rotation”, and we introduced the fourth dimension to deal with the
topological problems of the 3D Ising model, which agrees well with the topologi-
cal theory. The introduction of the fourth dimension is also important for the time
average [6, 7, 15] and for quaternionic Hilbert space with quaternionic geometric
phase [2, 3]. The quaternionic form developed in [2] for wave functions of the 3D
Ising model agrees well with Jordan-von Neumann-Wigner procedure [16] according
to [17–20], and relates closely with well-developed theories, for instance, complexi-
fied quaternion [21], quaternionic quantum mechanics [22–24], and quaternion and
special relativity [25]. The quaternion-based functions developed in [2] for the 3D
Ising models can be utilized to study the conformal invariance in dimensions higher
than two [3]. The 2D conformal field theory can be generalized to be appropriate for
three dimensions, within the framework of the quaternionic coordinates with com-
plex weights. The 3D conformal transformations can be decomposed into three 2D
conformal transformations, where the Virasoro algebra still works in 2D, but only for
each 2D complex plane of quaternionic coordinates in the complexified quaternionic
Hilbert space [3]. Finally, we note that it is difficult to obtain the high accuracy of
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numerical results by Monte Carlo method and renormalization group, due to the
limited capability of computers dealing with the 3D Ising or Heisenberg model with
global effects in thermodynamic limit (infinite) systems (with 2N configurations for
Ising model as N → ∞; even much more configurations for Heisenberg model). Thus
it should be very careful to judge which system is of Ising or Heisenberg-type based
on experimental and numerical results. Furthermore, it is well-known that one can-
not distinguish the curves with power exponent α < 0.2 and logarithmic exponent
α = 0, within errorbars of experiments and numerical calculations [2].

7.

In summary, we have disproved the Perk’s recent Comment [1]. We have shown that
both f and βf lose their definitions at β = 0, but with different consequences: the
free energy per site f could have two different forms for the high-temperature series
expansions as revealed in [2]; the reduced free energy per site βf can be used only for
finite temperatures (β > 0), not for exactly infinite temperature (β = 0). The Perk’s
objections [1] are based on errors of mixing the concepts T → ∞ and T = ∞ (i.e.,
β → 0 and β = 0), and βf and f . His rigorous proof in [1] is only for the analyticity
of the reduced free energy βf (its validity is held at β → 0), not of the free energy
per site f . Therefore, all the objections of Perk’s Comment [1] do not stand on solid
ground and have been rejected. The series expansions cannot serve as a standard for
disproving the exact solution found in [2] of the 3D Ising model. Furthermore, there
have been no comments on the topology-based approach developed by Zhang in [2]
for the exact solution of the 3D Ising model.
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NIEZMIENNICZOŚĆ KONFOREMNA TRÓJWYMIAROWEGO (3D)
MODELU ISINGA A KWATERNIOWA FAZA GEOMETRYCZNA
W KWATERNIONOWEJ PRZESTRZENI HILBERTA II
ODPOWIEDŹ NA “B�LȨDNE ROZWIA̧ZANIE TRÓJWYMIAROWYCH (3D)

PROSTOPAD�LOŚCIENNYCH SIATEK ISINGA” J. H. H. PERKA

S t r e s z c z e n i e
Praca stanowi odpowiedź na niedawny Komentarz Profesora Perka (arXiv: 1209.0731

i poprzedni artyku�l w niniejszym czasopísmie). Zwracamy uwagȩ na fakt, że osobliwości
zredukowanej energii swobodnej βf , energii swobodnej odniesionej do miejsca f oraz energii
swobodnej F w modelu Isinga 3D różnia̧ siȩ dla β = 0. Rygorystyczny dowód zamieszczony
w Komentarzu Perka stosuje siȩ jedynie do analityczności zredukowanej energii swobodnej
βf , która staje siȩ niezdefiniowana dla β = 0. Tak wiȩc wszystkie jego obiekcje traca̧
matematyczna̧ podstawȩ, która daje siȩ ca�lkowicie obalić. Oznacza to, że rozwiniȩcia w sze-
regi nie moga̧ być miarodajne do osa̧dzania poprawności dok�ladnego rozwia̧zania w modelu
Isinga 3D. Co wiȩcej, zauważamy, że nie zosta�lo skomentowane oparte na topologii podej́scie
Zhanga dotycza̧ce dok�ladnego rozwia̧zania w modelu Isinga 3D.
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The response by Zhang and March to a recent comment on several of their papers only
adds further errors and misleading statements.
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1. The series test is decisive

In their Response [1] to my Comment [2] Zhang and March do not really address the
new criticism raised to their work. Contrary to what is said, Comment [2] contains
very little that is in my earlier Comment [3] and Rejoinder [4]. There is some material
from the unpublished additions to the arXiv version of the Rejoinder, but that part
is much improved with several new details added in [2]. There are also some pages
discussing papers published later. Therefore, the statement “hard to find anything
new” is wrong. Also, several statements are not even addressed in the Response and
cannot be covered with the “unnecessary to repeat all of Zhang’s responses”.

Zhang seems to demand that I only comment on the “validity of the topologic
approach developed”, even though this is not precisely defined in any of his papers,
apart from the formulation of his two conjectures in [5]. However, these conjectures
1 and 2 are not backed up by any quantitative evidence in the original 117 page
work. Their validity can at this moment only be judged by the resulting free energy.

In section 3.1 of [2], I noted that Zhang expresses the free energy by an integral
transform, given in (49) in [5], on unknown weight functions wx, wy, wz, without
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a clear convincing argument how to get these weight functions. This is brought as
a consequence of conjectures 1 and 2 [5] and it is analogous to saying that the
free energy is a Fourier transform of some unknown function, by itself an empty
statement.

Zhang made two choices in [5]. The first one is fitting series (A2) in [5] to the
free-energy high-temperature series to as many terms as are known in the literature;
the other is choosing weights (1,0,0). The first way gives no exact result, as one has
no more than the known series terms. The second way leads to a different series,
with the first nontrivial term differing from the known series; it is disproved by
the first few terms of the well-known high-temperature series, since these have been
rigorously established, also by the construction in [2].

The older proofs cited in [3,6] are correct but not easy to read. Therefore, I gave
a much simpler proof with mathematical precision in [2]. My proof does not depend
on the papers by Lebowitz and Penrose [7] and by Gallavotti et al. [8], contrary to
what Zhang seems to suggest.

2. Arguments for phase transition at T = ∞ are invalid

Statements made in [1] about [7,8] are taken out of context. The inequality Reβ > 0
on page 102 in [7] is needed when the gas model has no hard core. Section II,
however, opens with the statement that analyticity at β = 0 can be shown for a
hard core potential. The Ising model is equivalent to a lattice gas version with at
most one particle per lattice site (empty-occupied becomes spin +/ − 1), a special
case of a hard core on the lattice. Thus the objection that [7] excludes β = 0 in their
analyticity proof does not apply.

One statement in [1] about an inequality in [9] not being valid for β = 0 is
misplaced for two reasons. First, the inequality does not appear in [9], but appears
near the bottom of the left column of page 494 of [8]. Secondly, in order to prove
a finite radius of convergence one needs to prove an inequality with some positive
β. Then β = 0 will be included within the radius of convergence. (It may be noted
that there are misprints in [8], probably due to printer errors as Phys. Lett. did not
allow authors to correct proofs at that time.)

The next objection in [1] that f is singular at T = ∞ is also misleading. The
combination βf = − ln 2 there, as f has a simple pole at β = 1/kBT = 0. One finds
that f has a Laurent expansion with pole term (− ln 2)/β followed by a power series
in β with a finite radius of convergence. Statistically, at β = 0 all states have equal
probability and there is no phase transition, as not only βf , but also all correlation
functions are analytic at β = 0, in spite of the fact that interactions are turned on
once β > 0.

When Zhang expands λ = Z1/N in (A12) and (A13) of [5], he expands exp(−βf),
which is equivalent to expanding βf . This makes his objection to expanding βf

instead of f unreasonable. The finite radius of convergence proof given in [2] proves
that (A13) is not correct.
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Response [1] bring up that 1/Z has a zero at β = 0 in the infinite system. But this
is again misleading. Yang–Lee theory is only about the zeroes of partition function
Z: When zeros pinch the real temperature axis in the large system limit, then there
is a phase transition. There is no theorem for 1/Z.

This pinching of zeros of Z cannot occur, as the proof given in [2] can be extended
to the double expansion of βf in β and βB. The proof for the more general cases
is in the old literature. From this joint analyticity at β = 0 and βB = 0, it follows
that zeros are a finite (nonzero) distance away, contradicting any pinching of zeros
at β = βB = 0.

3. Other issues

Remark 2.4 in [2] and similar statements show that it is possible to test Zhang’s free
energy with Monte Carlo methods [10], as one can now estimate both the systematic
error due to finite size and the statistical error due to Monte Carlo methods.

Also, the latest various experimental and theoretical estimates for α are signifi-
cantly different from 0, see the review by Pelissetto and Vicari [11]. One may want
to check the accuracies reported of large numbers of theoretical and experimental
works that are discussed there and ignored by March and Zhang.

Next, the use of dimensionless Ki = βJi and h = βH can be done in more than
one way. The partition function and correlation functions (and βf) only depend
on these combinations. That some authors set β = 1, does not mean a loss of the
high-temperature case. If one has the result in the Ki and h, one also can choose a
new β, say β′, and write in the results Ki = β′Ji and h = β′H . There is no loss of
the high-T limit β′ = 0. Again this is an objection that is invalid and it does not
apply to [2], as I nowhere used β = 1, nor did I use results from authors that did.

Finally, the last paper [12] is based on an incorrect solution of the 3D Ising model.
There are problems I noted: With φ a phase, |eiφ| = 1, and formula (4) contains
phases that drop out. Also, having three independent Virasoro algebras means that
one has the 3 + 1 dimensional space rewritten as a 6-dimensional (2 + 2 + 2) space,
the “product” of three independent 2-dimensional spaces. Things do not add up.
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[9] G. Gallavotti and S. Miracle-Solé, Correlation functions of a lattice system, Commun.
Math. Phys. 7 (1968), 274–288.
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Odpowiedź Zhanga i Marcha na niedawny komentarz o szeregu ich prac jedynie dodaje

do poprzednich b�lȩdów nowe b�lȩdy i myla̧ce stwierdzenia.
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AN INTERESTING PROPERTY OF THE FRIEDMAN UNIVERSES

Summary
We show in the paper that Friedman universes can be created from empty, flat Min-

kowskian spacetime by using suitable conformal rescaling of the spacetime metric.

Keywords and phrases: universe, Friedman universe, Einstein equations, Cosmological Prin-
ciple, dust universe, radiation universe

1. Friedman universes

Einstein equations and Cosmological Principle lead us together to Friedman uni-
verses. These universes give standard mathematical models of the real Universe.

Einstein equations

Gik := Rik − 1
2
gikR =

8πG
c4

Tik =: βTik(1)

form system of the ten, 2-nd order quasilinear partial differential equations on ten
unknown functions. Solving these equations under given initial and boundary con-
ditions one obtains local geometry of the spacetime, i.e.,

gik(x) −→ Γikl(x) −→ Riklm(x)

and local distribution and motion of matter, i.e., Tik(x).
Here Gik is the so-called Einstein tensor, Tik is the matter energy-momentum

tensor (the source of the gravitational field which is represented by tensor Gik), c
is the velocity of light in vacuum, and G means Newtonian gravitational constant;



76 J. Garecki

gik(x) denote components of the metric tensor, and Γikl(x), Riklm(x)) are the Levi-
Civita connection and Riemannian curvature components respectively. Rik mean
components Ricci tensor and R is the so-called curvature scalar (See, eg., [1]). All
Latin indices take values 0, 1, 2, 3.

The matter tensor Tik(x) consists of gik, ui, p, ρ, where ui, p, ρ denote 4-velocity,
pressure and density of matter respectively.

Cosmological Principle says that in the largest scale the real Universe is homo-
geneous and isotropic 1.

In the following we will use geometrized units in which G = c = 1. Friedman
universes are cosmological solutions to the Einstein equations constrained by Cos-
mological Principle and they are foundation of the relativistic cosmology [1, 2].

The line element

ds2 = gik(x)dxidxk

for these universes, called Friedman-Lemaitre’-Robertson-Walker line element, in the
comoving coordinates x0 = t, x1 = χ, x2 = ϑ, x3 = ϕ, reads

ds2 = dt2 − R2(t)
[
dχ2 + S2(χ)

(
dϑ2 + sin2ϑdϕ2

)]
,(2)

where

S(χ) = sinχ, if k = 1

Sχ = χ, if k = 0

S(χ) = shχ, if k = (−)1.(3)

t is the cosmic time, i.e., the proper time for isotropic observers, which are at rest
in the coordinates (t, χ, ϑ, ϕ).

An isotropic observer O represents center of mass of a cluster of galaxies in real
Universe. R(t) is the so-called scale factor (it scales spatial distances) and k = 0,±1
means the normalized curvature (curvature index) of the spatial sections x0 = t =
const.

If k = 1, then we have closed (spherical or elliptical) spatial sections, if k = 0 the
geometry of the spatial section is flat, and if k = (−)1, then the geometry of spatial
sections is hyperbolic.

Usually one chooses the moment t = 0 of the cosmic time t when R = 0, i.e.,
usually one has R(0) = 0.

Einstein equations with perfect fluid (incompressible fluid, without any viscosity
and not conducting heat) as source 2 reduce, for the FLRW line element (2)–(3) to
the Friedman equations

3Ṙ2

R2
+

3k
R2

=
ρ

2β
,(4)

1We are modelling cosmological substrat by using an ideal (or perfect) fluid.
2A particle of this fluid represents a cluster of galaxies in real Universe.
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Ṙ2

R2
+
R̈

R
+

k

R2
= (−)

p

2β
.(5)

Here β = 8π (We use geometrized units), ρ = ρ(t) means the rest density of the
fluid, and p = p(ρ) = p(t) — its pressure. Ṙ := dR

dt , and R̈ := d2R
dt2 .

Caloric equation p = p(ρ) must be added to Friedman equations (4)-(5) in or-
der to get a determined system on the three unknown functions: R = R(t), ρ =
ρ(t), p = p(t).

Usually one considers solutions to the Friedman equations (4)–(5) in the two
extreme cases: p = 0 (dust universes or matter dominant universes, in short MDU),
and p = ρ

3 (radiation dominant universes, in short RDU).
We will confine to solutions in these two extreme cases.

Dust universes (MDU) with p = 0:

1. k = 1 (closed universe). In this case we have parametric solution

R = M
(
1 − cos η

)
,

t = M
(
η − sin η

)
.(6)

0 < η < 2π.

2. k = 0 (flat universe). In this case

R =
(9M

2
t2

)1/3
, 0 < t <∞.(7)

3. k = (−)1 (open universe). In the case we also have parametric solution

R = M
(
cosh η − 1

)
,

t = M
(
sinh η − η

)
, 0 < η <∞.(8)

Here η denotes a parameter and M = (4/3)πR3ρ is the first integral of the
Friedman equations. Physically M is the mass contained inside of a “sphere” having
volume (4/3)πR3.

Radiation universes (RDU) with p = ρ
3

1. k = 1 (closed universe)

R =
√

(2bt− t2), b :=

√
8πC

3
, 0 < t < 2b,(9)

where C = ρR4 = const > 0 is the first integral of the Friedman equations in
this case.

2. k = 0 (flat universe)

R =
√

2bt, 0 < t <∞.(10)

3. k = (−)1 (open universe)

R =
√

(2bt+ t2), 0 < t <∞.(11)
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Having R = R(t) one can find ρ(t) from the first integrals and then p = p(t) from
caloric equations.

It is believed that one of the MDU correctly describes present stage of the
Universe, and that one of the RDU correctly describes early Universe3.

It is seen from (6)–(11) that the Friedman universes are singular at least in
one moment of the cosmic time t (In this moment R = 0). These singularities
are inevitable in classical general relativity (Theorems by Hawking and Penrose,
and Senovilla [3]); but “quantized general relativity” (loops quantum gravity) seems
remove these singularities (Ashtekar, Bojowald and Lewandowski) [4].

2. Conformal rescaling of metric and conformally flat
spacetimes

By conformal rescaling of the metric g we mean the following transformation (in
established coordinates)

ĝab(x) = Ω2(x)gab(x),(12)

where the conformal factor Ω(x) is dimensionless, smooth and positive.
One can immediately get from (12) that

ĝab(x) = Ω(−)2(x)gab(x),(13)

and, after some tedious calculations one can obtain other useful transformational
formulas [5]. For our future aims the following formulas will be needed

R̂bd = Ω(−)2Rbd + 2Ω(−)1
(
Ω(−)1

)
;dc
gbc − 1

2
Ω(−)4

(
Ω2

)
;ac
gacδbd,(14)

R̂ = Ω(−)2R− 6Ω(−)3Ω;cdg
cd,(15)

and

T̂ k
i = Ω(−)4T k

i .(16)

Here ; a is covariant derivative with respect Levi-Civita connection of the metric in
the initial gauge gab(x).

A spacetime is conformally flat if there exist holonomic coordinates (x0 = t, x1 =
x, x2 = y, x3 = z) in which its line element ds2 has the form

ds2 = Ω2(x0, x1, x2, x3)
(
dx02 − dx12 − dx22 − dx32)

≡ Ω2(x0, x1, x2, x3)ηikdxidxk.(17)

The

ηikdx
idxk = dx02 − dx12 − dx22 − dx32

(18)

means the line element of the empty, flat Minkowski spacetime in inertial coordinates.

3The recent large–scale astronomical observations seem favorize an accelerated flat

model.
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The Theorem is true:
Necessary and sufficient condition of the conformal flateness of the 4-dimensional

(or higher, n > 4 dimensional) spacetime is vanishing its Weyl tensor Cabcd, where

Cabcd := Rabcd +
R(gacgbd − gadgbc)

(n− 1)(n− 2)
−

−
(
gacRbd − gbcRad + gbdRac − gadRbc

)
(n− 2)

.(19)

In the above formula Rabcd are components of the Riemann tensor, Rab denote
Ricci tensor components and R means Riemannian curvature scalar.

In the framework of general relativity Weyl’s tensor Cabcd describes free gravita-
tional field (tidal forces).

An example of the conformally flat spacetimes give Friedman universes.

3. Conformal transformation as Creator of the Friedman
universes

We have under conformal rescaling of the metric (12) if we use the formulas (14)-(15)

Ĝdb = R̂db −
1
2
δdb R̂ = Ω(−)2Gdb

+
2
Ω

(
Ω(−)1

)
;bc
gdc +

3
Ω3
δdbΩ;ceg

ce

− 1
2Ω4

(
Ω2

)
;ac
gacδdb ;(20)

T̂ db = Ω(−)4T db .(21)

By using Einstein equations in old gauge gik(x)

Gdb = βT db(22)

one can combine (19)-(20) to the form

Ĝdb = βΩ2T̂ db + βT̃ db ,(23)

where

T̃ db :=
1
β

[ 2
Ω

(
Ω(−)1

)
;bc
gdc

+
δdb
Ω3

(
3Ω;ceg

ce − Ω2
;ac

2Ω
gac

)]
.(24)

(22) gives Einstein equations in new gauge ĝik(x).
The tensor T̃ db (x) is the energy-momentum tensor of this matter which was cre-

ated by conformal rescaling of the initial metric gik(x) while the tensor T̂ db (x) is
transformed , following (20), the matter tensor T db (x) which have already existed in
the old gauge gik(x).
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One can rewrite (22) to the form

Ĝdb = βT̄ db ,(25)

where

T̄ db := Ω2T̂ db + T̃ db .(26)

Friedman universes are conformally flat. So, we can take in the case as “initial
conditions”

gik(x) = ηik, Gdb = 0, T db = 0 −→ T̂ db (x) = 0,(27)

i.e., we can take empty Minkowskian spacetime as initial spacetime. Doing so, one
can get the metric tensor of a Friedman universe in the form

ĝik(x) = Ω2(x)ηik ,(28)

where conformal factor Ω(x) depends on Friedman universe.
Thus, metric ĝik(x) of a Friedman universe, i.e., whole geometry of a Friedman

universe can be obtained from empty Minkowskian spacetime by a suitable conformal
rescaling of the Minkowskian metric. Material content of this universe can be easily
obtained from Einstein equations

T̃ db :=
1
β
Ĝdb ,(29)

where Ĝdb (x) is Einstein tensor calculated from ĝik(x).
As an example we will consider a flat Friedman universe.
In this case

ĝik(x) = Ω2(τ)ηik = Ω2(τ)(dτ2 − dx2 − dy2 − dz2)(30)

with Ω(τ) ≡ R(τ). τ is here the so-called conformal time [6].
After a simple but tedious calculation one gets from (28) that

T̃ 0
0 =

3R′

βR4
(= ρ)

T̃ 1
1 = T̃ 2

2 = T̃ 3
3 =

1
βR3

(
2R′′ − R′2

R

)
(= −p).(31)

Here prime denotes derivation with respect conformal time τ .
Other components of the energy-momentum tensor T̃ a

b of the matter created by
conformal rescaling (29) of the Minkowskian metric are vanishing.

For the flat dust Friedman universe we obtain

ds2 = R2(τ)
(
dτ2 − dx2 − dy2 − dz2

)
,(32)

where

R(τ) =
A3

9
τ2, A =

(
6πρR3

)1/3 = const.(33)
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From that one gets

R′ =
2A3τ

9
, R′′ =

2A3

9
, R′′′ = 0,(34)

and higher derivatives also vanish.
In consequence, the material content of the universe following (30) reads

T̃ 0
0 = ρ =

972
βA6τ6

.(35)

The other components of the tensor T̃ b
a are vanishing, i.e., p = 0 and stresses vanish

(as it should be in the case).
Thus, we have correctly created flat, dust Friedman universe from empty Min-

kowskian spacetime by using the conformal transformation (31)–(32).

4. Conclusion

As we could see, Friedman universes can be created by a suitable conformal rescaling
of the flat Minkowskian metric,i.e., these universes can be created from empty, flat
Minkowskian spacetime by conformal transformations.

Therefore, we needn’t any “quantum gravity” in order to explain origin of the
Friedman universes: classical conformal transformations are sufficient.

The analogical statement is, of course, correct for any other conformally flat
spacetime.
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mission of the �Lódź Society of Sciences and Arts on December 6, 2012

INTERESUJA̧CA W�LASNOŚĆ MODELI KOSMOLOGICZNYCH
FRIEDMANA

S t r e s z c z e n i e
W tej pracy pokazano, że modele kosmologiczne Friedmana, które sa̧ podstawa̧ wspó�l-

czesnej kosmologii, można wykreować z pustej czasoprzestrzeni Minkowskiego przy pomocy
odpowiedniej transformacji konforemnej.
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 �	 
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��� ��������� ��������

�� ���� �� 	
� ��	� �����	 �� ���	���

� ���� �"1 +, �*!�" 2�"%#1 ��� �������� ������� �� ��� ������
1 +# ) "� *),3�� n×m

%+(�,#+�,)� ()*"+41 �' *!� '�"( �ab1  �,*)+,+,3 ."�%$ *# �' *!�  ��"%+,)*�# �' *2�
5� *�"# �� ),% �� 6+, ()*"+4 '�"( � = [a1 a2 . . . an]T ),% � = [b1 b2 . . . bm]T 71
+, ) 3�,�")�  )#�1 �' *!� 5� *�"# %�8,�% +, %+9�"�,* %+(�,#+�,)� #.) �# n �= m�
�!� *�"(# �' ) %:)% )"� ."�%$ *# �' *!�  ��"%+,)*�# �' 5� *�"# �;$)� *� '����2+,3
�;$)*+�,1 "�#.� *+5��:<

�ab = [aibj] (i = 1, 2, . . . , n; j = 1, 2, . . . , m).6�7

�!� ()*"+4 6�7  �""�#.�,%# *� *!� ."�%$ * �' *2� 5� *�"# �� ),% �� %�*�"(+,�%
+, *!� '�"( �' %+9�"�,* %+(�,#+�,)� ()*"+ �# ),% )* *!� #)(� *+(� *� *!� ."�%$ *



�� �� "���
���#� $� "����%�� �� $� &��#�

2"+**�, +, #$ ! ) '�"( 6+, #$ ! ), �"%�"7 *!)* *!� ($�*+.�+ )*+�, �' *!� ()*"+4 +#
+(.�##+=��� �'

� =

⎡
⎢⎢⎣
a1

a2

. . .

an

⎤
⎥⎥⎦ ),% �

T = [b1 b2 . . . bm]T ,6�7

*!�, *!� ,�*)*+�, �' *!� ."�%$ * �' *!� ()*"+4

��
T =

⎡
⎢⎢⎣
a1

a2

. . .

an

⎤
⎥⎥⎦ [b1 b2 . . . bm]T6-7

+# ), �;$+5)��,* �' *!� %:)% �ab +, *!� ($�*+
."�%$ * �' 5� *�"#� �!� ()*"+4 �ab  ),
=� $#�% '�" *!� ,�*)*+�, �' ($�*+
."�%$ *# �' 5� *�"# �' ),: �"%�"1 $#+,3 ),: .)+"#
�' # )�)" ."�%$ *#�

�!$#1 *!� %:)% �ab1 2!+ ! +# ) #;$)"� ()*"+4 (n = m)1 +# ()*"+4 �' ."�%$ * �'
*2� 5� *�"# +,  )#� 2!�, *2� 5� *�"# �+� +, *!� #)(� #.) �� �* !)# *!�, *!� '����2+,3
'�"(<

�ab =

⎡
⎢⎢⎢⎣
a1b1 a1b2 . . . a1bn
a2b1 a2b2 . . . a2bn

. . . . . .
� � � . . .

anb1 anb2 . . . anbn

⎤
⎥⎥⎥⎦ .6�7

�* +# �)#: *�  )� $�)*� *!)* *!� ()*"+4 %�*�"(+,),* �' *2� 5� *�"# ."�%$ * �ab 6'�"
n = m7 +# �;$)� *� >�"� 6det �ab = 07� �!$#1 %:)% 6�7 +# #+,3$�)" ()*"+4�

� 3��% +��$#*")*+�, �' *!� .�##+=+�+*+�# �9�"�% =: *!� $#� �' ) %:)% +, *!� ,�*)*+�,
�' )"=+*")": ($�*+
."�%$ *# )"� *!� #+(.��#* �%% ),% �5�, ."�%$ *# 2!+ ! / )'*�"
+,*"�%$ +,3 /  ), =� '�"(�% +%�,*+ )��: +, (),: 2):#? )* *!� #)(� *+(�1 *!� 5� *�"#
 ), =� "��"%�"�% +, %+9�"�,* .�##+=�� 2):# +, # )�)" ."�%$ *#� �!�  �""� *,�## �' *!�
 +*�% +%�,*+*+�#  ), =�  !� @�% =: .�"'�"(+,3 ).."�."+)*� *"),#'�"()*+�,#�

A�" �4)(.��1 ) ."�%$ * �' *!� *!+"% �"%�" (����)��  ), =� 2"+**�, +, '�$" %+9�"�,*
2):#1 $#+,3 '�$" '����2+,3 %:)%#<

(�T�)�T = �T�bc �" (�T�)�T = �T�ac,

�(�T�) = �ca� �" �(�T�) = �cb�.

6�7

� #.� +)� *:.� �' ($�*+
."�%$ * �' *!"�� 5� *�"# +# *!� �,�1 2!+ ! +, �$%�# 5�"#�"#
�' ), )"=+*")": )4+# 6), )"=+*")": 5� *�"7� A�" �4)(.��1 *!� 5�"#�" ��c1 #$ ! *!)* *!�
()*"+4 �' +*#  ��"%+,)*�# !)# *!� '�"( �c = [c1 c2 ... cn]T � �!�, ) 5� *�" ."�B� *+�,
�' ��c *!� )"=+*")": 5� *�" �� +, *!� %+"� *+�, �' *!� 5�"#�" ��c  ), =� 2"+**�,1 +, *!�
 �)##+ ),% ()*"+4 '�"( "�#.� *+5��:�

��c = (�� ��c) ��c �" �c(�T �c) = �ecb �c,6�7



������� �� 	 �
�	�� �	��� � R
� ��

2!�"�

�ecb =

⎡
⎢⎢⎢⎣
c1b1 c1b2 . . . c1bn
c2b1 c2b2 . . . c2bn

. . . . . .
� � � . . .

cnb1 cnb2 . . . cnbn

⎤
⎥⎥⎥⎦ .607

�!� ()*"+4 �ecb !�"� +# *!� *"),#'�"()*+�, ()*"+4 �' 5� *�" �� +, *!� %+"� *+�, �' *!�
5�"#�" ��c�

�� ��������	�� ��� ��������� �� ��� ��	���

����

�, )"=+*")": n
*! �"%�" #;$)"� ()*"+4 �1

� = [aij ] (i, j = 1, 2, . . . , n).6�7

2+*! ���(�,*# aij *!)* )"� "�)� ,$(=�"#1 2!�#� %�*�"(+,),* det � �= 01

� = [aij ] =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .
� � � . . .

an1 an2 . . . ann

⎤
⎥⎥⎥⎦6	7

 ), =� 2"+**�, )# ) ()*"+4 )##� +)*�% 2+*! ),: 5�"#�" ��c1 2!+ ! �+�# +, *!� #.) � R�1
#$ ! *!)* *!�  ��"%+,)*�# ci +, *!+# #.) � '�"( ) ()*"+4

�c = [��c��1 ��c��2 ... ��c��n]T = [c1 c2 ... cn]T6��7

),% *!� ���(�,*# �' *!+# ()*"+4 #)*+#': *!�  �,%+*+�,
n∑
i=1

c2i = 1.6��7

�!� "��)*+�, �' ���(�,*# �' ()*"+4 � 2+*! *!�  ��"%+,)*�# �' ),: 5�"#�" ��c �=

*)+,�% +, #$ ! ) 2): )##$(+,3 *!)* #$=#�;$�,* ���(�,*# aij �' ()*"+4 � )"� *!�
."�%$ *# �' *!�  ��"%+,)*� ci �' 5�"#�" ��c ),% *!�  �""�#.�,%+,3 ,$(=�"# bij 1 #$ !
*!)* aij = cibij � �!�,

� = [aij ] = [cibij ] =

⎡
⎢⎢⎢⎣
c1b11 c1b12 . . . c1b1n
c2b21 c2b22 . . . c2b2n

. . . . . .
� � � . . .

cnbn1 cnbn2 . . . cnbnn

⎤
⎥⎥⎥⎦ .6��7

�!$#1 *!� ()*"+4 �1 =: ),)��3: *� *!� %:)% �' *2� 5� *�"# 6�71 6�71  ), =� 2"+**�,
)# ) ()*"+4 �ecbi ),% *!�,



�� �� "���
���#� $� "����%�� �� $� &��#�

� = �ecbi =

⎡
⎢⎢⎢⎣
c1b11 c1b12 . . . c1b1n
c2b21 c2b22 . . . c2b2n

. . . . . .
� � � . . .

cnbn1 cnbn2 . . . cnbnn

⎤
⎥⎥⎥⎦ .6�-7

A"�( *!� '�"( �' ()*"+4 6�-7 �,�  ),  �, �$%� *!)* *!� ���(�,*# bij +, #$  �##+5�
"�2# �' *!� ()*"+4 �ecbi )"�1 +, *!� R� #.) �1 *!� j
*!  ��"%+,)*�# �'  �"*)+, 5� *�"#
��i� �!�#�  ��"%+,)*�# '�"( *!� ()*"+ �#

�i = [bi1 bi2 . . . bin]T .6��7

�!� ."�%$ * �' #$ ! ) ()*"+4 �ecbi 
 *"�)*�% )# ) ()*"+4 )##� +)*�% 2+*! *!� 5�"#�"
��c1 ),% ) ()*"+4 �'  ��"%+,)*�# �' *!� 5�"#�" ��c +# )  ��$(, ()*"+4 �βi �' *!� '�"(

�βi = �ecbi�c =

⎡
⎢⎢⎢⎣
c1b11 c1b12 . . . c1b1n
c2b21 c2b22 . . . c2b2n

. . . . . .
� � � . . .

cnbn1 cnbn2 . . . cnbnn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

c1
c2
. . .

cn

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

(�1��c)c1
(�2��c)c2
. . .

(�n��c)cn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
β1c1
β2c2
. . .

βncn

⎤
⎥⎥⎦ .

6��7

� )�)" ."�%$ * �' #$  �##+5� 5� *�"# ��i ),% 5� *�" ��c1 �  $""+,3 +, *!�  ��"%+,)*�#
�' *!� ()*"+4 6��7

βi = ��i��c6��7

)"� �;$)� *� *!� ��,3*!# �' ."�B� *+�,# �' 5� *�"# ��i �,*� *!� %+"� *+�, �' *!� 5�"#�"
��c� �$ ! ) ()*"+4 +# *!� #�
 )���% *"),#'�"()*+�, ()*"+4 �' #$  �##+5� 5� *�"# ��i1
2"+**�, +, #$=#�;$�,* "�2# �' *!+# ()*"+41 *�  �((�, %+"� *+�, �' 5�"#�" ��c ),% )�#�
*!�+" )##+3,(�,* *� #$  �##+5�  ��"%+,)*�# �' ,�2�: �#*)=�+#!�% 5� *�"�

A����2+,3 ) "�)#�,+,3 ."�#�,*�% )=�5�1 �,�  ),  �, �$%� *!)* �5�": #;$)"� n
*!
�"%�" ()*"+4 2+*! "�)� 2�"%#1 ($�*+.�+�% =:  ��"%+,)*�# ()*"+4 �' ), )"=+*")": n
*!
%+(�,#+�,)� 5�"#�" 3+5�# ) 5� *�"1 2!�#� #$  �##+5�  ��"%+,)*�# )"� *!� ."�%$ *# �'
).."�."+)*�  ��"%+,)*�# �' *!� #��� *�% 5�"#�" ),% *!� ��,3*! �' ."�B� *+�, �'  �"*)+,1
#$  �##+5� n 5� *�"# ��i �,*� *!� %+"� *+�, �' *!+# 5�"#�"� �.�,%+,3 �, *!� .�#+*+�,
�' 5�"#�" ��c +, #.) � R� +*#  ��"%+,)*�# ),% *!�  ��"%+,)*�# �' #$  �##+5� 5� *�"# ��i
 !)"3�1 ),% #� %� #$  �##+5� # )�)" ."�%$ *# βi 6��7�

��* $# %�(),% *!)* *!� 5�"#�" ��c �=*)+,# #$ ! ) %+"� *+�, +, #.) � R�1 '�" 2!+ !
)�� # )�)" ."�%$ *# βi !)5� *!� #)(� 5)�$�1 2!+ ! (�),# *!)* ��,3*!# �' )�� ."�B� *+�,#
�' #$  �##+5� 5� *�"# ��i )"� �;$)�� �!�,

∀i,j ��i��c = ��j��c, ),% *!$# ∀i,j βi = βj = α.6�07



������� �� 	 �
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� �0

�!$#1 %�8,�% 5�"#�" ��c +# %�# "+=�% +, �+*�")*$"� )# *!� �+3�,5� *�" �' *!� ()*"+4 �1
2!+�� *!�  �((�, 5)�$� �' %�* ."�%$ *#1 %�#+3,)*�% !�"� )# α1 +#  )���% ), �+3�,5)�$�
�' *!+# ()*"+4� �##$(+,3 6�07 ), )�"�)%: @,�2, "��)*+�, 2)# �=*)+,�%

��c = α�c6��7

+, *!� '�"( ⎡
⎢⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .
� � � . . .

an1 an2 . . . ann

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
c1
c2
. . .

cn

⎤
⎥⎥⎦ = α

⎡
⎢⎢⎣

c1
c2
. . .

cn

⎤
⎥⎥⎦ .6�	7

�+(+�)" �;$)*+�, +# �=*)+,�% '�" *!� #� �,% '�"( �' ) ()*"+4 � = �ecbi <

�ecbi �c = α�c �"

⎡
⎢⎢⎢⎣
c1b11 c1b12 . . . c1b1n
c2b21 c2b22 . . . c2b2n

. . . . . .
� � � . . .

cnbn1 cnbn2 . . . cnbnn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
c1
c2
. . .

cn

⎤
⎥⎥⎦ = α

⎡
⎢⎢⎣

c1
c2
. . .

cn

⎤
⎥⎥⎦ .6��7

�, �"%�" *� %�*�"(+,� *!� �+3�,5)�$� ),% �+3�,5� *�"1 *!� �;$)*+�, 6�-7 +# 2"+**�,
+, '����2+,3 '�"(

��c − α�c = 0, ��c − α�n�c = 0,6��7

2!�"� �n +# *!� n
*! �"%�" +%�,*+*: ()*"+4� �!�, *!� �;$)*+�, +#  �,5�"*�% ),%
2"+**�, 2+*! *!� $#� �' ) ,�2 ()*"+4 �α<

�α�c = 0,6��7

*!)* +# ) '�"(

�α =

⎡
⎢⎢⎢⎣
a11 − α a12 . . . a1n

a21 a22 − α . . . a2n

. . . . . .
� � � . . .

an1 an2 . . . ann − α

⎤
⎥⎥⎥⎦ .6�-7

�!�  �,%+*+�, '�" *!� �4+#*�, � �' ) #��$*+�, �' *!� �;$)*+�, 6��7 +# *!)* *!� %�*�"

(+,),* �' ()*"+4 �α +# �;$)� *� >�"�� �'*�" �4.),%+,3 *!� %�*�"(+,),* det �α1 *!�
 !)") *�"+#*+ �;$)*+�, det �α = 0 +# �=*)+,�%  �""�#.�,%+,3 *� *!� ()*"+4 6�-7�

���*# αi (i = 1, 2, . . . , k; k ≤ n) �' *!�  !)") *�"+#*+ �;$)*+�, )"� *!� �+3�,

5)�$�# �' *!� ()*"+4 �� �5�": �+3�,5)�$�  �""�#.�,%# *� ) %+9�"�,* �+3�,5� *�" ��c1
2!�#� ()*"+4 �'  ��"%+,)*�# �c = [c1 c2 . . . cn]T  ), =� %�*�"(+,�% '"�( *!� �;$)

*+�, 6�-7 2+*! *!�  �,%+*+�, 6��7� C#+,3 *!� ()*"+4 � 6��76�-7 ),% @,�2+,3 *!�
 ��"%+,)*�# �' *!� �+3�,5� *�"1 *!�  ��"%+,)*�# ()*"+4 �i = [bi1 bi2 . . . bin]T �'
#$  �##+5� 5� *�"# ��i  ), =�  )� $�)*�%�



�� �� "���
���#� $� "����%�� �� $� &��#�

����

�� *�"# ��i1 )'*�" )..�:+,3 *!�( +, *!� �"+3+, �' ), �"*!�3�,)� n
*! %+(�,#+�,)�
#:#*�( �'  ��"%+,)*�# 0x1 . . . xn1 #.� +': +, *!+# #:#*�( *!� �� )*+�, n �' .�+,*#
Bi = [bi1 bi2 . . . bin]� �!�#� .�+,*# Bi #.), *!� n− 1 %+(�,#+�,)� !:.�".�),� 2!�#�
�;$)*+�,

a0 + a1x1 + a2x2 + a3x3 + · · · + an−1xn−1 + anxn = 06��7

+# �=*)+,�% '"�( #�"+�# �4.),#+�, �' n+ 1
*! �"%�" %�*�"(+,),* !)5+,3 '�"(

⎡
⎢⎢⎢⎢⎢⎣

1 x1 x2 . . . xn
1 b11 b12 . . . b1n
1 b21 b22 . . . b2n

. . . . . . . . .
� � � . . .

1 bn1 bn2 . . . bnn

⎤
⎥⎥⎥⎥⎥⎦

= 0.6��7

�*�"(+,),*# ai (i = 0, 1, 2, . . . , n) �' !:.�".�),� �;$)*+�, )"� *!� (+,�"#D
5)�$�# �' *!� n
*! �"%�" %�*�"(+,),* 6��7� �!�#� (+,�"# )"� *!� )�3�=")+  �(.��

(�,*# �' #$  �##+5� *�"(# xi +, *!� �4.),#+�, �' *!� %�*�"(+,),* 6��7 =: *!� 8"#*
"�2� E:.�".�),� 6��7 #)*+#8�# *!�  �,%+*+�, �' �"*!�3�,)� *� *!� �+3�,5� *�" ��c �'
()*"+4 � 6	76��7�

�"=+*")": 5� *�" ��i 6�i = [bi1 bi2 . . . bin]T 7  ), =� ."�B� *�% �,*� *2� %+"� *+�,#<
*!� %+"� *+�, �' *!� �+3�,5�"#�" ��c �' ()*"+4 � )# ) 5� *�" ��ic ),% *!� %+"� *+�,
�"*!�3�,)� *� �+3�,5�"#�"1 �:+,3 �, *!� !:.�".�),� π �"*!�3�,)� *� *!� 5�"#�" )# )
5� *�" ��iπ �

�!+# 3+5�# *!� 5� *�" ��i = ��ic+��iπ 6+, *!� ()*"+4 '�"( �i = �ic+�iπ71 #$ ! *!)*
*!� ."�B� *+�, �' *!+# 5� *�" ��i �,*� *!� %+"� *+�, �' �+3�,5�"#�" +# ) 5� *�"

��ic = α��c �'  ��"%+,)*�# ()*"+4 �ic = α�c6��7

),% α = βi = (��i��c) 6��7 6�071 #� ��ic = (��i��c)��c� A����2+,3 *!)*1 *!� ()*"+4  ��"%+

,)*�# �ic 5� *�" ��ic +# �=*)+,�% )# *!� ."�%$ * �' *!� %:)% �ecec 6�71 6�7 ),% ()*"+4
�'  ��"%+,)*�# �i 5� *�" ��i1

�ic = �ecec�i, �ecec =

⎡
⎢⎢⎢⎣
c1c1 c1c2 . . . c1cn
c2c1 c2c2 . . . c2cn

. . . . . .
� � � . . .

cnc1 cnc2 . . . cncn

⎤
⎥⎥⎥⎦ .6�07

�!� ."�B� *+�, 5� *�" ��iπ = ��i − ��ic = ��i − α��c �,*� *!� !:.�".�),� π +# +, *!�
()*"+4 '�"(

�iπ = �i − α�c �" �iπ = �i −�ecec�i = �n�i −�ecec�i.6��7
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�!�,

�iπ =

⎡
⎢⎢⎢⎣

1 − c1c1 c1c2 . . . c1cn
c2c1 1 − c2c2 . . . c2cn

. . . . . .
� � � . . .

cnc1 cnc2 . . . 1 − cncn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
bi1
bi2
. . .

bin

⎤
⎥⎥⎦ .6�	7

�!� 5� *�" #$( �' )�� 5� *�"# ��i1

�i = [bi1 bi2 . . . bin]T ,6-�7

)..�)"+,3 +, #$=#�;$�,* ()*"+4 "�2# � = �ecbi 6�-71 +# 5� *�" �� #$ ! *!)* *!�
()*"+4 �'  ��"%+,)*�# !)# *!� '�"(

� =
[
b1 =

∑
bi1 b2 =

∑
bi2 . . . bn =

∑
bin

]T
.6-�7

�!� ."�B� *+�, ��c �' *!� 5� *�" �� �,*� *!� %+"� *+�, �+3�,5�"#�" ��c +# *!� n
'��%
."�B� *+�, �' ."�B� *+�, 5� *�" ��ic �' �) ! 5� *�" ��i �,*� *!+# %+"� *+�,� �!�"�'�"�

��c = nα��c ),% �c = nα�c �" �c = n�ecec�i.6-�7

�, *!� �*!�" !),%1 5� *�" �' ."�B� *+�, ��π �' 5� *�" �� �,*� *!� .�),� π1 ��π = ��−��c =
��− nα��c1 !)#  ��"%+,)*�# *!)*  ), =� 2"+**�, +, ()*"+4 '�"(

�π = �− nα�c �" �π = �−�ecec� = �n�−�ecec�.6--7

�!�,

�π =

⎡
⎢⎢⎢⎣

1 − c1c1 c1c2 . . . c1cn
c2c1 1 − c2c2 . . . c2cn

. . . . . .
� � � . . .

cnc1 cnc2 . . . 1 − cncn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
b1
b2
. . .

bn

⎤
⎥⎥⎦ .6-�7

�##$(�% !�"� "�'�"�, � #:#*�( +, *!� #.) � R�1  �,#+#*+,3 �' )4�# �5�"�)..+,3 2+*!
*!� �+3�,5� *�" �' ()*"+4 � 6	7 ),% �"*!�3�,)� *� *!+# )4+# n − 1
%+(�,#+�,)� !:

.�".�),� π  ), =�  )���% *!� $(="���) )##� +)*�% 2+*! *!� ()*"+4 �� �,� #!)��
"�(�(=�"1 *!)* *!� ,$(=�" �' $(="���)# )##� +)*�% 2+*! *!� ()*"+4 � +# )# (),:
)# *!� ,$(=�" �' *!� �+3�,5� *�"# �' *!)* ()*"+41 2!+ ! (�),# )* (�#* n�

�� �� ������� �� R�

�##$(�% ) #;$)"� ()*"+4 2+*! *!� '����2+,3 ���(�,*#

� =
[ −1 6

2 3

]
, det A = −15.6-�7

F� $#� *!� '�"( �' �;$)*+�, 6��7�
�!� �4+#*�, �  �,%+*+�, �' #��$*+�,# �' �;$)*+�, 6��7 !)# *!� '�"( det �α = 0

),% +*# #�"+�# �4.),#+�,# 3+5�# *!�  !)") *�"+#*+ �;$)*+�,



	� �� "���
���#� $� "����%�� �� $� &��#�

det �α = det
[ −1 − α 6

2 3 − α

]
= 0 �−→ α2 − 2α− 15 = 0.6-�7

�!+# :+��%# *� )  �, �$#+�, *!)* ()*"+4 � !)# *2� �+3�,5)�$�# α = −3 ),% α = 5�

���� ���������� α = −3

A"�( �;$)*+�, 6��7 )'*�" #$=#*+*$*+,3 '�" *!� ()*"+4 6�-7 '�" α = −3 �,�  ), �=*)+,[
2 6
2 6

] [
c1
c2

]
= 0.6-07

E�, � ),% '"�( *!�  �,%+*+�, 6��7 +# �=*)+,�% #:#*�( �' �;$)*+�,#<{
c1 + 3c2 = 0
c21 + c22 = 1

.6-�7

�2� .)+"# �' ,$(=�"#1 2!+ ! )"�  ��"%+,)*�# �' �+3�,5� *�"# �c = [c1 c2]T �' ()*"+4
�1 )"� #��$*+�, �' *!)* #:#*�( �' �;$)*+�,# +, *!� '�"(

�c =
[

3
√

10
10 −

√
10

10

]T
),% �c =

[
− 3

√
10

10

√
10

10

]T
.6-	7

��(.)"+,3 5)�$�# �' *!� ()*"+4G# ���(�,*# 6�7 ),% 6�-7 �,� �=*)+,#  ��"%+,)*�# �'
5� *�"# ��1 ),% ��2 +, *!� ()*"+4 '�"( �' *!�+"  ��"%+,)*�# '�" =�*! �+3�,5� *�"#

'�" �c =
[

3
√

10
10 −

√
10

10

]T
:

�1 =
[
−

√
10
3 2

√
10

]T
),% �2 =

[ −2
√

10 −3
√

10
]T
,

'�" �c =
[
− 3

√
10

10

√
10

10

]T
:

�1 =
[ √

10
3 −2

√
10

]T
),% �2 =

[
2
√

10 3
√

10
]T
.

6��7

�, )=�5� #��$*+�,#1 =�*! .)+"# �' 5� *�"# ��c )# 2��� )# *!� .)+" �' 5� *�"# ��1 ),% ��2

"�."�#�,* �..�#+*� 5� *�"#� A�" �) ! #��$*+�,  �,%+*+�, 6�07 +# #)*+#':1 ,)(��:

��1��c = ��2��c = α = −3.6��7

A�" *!� 8"#* #��$*+�,1 *!"�$3! *!� .�+,*# B1[b11 b12] ),% B2[b21 b22] �,�  ), .��*
) #*")+3!* �+,�� �;$)*+�, �' #*")+3!* �+,� x1 − 1

3x2 +
√

10 = 01  )� $�)*�% '"�( *!�
#�"+�# �4.),#+�,# �' %�*�"(+,),* 6��7

⎡
⎣ 1 x1 x2

1 b11 b12
1 b21 b22

⎤
⎦ = 0,

⎡
⎢⎣

1 x1 x2

1 −
√

10
3 2

√
10

1 −2
√

10 −3
√

10

⎤
⎥⎦ = 0,6��7

2)# �=*)+,�% 2+*! ) #��.� m = 3�



������� �� 	 �
�	�� �	��� � R
� 	�

 ��� '! (����
��� �
�����
�
�� �	 ���
��� �	 � ��
��� � R
��

���.� +, *!� %+"� *+�, �' *!� 5�"#�" ��c +# mc = − 1
3 � �!�  �,%+*+�, m mc = −1

+# #)*+#8�%1 (�),+,3 *!)* �+3�,5�"#�" �' ()*"+4 � +# ,�"()� *� #*")+3!* �+,� *!"�$3!
*!� .�+,*# B1 ),% B2� A"�( A+3� � �,�  ),  �, �$%� *!)*

|α| = |��1��c| = |��2��c| = d = h,6�-7

#� )=#��$*� �+3�,5)�$� �' ()*"+4 � +# �;$)� *� )�*+*$%� h �' *"+),3�� =$+�* �, 5� *�"#
��1 ),% ��21 !)5+,3 *"+),3�� =)#� �+�% �, ) �+,� B1B2 ),% �;$)� *� %+#*), � d '"�( *!�
�"+3+, *� *!� #*")+3!* �+,� B1B2�

���� ���������� α = 5

A"�( �;$)*+�, 6��7 )'*�" #$=#*+*$*+,3 '�" *!� ()*"+4 6�-7 '�" α = 5 �,�  ), �=*)+,[ −6 6
2 −2

] [
c1
c2

]
= 0.6��7

E�, � ),% '"�( *!�  �,%+*+�, 6��7 +# �=*)+,�% #:#*�( �' �;$)*+�,#<{
c1 − c2 = 0
c21 + c22 = 1

.6��7

�2� .)+"# �' ,$(=�"#1 2!+ ! )"�  ��"%+,)*�# �' �+3�,5� *�"# �c = [c1 c2]T �' ()*"+4
�1 )"� #��$*+�, �' *!)* #:#*�( �' �;$)*+�,# +, *!� '�"(

�c =
[ √

2
2

√
2

2

]T
),% �c =

[
−

√
2

2 −
√

2
2

]T
.6��7



	� �� "���
���#� $� "����%�� �� $� &��#�

��(.)"+,3 5)�$�# �' *!� ()*"+4G# ���(�,*# 6�7 ),% 6�-7 �,� �=*)+,#  ��"%+,)*�# �'
5� *�"# ��1 ),% ��2 +, *!� ()*"+4 '�"( �' *!�+"  ��"%+,)*�# '�" =�*! �+3�,5� *�"#

'�" �c =
[ √

2
2

√
2

2

]T
:

�1 =
[ −√

2 6
√

2
]T

),% �2 =
[

2
√

2 3
√

2
]T
,

'�" �c =
[
−

√
2

2 −
√

2
2

]T
:

�1 =
[ √

2 −6
√

2
]T

),% �2 =
[ −2

√
2 −3

√
2

]T
.

6�07

�, )=�5� #��$*+�,#1 =�*! .)+"# �' 5� *�"# ��c )# 2��� )# *!� .)+" �' 5� *�"# ��1 ),% ��2

"�."�#�,* �..�#+*� 5� *�"#� A�" �) ! #��$*+�,  �,%+*+�, 6�07 +# #)*+#':1 ,)(��:

��1��c = ��2��c = α = 5.6��7

A�" *!� 8"#* #��$*+�,1 *!"�$3! *!� .�+,*# B1[b11 b12] ),% B2[b21 b22] �,�  ), .��* )
#*")+3!* �+,�� �;$)*+�, �' #*")+3!* �+,�

√
2x1 +

√
2x2 − 2 = 01  )� $�)*�% '"�( *!�

#�"+�# �4.),#+�,# �' %�*�"(+,),* 6��7

⎡
⎣ 1 x1 x2

1 b11 b12
1 b21 b22

⎤
⎦ = 0,

⎡
⎣ 1 x1 x2

1 −√
2 6

√
2

1 2
√

2 3
√

2

⎤
⎦ = 0,6�	7

2)# �=*)+,�% 2+*! ) #��.� m = −1�
���.� +, *!� %+"� *+�, �' *!� 5�"#�" ��c +# mc = 1� �!�  �,%+*+�, m mc = −1 +#

#)*+#8�%1 (�),+,3 *!)* �+3�,5�"#�" �' ()*"+4 � +# ,�"()� *� #*")+3!* �+,� *!"�$3!
*!� .�+,*# B1 ),% B2�

�� �
� ������� �� R�

�##$(�% ) #;$)"� ()*"+4 2+*! *!� '����2+,3 ���(�,*#

� =

⎡
⎣ −3 −4 −4

1 1 2
0 2 2

⎤
⎦ , det A = 6.6��7

F� $#� *!� '�"( �' �;$)*+�, 6��7� �!� �4+#*�, �  �,%+*+�, �' #��$*+�,# �' �;$)*+�,
6��7 !)# *!� '�"( det �α = 0 ),% +*# #�"+�# �4.),#+�,# 3+5�# *!�  !)") *�"+#*+ 
�;$)*+�,

det �α = det

⎡
⎣ −3 − α −4 −4

1 1 − α 2
0 2 2 − α

⎤
⎦ = 0 �−→ −α3 + 7α+ 6 = 0.6��7

�!+# :+��%# *� )  �, �$#+�, *!)* ()*"+4 !)# *!"�� �+3�,5)�$�# α = 31 α = −1 ),%
α = −2�



������� �� 	 �
�	�� �	��� � R
� 	-

���� ���������� α = 3

A"�( �;$)*+�, 6��7 )'*�" #$=#*+*$*+,3 '�" *!� ()*"+4 6�-7 '�" α = 3 �,�  ), �=*)+,⎡
⎣ −6 −4 −4

1 −2 2
0 2 −1

⎤
⎦

⎡
⎣ c1
c2
c3

⎤
⎦ = 0.6��7

E�, � ),% '"�( *!�  �,%+*+�, 6��7 +# �=*)+,�% #:#*�( �' �;$)*+�,#⎧⎪⎪⎨
⎪⎪⎩

3c1 + 2c2 + 2c3 = 0
c1 − 2c2 + 2c3 = 0

2c2 − c3 = 0
c21 + c22 + c23 = 1

.6�-7

�2� *"+.��# �' ,$(=�"#1 2!+ ! )"�  ��"%+,)*�# �' �+3�,5� *�"# �c = [c1 c2 c3]T �'
()*"+4 �1 )"� #��$*+�, �' *!)* #:#*�( �' �;$)*+�,# +, *!� '�"(

�c =
[ − 2

3
1
3

2
3

]T
),% �c =

[
2
3 − 1

3 − 2
3

]T
.6��7

��(.)"+,3 5)�$�# �' *!� ()*"+4G# ���(�,*# 6�7 ),% 6�-7 �,� �=*)+,#  ��"%+,)*�# �'
5� *�"# ��11 ��2 ),% ��3 +, *!� ()*"+4 '�"( �' *!�+"  ��"%+,)*�# '�" =�*! �+3�,5� *�"#

'�" �c =
[ − 2

3
1
3

2
3

]T
: �1 =

[
9
2 6 6

]T
,

�2 =
[

3 3 6
]T
, �3 =

[
0 3 3

]T
,

'�" �c =
[

2
3 − 1

3 − 2
3

]T
: �1 =

[ − 9
2 −6 −6

]T
,

�2 =
[ −3 −3 −6

]T
, �3 =

[
0 −3 −3

]T
.

6��7

H�*! .)+"# �' 5� *�"# ��c )# 2��� )# *!� .)+" �' 5� *�"# ��11 ��2 ),% ��3 �  $""+,3 +,
)=�5� #��$*+�,#1 #)*+#':  �,%+*+�, 6�071 ,)(��:

��1��c = ��2��c = ��3��c = α = 3.6��7

A�" *!� 8"#* #��$*+�,1 *!"�$3! *!� .�+,*# B1 [b11 b12 b13]1 B2 [b21 b22 b23]1
B3 [b31 b32 b33] �,�  ), .��* ) .�),�� �;$)*+�, �' .�),�  )� $�)*�% '"�( *!� #�"+�#
�4.),#+�,# �' %�*�"(+,),* 6��7⎡

⎢⎢⎣
1 x1 x2 x3

1 b11 b12 b13
1 b21 b22 b23
1 b31 b32 b33

⎤
⎥⎥⎦ = 0,

⎡
⎢⎢⎣

1 x1 x2 x3

1 9
2 6 6

1 3 3 6
1 0 3 3

⎤
⎥⎥⎦ = 0,6�07

!)# ) '�"(

−2x1 + x2 + 2x3 − 18 = 0.6��7

�!� 5�"#�"1 2!+ ! +# ,�"()� *� *!+# .�),�1 !)# *!�  ��"%+,)*�# �π = [− 2
3

1
3

2
3 ]T ),%

+# *!� #)(� )# �+3�,5�"#�" �c = [− 2
3

1
3

2
3 ]T �' ()*"+4 �  �""�#.�,%+,3 *� *!+# .�),��

�!+# (�),# *!)* *!� �+3�,5�"#�" ��c +# �"*!�3�,)� *� *!� .�),� π� �!�  �,#+%�"�%
 )#� )4+# �' ), $(="���) +# *!� )4+#  �""�#.�,%+,3 *� *!� �+3�,5�"#�" �' ()*"+4 �

),% *!� .�),� �' *!� $(="���) '�"(# ) .�),� π1 2!�#� .�#+*+�, +, #.) � #.� +8�#
*!� #)(� 5�"#�" �c = [− 2

3
1
3

2
3 ]T � �� *�" �� 6-�7 �' ()*"+4 � !)# *!�  ��"%+,)*�#



	� �� "���
���#� $� "����%�� �� $� &��#�

 ��� )! (����
��� �
�����
�
�� �	 ���
��� �	 � ��
��� � R
��

� = [152 12 15]T � �� *�" ."�B� *+�, ��c �,*� *!� %+"� *+�, �' �+3�,5� *�" ��c +# ) 5� *�"
��c = nα ��c 2+*! *!�  ��"%+,)*�# �c = [−6 3 6]T 1 ),% 5� *�" ."�B� *+�, ��π �,*� *!�
.�),� π1  )� $�)*� '"�( *!� ()*"+4 6--7 �" 6-�71 !)# *!�  ��"%+,)*�# �π = [272 9 9]T �
A+3� � #!�2# *!� #�* �' 5� *�"# �' *!� ()*"+4 �< �+3�,5�"#�" ��c1 5� *�"# ��11 ��2 ),% ��3

%�8,+,3 *!� $(="���) .�),� π ,�"()� *� *!� 5� *�" ��c ),% *!� %+#*), � d = h #$ !
*!)*

d = h = |��1��c| = |��2��c| = |��3��c| = |α| = 3,6�	7

�!$# +*# ��,3*! +# �;$)� *� *!� )=#��$*� �+3�,5)�$� �' ()*"+4 ��

���� ���������� α = −1 ��� α = −2

A"�( �;$)*+�, 6��7 )'*�" #$=#*+*$*+,3 '�" *!� ()*"+4 6�-7 '�" α = −1 �,�  ), �=*)+,

⎡
⎣ −2 −4 −4

1 2 2
0 2 3

⎤
⎦

⎡
⎣ c1
c2
c3

⎤
⎦ = 0.6��7

E�, � ),% '"�( *!�  �,%+*+�, 6��7 +# �=*)+,�% #:#*�( �' �;$)*+�,#

⎧⎨
⎩

c1 + 2c2 + 2c3 = 0
2c2 + 3c3 = 0

c21 + c22 + c23 = 1
.6��7



������� �� 	 �
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�2� *"+.��# �' ,$(=�"#1 2!+ ! )"�  ��"%+,)*�# �' �+3�,5� *�"# �c = [c1 c2 c3]T �'
()*"+4 �1 )"� #��$*+�, �' *!)* #:#*�( �' �;$)*+�,# +, *!� '�"(

�c =
[
− 2

√
17

17
3
√

17
17 − 2

√
17

17

]T
, �c =

[
2
√

17
17 − 3

√
17

17
2
√

17
17

]T
.6��7

���"%+,)*�# �' 5� *�"# ��11 ��2 ),% ��3 +, *!� ()*"+4 '�"( �' *!�+"  ��"%+,)*�# '�" =�*!
�+3�,5� *�"#<

�c =
[

−2
√

17
17

3
√

17
17

−2
√

17
17

]T
: �1 =

[
3
√

17
17 2

√
17 2

√
17

]T
,

�2 =
[ √

17
3

√
17
3

2
√

17
3

]T
, �3 =

[
0 −√

17 −√
17

]T
,

�c =
[

2
√

17
17

−3
√

17
17

2
√

17
17

]T
: �1 =

[
−3

√
17

17 −2
√

17 −2
√

17
]T
,

�2 =
[

−√
17

3
−√

17
3

−2
√

17
3

]T
, �3 =

[
0

√
17

√
17

]T
,

6�-7

�# ), ���3),* )..�+ )*+�, 2�  ), �=*)+, *!� "��)*+�, #!�2, +, A+3� - I�J�

 ��� *! ��� ���
� 
�� +��
 ����� �	 
�� ������� ��
� �����
��� $, �� �- ������ 1
2
|OE|�

H�*! .)+"# �' 5� *�"# ��c )# 2��� )# *!� .)+" �' 5� *�"# ��11 ��2 ),% ��3 �  $""+,3 +,
)=�5� #��$*+�,#1 #)*+#':  �,%+*+�, 6�071 ,)(��:



	� �� "���
���#� $� "����%�� �� $� &��#�

��1��c = ��2��c = ��3��c = α = −1.6��7

A"�( �;$)*+�, 6��7 )'*�" #$=#*+*$*+,3 '�" *!� ()*"+4 6�-7 '�" α = −1 �,�  ), �=*)+,
⎡
⎣ −1 −4 −4

1 3 2
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AN ESTIMATE FOR THE MODULUS OF CONTINUITY
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Summary
Sufficient conditions for existence of a quaternion singular Cauchy integral in the theory

of α-hyperholomorphic functions, defined on a closed rectifiable regular surface in the space
R

3, is established and an upper estimate for its modulus of continuity is proved in terms
of the modulus of continuity of the integrand.

Keywords and phrases: quaternion Cauchy integral, modulus of convexity

1. Introduction

For the first time A. Zygmund [1] proved an estimate for the modulus of continuity
of a trigonometrically conjugate function on the real axis. It is equivalent to the esti-
mate for the modulus of continuity of a singular Cauchy integral on a circle. This es-
timate yields, in particular, the Plemelj-Privalov theorem on the invariance of Hölder
classes with respect to a singular Cauchy integral. The A. Zygmund estimate was ex-
tended to broader classes of curves in works of L. G. Magnaradze [2,3], A. A. Babaev
and V. V. Salaev [4–6], P. M. Tamrazov [7, 8], O. F. Gerus [9–11], T. S. Salimov [12],
E. M. Dyn’kin [13]. In particular, it was established that the broadest class of curves
(see [6,9]) for the estimate to have the same form as on a circle is the class of regular
curves (for which the measure of the part of a curve that enters the disk does not
exceed a constant multiplied by the radius of the disk). For more general curves
(see [6, 9–13]) the majorant worsens and depends on the curve.
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In [14] we considered a generalization of the Cauchy type integral in the theory
of so-called α-hyperholomorphic functions acting from the space R2 equipped with
a certain quaternion structure to the algebra of complex quaternions. We proved
formulas for the boundary values of the integral on closed piecewise Lyapunov curves
and the Plemelj-Privalov theorem for appropriate singular integral. In the work [15]
we proved formulas for the boundary values of the quaternion Cauchy type integral
on closed Jordan rectifiable curves and in the work [16] we obtained an estimate for
the modulus of continuity of the appropriate singular integral.

In [17] an analog of the A. Zygmund estimate was proved for a singular Cauchy
integral in the theory of quaternion hyperholomorphic functions on surfaces of the
space R

3, equipped with a certain quaternion structure. The aim of this work is
to obtain an estimate for the modulus of continuity of a singular Cauchy integral
in the theory of α-hyperholomorphic functions (see [18]) on regular surfaces in the
space R3.

2. Quaternions. Quaternion differentiable functions in R3

Let H = H(R) and H(C) denote, respectively, the algebras of real and complex
quaternions

a =
3∑

k=0

akik, where {ak}3
k=0 ⊂ R

for real quaternions, {ak}3
k=0 ⊂ C for complex quaternions, i0 = 1, i1, i2, and i3 are

imaginary quaternion units with the multiplication rule

i1
2 = i2

2 = i3
2 = i1i2i3 = −1.

Under the modulus of a complex quaternion we understand its Euclidean norm

|a| :=

√√√√ 3∑
k=0

|ak|2.

For complex quaternions hold relations |a|2 �= aa and

|ab| �
√

2 |a| |b|(1)

(see Lemma 2.1 of the paper [15]).
Let z := z1i1 + z2i2 + z3i3 be a real quaternion, let Ω be a domain in the space

R3, and let α ∈ C. For functions f : Ω → H(C) having the partial derivatives of the
second order consider the Helmholtz operator

Δα2 :=
2∑
k=0

∂2

∂z2
k

+ α2I,

where I is the identical operator. The following factorizations hold (see [18]):

Δα2 = −DαD−α = −αD −αD,
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where

Dα[f ] :=
3∑
k=1

ik
∂f

∂zk
+ αf,

αD[f ] :=
3∑

k=1

∂f

∂zk
ik + αf.

The fundamental solution of the Helmholtz operator in the space R3 has the form
(see [19]):

Eα(z) = −e
−iα|z|

4π|z| .

The function

Kα(z) := −D−α[Eα](z) =
(
α+

z

|z|2 + iα
z

|z|
)
Eα(z),

which is a fundamental solution of operators Dα and αD, is called the quaternion

Cauchy kernel just as the Cauchy kernel
1

2πz
in complex analysis is a fundamental

solution of the Cauchy-Riemann operator

∂ :=
∂

∂x
+ i

∂

∂y
.

3. Quaternion Cauchy type integral and singular Cauchy
integral

Let Γ be a rectifiable surface in the space R3, i.e., Γ is the image of a bounded set
from R2 under its Lipschitz mapping into R3. The particular case of a rectifiable
surface is a piecewise surface. A surface Γ is called a closed surface if it divides the
space on two domains: interior Ω+ with respect to Γ and exterior Ω−. It is known
(see [20]) that the tangent plane exists in almost every point of a rectifiable surface.
Denote by ν(ζ) := ν1(ζ)i1 + ν2(ζ)i2 + ν3(ζ)i3 the unit normal vector to oriented
surface Γ in that points ζ ∈ Γ, where it exists. We choose the orientation of a closed
surface for the normal vector to be directed into the domain Ω−.

For a closed Jordan rectifiable surface Γ ⊂ R3 and for a continuous function
f : Γ → H(C) the quaternion Cauchy type integral is defined by the formula (see [18])

Φα[f ](z) :=
∫

Γ

Kα(ζ − z) ν(ζ) f(ζ) dsζ , z ∈ R
3 \ Γ,

where dsζ is the surface square element.
Let Γz,δ := {ζ∈Γ : |ζ−z| � δ}. The object of research in this work is the singular

integral

Fα[f ](t) := lim
δ→0

∫
Γ\Γt,δ

Kα(ζ − t) ν(ζ) (f(ζ) − f(t)) dsζ , t ∈ Γ,
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using for representation of the boundary values of the Cauchy type integral Φα (in
the case of α = 0 see [21]).

Let us denote
Kα,1(z) = α Eα(z),

Kα,2(z) =
z

|z|2 Eα(z),

Kα,3(z) = iα
z

|z| Eα(z).

Then
Kα = Kα,1 +Kα,2 +Kα,3

and so

Fα[f ](t) =
3∑

k=1

Fα,k[f ](t),(2)

where

Fα,k[f ](t) := lim
δ→0

∫
Γ\Γt,δ

Kα,k(ζ − t) ν(ζ) (f(ζ) − f(t)) dsζ .

Assume that δ > 0, E ⊂ R
3,

ωΓ(f, δ) := sup
|z1−z2|�δ
{z1;z2}⊂Γ

|f(z1) − f(z2)|

is the modulus of continuity of a function f on Γ, θz(δ) := mes Γz,δ is the surface
measure of the set Γz,δ.

Later on the symbol c in estimates will denote positive absolute constants (pos-
sibly different).

Definition. A closed Jordan rectifiable surface Γ is called a regular surface, if there
exists a positive constant K, such as for all z ∈ Γ and for all δ > 0 the next inequality
holds true:

θz(δ) � Kδ2.(3)

Theorem 1. Let Γ be a regular surface and a function f : Γ → H(C) satisfies the
condition

d∫
0

ωΓ(f, x)
x

dx < +∞,(4)

where d is the diameter of the surface Γ. Then the integral Fα[f ] exists in every
point of the space Γ and the estimate
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ωΓ(Fα, δ) � cKe3|α|d

⎛
⎝(1 + 2d|α|)

2d∫
0

ωΓ(f, x)

x
(

1 +
x

δ

)dx+ |α|2δ
2d∫
δ

ωΓ(f, x) dx

⎞
⎠

holds true.

Proof. It follows from (4) that ωΓ(f, δ) = o(1) when δ → 0. Thus the function f is
uniformly continuous on the surface Γ.

In order to prove the existence of the integral Fα we may prove only the existence
of the integral Fα,2 as long as Kα,2 is the main term of the Cauchy kernel Kα.

Let us fix any point t ∈ Γ. Let n ∈ N (N is the set of natural numbers), dn= d
2n−1 ,

Γn := Γt,dn \ Γt,dn+1. Then

Fα,2 =
∞∑
n=1

I2(Γn),

where

I2(Γn) :=
∫
Γn

Kα,2(ζ − t)ν(ζ)(f(ζ) − f(t))dsζ .

Taking into account the inequality (1), we have

|I2(Γn)| � 1
2π

∫
Γn

e|α| |ζ−t|
|f(ζ) − f(t)|

|ζ − t|2 dsζ �

� 1
2π
e|α|dn

ωΓ(f, dn)
d2
n+1

(θt(dn) − θt(dn+1)) � 2
π
e|α| dn

dn∫
dn+1

ωΓ(f, 2y)
y2

dθt(y).

Therefore, owing to the monotony of the modulus of continuity ωΓ,f and the
inequality (3), we obtain

∞∑
n=1

|I(Γn)| � 2
π
e|α|d

d∫
0

ωΓ(f, 2y)
y2

dθt(y) � 16
3π
Ke|α|d

4d∫
0

ωΓ(f, x)
x

dx.(5)

So the condition (4) implies the absolute convergence of the series
∞∑
n=1

I(Γn) and

consequently the convergence of the singular integral Fα.
Let us estimate the modulus of continuity of the integral Fα,2. Let 0 < δ � d

3 .
Consider any points {t(1); t(2)} ⊂ Γ such as δ1 := |t(1) − t(2)| � δ. Let us define
γ := Γ

t(1), 2δ1
. Then
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4π
(
Fα,2

(
t(2)

)
− Fα,2

(
t(1)

))
=

∫
γ

e−iα|ζ−t
(1)| ζ − t(1)

|ζ − t(1)|3 ν(ζ)(f(ζ) − f(t(1)))dsζ −

−
∫
γ

e−iα|ζ−t
(2)| ζ − t(2)

|ζ − t(2)|3 ν(ζ)(f(ζ) − f(t(2)))dsζ +

+
∫

Γ\γ

e−iα|ζ−t
(1)| ζ − t(1)

|ζ − t(1)|3 ν(ζ)(f(t(2)) − f(t(1)))dsζ +

+
∫

Γ\γ

(
e−iα|ζ−t

(1)| ζ − t(1)

|ζ − t(1)|3 − e−iα|ζ−t
(2)| ζ − t(2)

|ζ − t(2)|3
)
ν(ζ)(f(ζ) − f(t(2)))dsζ =:

=: I1 + I2 + I3 + I4.

(6)

Similarly to the estimate (5) we obtain

|I1| � 8e2|α|δ1
2δ1∫
0

ωΓ(f, 2y)
y2

dθt(1)(y) � 64
3
Ke2|α|δ1

8δ1∫
0

ωΓ(f, x)
x

dx,(7)

|I2| � 8e3|α|δ1
3δ1∫
0

ωΓ(f, 2y)
y2

dθt(2)(y) � 64
3
Ke3|α|δ1

12δ1∫
0

ωΓ(f, x)
x

dx.(8)

In order to estimate |I3| we complement the surface Γ \ γ to a closed surface
by the surface Sγ , which consists of parts of the sphere having the radius 2δ1, the
center t(1), the common edge with Γ \ γ, and having the normal vector oriented to
the center of the sphere.

Owing to the Gauss-Ostrogradsky formula, the integral along closed surface Γ \
γ + Sγ is equal zero. Therefore

I3 = −
∫
Sγ

e−iα|ζ−t
(1)| ζ − t(1)

|ζ − t(1)|3 ν(ζ)(f(t(2)) − f(t(1)))dsζ =

=
mesSγ

4δ21
e−iα2δ1(f(t(2)) − f(t(1)).

Thus

|I3| � 4πe2|α|δ1ωΓ(f, δ1) � 8πe2|α|δ1
2δ1∫
0

ωΓ(f, x)
x

dx.(9)

Let us estimate |I4|. Let ν ∈ N such as d � 2νδ1 < 2d, Γ̃n := (Γ
t(2), δn+1

\
Γ
t(2), δn

) \ γ, δn := 2n−1δ1, n = 1, 2, . . . , ν. Then
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I4 =
ν∑

n=1

(I4,n,1 + I4,n,2) ,(10)

where

I4,n,1 =
∫

Γ̃n

(
e−iα|ζ−t

(1)| − e−iα|ζ−t
(2)|

) ζ − t(2)

|ζ − t(2)|3 ν(ζ)(f(ζ) − f(t(2)))dsζ ,(11)

I4,n,2 =
∫

Γ̃n

e−iα|ζ−t
(1)|

(
ζ − t(1)

|ζ − t(1)|3 − ζ − t(2)

|ζ − t(2)|3
)
ν(ζ)(f(ζ) − f(t(2)))dsζ .(12)

|I4,n,1| � 16 e|α|d|α|δ1ωΓ(f, δn+1)
(δn+1)2

(θt(2)(δn+1) − θt(2)(δn)) �

� 16 e|α|d|α|δ1
δn+1∫
δn

ωΓ(f, 2y)
y2

dθt(2)(y).
(13)

Analogously, by using the inequality (see [22])∣∣∣∣ a

|a|3 − b

|b|3
∣∣∣∣ � |a− b|

(
1

|a|2|b| +
1

|a||b|2
)

for any quaternions a and b, we obtain

|I4,n,2| � 68 e|α|dδ1
ωΓ(f, δn+1)

(δn+1)3
(θt(2)(δn+1) − θt(2)(δn)) �

� 68 e|α|dδ1

δn+1∫
δn

ωΓ(f, 2y)
y3

dθt(2)(y).
(14)

Using relations (6)–(14) we get

ωΓ(Fα,2, δ) � cKe3|α|d

⎛
⎝

2d∫
0

ωΓ(f, x)

x
(

1 +
x

δ

)dx+ |α|δ
2d∫
δ

ωΓ(f, x)
x

dx

⎞
⎠ .(15)

Analogously by using inequalities∣∣∣∣ 1
|a| −

1
|b|

∣∣∣∣ � |a− b|
|a||b| ,

∣∣∣∣ a

|a|2 − b

|b|2
∣∣∣∣ � |a− b|

|a||b|
respectively, we obtain the next estimation for continuity moduli of integrals Fα,k,
k ∈ {1; 3}:

ωΓ(Fα,k, δ) � cKe3|α|d

⎛
⎝|α|

2d∫
0

ωΓ(f, x)

1 +
x

δ

dx+ |α|2δ
2d∫
δ

ωΓ(f, x) dx

⎞
⎠ .(16)
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It follows from the relations (2), (15), (16) that

ωΓ(Fα, δ) � cKe3|α|d

⎛
⎝

2d∫
0

ωΓ(f, x)

x
(

1 +
x

δ

)dx+ |α|
2d∫
0

ωΓ(f, x)

1 +
x

δ

dx+ |α|2δ
2d∫
δ

ωΓ(f, x) dx

⎞
⎠ t

� cKe3|α|d

⎛
⎝(1 + 2d|α|)

2d∫
0

ωΓ(f, x)

x
(

1 +
x

δ

)dx+ |α|2δ
2d∫
δ

ωΓ(f, x) dx

⎞
⎠ .

Theorem is proved.
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OSZACOWANIE MODU�LU CIA̧G�LOŚCI KWATERNIONOWEJ
OSOBLIWEJ CA�LKI CAUCHY’EGO NA POWIERZCHNI
REGULARNEJ

S t r e s z c z e n i e
Uzyskujemy wystraczaja̧ce warunki istnienia kwaternionowej osobliwej ca�lki Cauchy’ego

w teorii funkcji α-hiperholomorficznej, określonych na domkniȩtej prostowalnej powierzchni
regularnej w przestrzeni R

3. Ponadto wyznaczamy kres górny odpowiedniego modu�lu cia̧g-
�lości w terminach modu�lu cia̧g�lości funkcji podca�lkowej.
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the connection with the Galois extension is indicated. Then we can formulate the binary
and ternary Hurwitz-type conditions and we obtain the Dirac operator by these conditions.
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4. Binary Hurwitz condition vs. the Dirac and Klein-Gordon
operators

In this section, we recall the Hurwitz condition for K (= R or C)-vector space and
the Hurwitz problem [5]. Then we can obtain the Dirac operator from the solution.

4.1. Hurwitz condition

Let Rn be the n-dimensional Euclidean space. Then we can formulate the Hurwitz
condition as follows: A bilinear mapping τ : Rn × Rn → Rn satisfies the Hurwitz
condition, whenever
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|τ(x, y)| = |x| |y|,
where |x| implies the length of x.

We can prove the following fact: the Hurwitz condition is satisfied, if and only if
n = 1, 2, 4, 8 and the bilinear mapping is realized by the product of the real number,
complex numbers, quaternion numbers, and octonion numbers, respectively. We can
derive the Dirac operator from this condition: Setting

τ(x, y) = (x1C1 + x2C2 + . . .+ xnCn)y,

we have
tCiCj + tCjCi = 2δijI (i, j = 1, 2, . . . , n).

After a change of an orthonormal coordinate, setting

γi = tC1Ci(i = 2, 3, . . . , n),

we have the Clifford algebra with skew-symmetric generators in the case of n =
1, 2, 4:

γiγj + γjγi = −2δijI (i, j = 2, 3, . . . , n) (tγi = −γi).

4.2. Partial and full quantization

We can see that
τ(x, y) = (x1I + x2γ2 + . . .+ xnγn)y.

Hence, making the quantization, xi → ∂/∂xi (i = 1, 2, . . . , n) we can obtain the
Dirac operator by the partial quantization and Fueter operator by the full quanti-
zation, respectively [5]:{

Dψ = (mI + γ2∂/∂x2 + . . .+ γn∂/∂xn)ψ,
Fψ = (In∂/∂x1 + γ2∂/∂x2 + . . .+ γn∂/∂xn)ψ.

In the next section we introduce a concept of the ternary Hurwitz condition,
obtain the ternary Dirac operator, and give a unified description of the ternary
Hurwitz condition and the usual Hurwitz condition. Hereafter this condition is called
binary Hurwitz condition.

5. Ternary Hurwitz condition vs. the binary Hurwitz condition

In this section we are concerned with the Hurwitz conditions and Hurwitz problems.

5.1. Ternary/binary character

We begin with a concept of ternary character.

Definition 5. Let A be a matrix algebra over the field K. Then a mapping ρ : A→ K

is said to be of ternary character iff

ρ(xyz) = ρ(x)ρ(y)ρ(z)
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holds. Here we notice that we do not necessarily assume that ρ(xy) = ρ(x)ρ(y).
Especially when the latter relation is satisfied, is called of character of binary type,
of binary character, or of trivial character.

We notice the following fact: Every matrix algebra has a trivial character:

ρ(x) = det x(x ∈ A).

We can propose the following problem:

Problem 1. Can we find another type of character?

5.2. Ternary/binary Hurwitz condition

Now we shall introduce a concept of ternary Hurwitz condition:
1) We assume that A is a ternary involutive algebra. Namely it has a ternary

involution: The automorphism x→ x∗ satisfying x∗∗∗ = x. When it has the following
type of ternary character, we say that the algebra satisfies the ternary Hurwitz
condition:

ρ(x)ρ(x∗)ρ(x∗∗) = ρ(x)3.

2) In a similar manner we assume that A has the following type of binary invo-
lution. We say that the algebra satisfies the binary Hurwitz condition when:

ρ(x)ρ(x∗) = ρ(x)2

where x→ x∗ is the binary involution.

Proposition 2. We can obtain the characters on the nonion algebra and its binary
extension as follows:

1) We have the character of the following form with respect to the linear elements
{θ1, θ2, θ3}X(X = Q,Q,R):

ρ(θ) = det {θ1, θ2, θ3}X = θ31 + θ32 + θ33 − 3θ1θ2θ3.

2) We have the characters of the linear elements on Ñ with respect to the coor-
dinates {θ1, θ2, θ3}X(X = Q,Q,R, T4):

ρ(θ) = −det {θ1, θ2, θ3}X(X = T4) = −(θ31 + θ32 + θ33 − 3θ1θ2θ3).

The proofs are direct calculations which may be omitted.

5.3. Ternary Hurwitz problem

As for the Hurwitz condition we can propose the following problem:

Problem 2. Determine the algebra which admits a ternary Hurwitz character and
determine all the characters.

We can prove the following theorem:
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Theorem 1. 1) The binary Hurwitz problem can be solved in the following manner:
Choosing A – one of the algebras of the real numbers, complex numbers, quaternionic
numbers, the character ρ : A→ K can be expressed as follows:

ρ(z) = |z|z (n = 1, 2, 4).

2) Ternary Hurwitz problem can be solved on the nonion algebra. Let N be the
nonion algebra and let {θ1, θ2, θ3}X(X = Q,Q,R) be a linear element. Then the one
of the ternary Hurwitz characters can be written as follows:

ρ(θ) = det {θ1, θ2, θ3}X = θ31 + θ32 + θ33 − 3θ1θ2θ3.

Proof. Ad 1). Choosing a complex number z = x+ iy, we consider the matrix repre-
sentation of complex numbers and their conjugate numbers as follows:

z(θ) =
(
θ1 −θ2
θ2 θ1

)
, z∗(θ) =

(
θ1 θ2
−θ2 θ1

)
.

Then the following character satisfies the binary Hurwitz condition:

ρ(zw) = ρ(z)ρ(w)

which is nothing but |zw|2 = |z|2|w|2:

ρ(z) = ρ(z∗) =
∣∣∣∣ θ1 −θ2
θ2 θ1

∣∣∣∣ =
(
θ21 + θ22

)
.

Ad 2). The proof of 2) is a direct consequence of Proposition 2. We choose a
quaternion number z = θ1+iθ2+jθ3+kθk and we consider the matrix representation:

z(θ) =

⎛
⎜⎜⎝

θ1 θ2 θ3 θ4
−θ2 θ1 θ4 −θ3
−θ3 −θ4 θ1 θ2
−θ4 θ3 −θ2 θ1

⎞
⎟⎟⎠ , z∗(θ) =

⎛
⎜⎜⎝

θ1 −θ2 −θ3 −θ4
−θ2 θ1 −θ4 θ3
θ3 θ4 θ1 −θ2
θ4 −θ3 θ2 θ1

⎞
⎟⎟⎠ .

Then the following character satisfies the binary Hurwitz condition

ρ(zw) = ρ(z)ρ(w)

which is nothing but |zw|4 = |z|4|w|4:

ρ(z) = ρ(z∗) =

∣∣∣∣∣∣∣∣

θ1 θ2 θ3 θ4
−θ2 θ1 θ4 −θ3
θ3 θ4 θ1 θ2
θ4 −θ3 −θ2 θ1

∣∣∣∣∣∣∣∣
(
= (θ21 + θ22 + θ23 + θ24)2

)
.

6. The correspondence between ternary and binary
field operators

We are concerned with the relationship between binary and ternary Dirac operators.
This relation will be very important in considering the quark confinement.
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6.1. Binary repetition of ternary extensions and ternary repetition of
binary extensions

In fact, proton or neutron constitutes three quarks. Hence quarks can be described
in terms of ternary Dirac operators. On the other hand, we can describe proton or
neutron in terms of the binary Dirac operators. Therefore we have to make clear
the relation between these equations. We shall describe this relationship in terms of
Galois extensions. Here we assume that a pair of repetition of binary and ternary
extensions is given: ⎧⎨

⎩
Ã = 2

√
In[A], A = 3

√
In[A0],

Ã = 3
√
In[B], B = 2

√
In[B0].

Then we can define the binary and ternary characters from the extensions and we
can obtain kinds of Dirac operators. By this we can discuss the relationship between
the baryons and the triple quarks.

We can obtain the corresponding Dirac operators in the following different ways
(cf. Fig. 5).

Fig. 5: A pair of repetition of binary and ternary extensions, e.g. in the case of proton or
neutron, which: a) constitutes three quarks, b) can be described in terms of ternary Dirac
operators.
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a) The case of A = 3
√
In[A0], Ã = 2

√
In[A]. Using basic constructions

2
√−1 ⇔

(
x1 x2

−x2 x1

)
,

3
√

1 ⇔
⎛
⎝ y1 y2 y3

y3 y1 y2
y2 y3 y1

⎞
⎠ ,

we make the composition of the extensions:

2
√−1 ⊗ 3

√
1 ⇔

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y1 y2 y3 y4 y5 y6
y3 y1 y2 y6 y4 y5
y2 y3 y1 y5 y6 y4
−y4 −y5 −y6 y1 y2 y3
−y6 −y4 −y5 y3 y1 y2
−y5 −y6 −y4 y2 y3 y1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence we obtain the following Dirac operator:

D̃1 = T1
∂

∂y1
+ T2

∂

∂y2
+ T3

∂

∂y3
+ T4

∂

∂y4
+ T5

∂

∂y5
+ T6

∂

∂y6
,

where

T1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0 03

0 0 1
1 0 0

03 0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, T2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 0 1 03

1 0 0
0 1 0

03 0 0 1
1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, T3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
1 0 0 03

0 1 0
0 0 1

03 1 0 0
0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

T4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
03 0 1 0

0 0 1
−1 0 0
0 −1 0 03

0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, T5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
03 0 0 1

1 0 0
0 −1 0
0 0 −1 03

−1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, T6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
03 1 0 0

0 1 0
0 0 −1
−1 0 0 03

0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Consequently we arrive at the binary Dirac operators⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D
(1)
b = T1

∂

∂y1
+ T4

∂

∂y4
,

D
(1)∗
b = T ∗

1

∂

∂y4
+ T ∗

4

∂

∂y4
;

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D
(2)
b = T2

∂

∂y2
+ T5

∂

∂y5
,

D
(2)∗
b = T ∗

2

∂

∂y2
+ T ∗

4

∂

∂y5
;

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D
(3)
b = T3

∂

∂y3
+ T6

∂

∂y6
,

D
(3)∗
b = T ∗

3

∂

∂y3
+ T ∗

4

∂

∂y6
.
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b) For the case of Ã = 2
√
In[B], B = 3

√
In[B0], we have in a completely analogous

manner

3
√

1 ⇔
⎛
⎝ y1 y2 y3

y3 y1 y2
y2 y3 y1

⎞
⎠ ,

2
√

1 ⇔
(

x1 x2

−x2 x1

)
,

Hence we get the following realization:

3
√

1 ⊗ 2
√−1 ⇔

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 y1 y2 z1 z2
−x2 x1 −y2 y1 −z2 z1
z1 z2 x1 x2 y1 y2
−z2 z1 −x2 x1 −y2 y1
y1 y2 z1 z2 x1 x2

−y2 y1 −z2 z1 −x2 x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore we obtain the following Dirac operator:

D̃ = S1
∂

∂y1
+ S2

∂

∂y2
+ S3

∂

∂y3
S4

∂

∂y4
+ S5

∂

∂y5
+ S6

∂

∂y6
,

where

S1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
02 02

0 1
1 0

02 02

0 1
1 0

02 02

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
02 02

0 1
1 0

02 02

0 1
1 0

02 02

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

S3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
02 02

0 1
1 0

02 02

0 1
1 0

02 02

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
02 02

−1 0
0 1

02 02

−1 0
0 1

02 02

−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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S5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
02 02

−1 0
0 1

02 02

−1 0
0 1

02 02

−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
02 02

−1 0
0 1

02 02

−1 0
0 1

02 02

−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Consequently we arrive at the ternary Dirac operators⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
(1)
t = S1

∂

∂y1
+ S2

∂

∂y2
+ S3

∂

∂y3
,

D
(1)
t = S1

∂

∂y1
+ jS2

∂

∂y2
+ j2S3

∂

∂y3
,

D
(1)
t = S1

∂

∂y1
+ j2S2

∂

∂y2
+ jS3

∂

∂y3
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
(2)
t = S4

∂

∂y1
+ S5

∂

∂y2
+ S6

∂

∂y3
,

D
(2)
t = S4

∂

∂y1
+ jS5

∂

∂y2
+ j2S6

∂

∂y3
,

D
(2)
t = S4

∂

∂y1
+ j2S5

∂

∂y2
+ jS6

∂

∂y3
.

Here we notice the following identification:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 y1 y2 z1 z2
−x2 x1 −y2 y1 −z2 z1
z1 z2 x1 x2 y1 y2
−z2 z1 −x2 x1 −y2 y1
y1 y2 z1 z2 x1 x2

−y2 y1 −z2 z1 −x2 x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⇔

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y1 y2 y3 y4 y5 y6
y3 y1 y2 y6 y4 y5
y2 y3 y1 y5 y6 y4
−y4 −y5 −y6 y1 y2 y3
−y6 −y4 −y5 y3 y1 y2
−y5 −y6 −y4 y2 y3 y1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

6.2. The double extension of the binary and ternary Galois extensions,
and the related double fibering

Discussions of the subsection 6.1 imply

Theorem 2. When we have the double extension of the binary and ternary Galois
extensions Ã = 2

√−1[A], Ã = 3
√

1[B]:
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A

�
��
τ �

��
η

B

Ã

the following assertions hold:
1) We have the universal Dirac operators for the both extensions and they are

equivalent each other as a consequence of the Hurwitz condition

ρ : Ã→ K.

2) We have the following double fibering. We have the Dirac operators from the
characters ρA : A→ K and ρB : B → K, namely:

D̃1 = T1
∂

∂y1
+ T2

∂

∂y2
+ T3

∂

∂y3
+ T4

∂

∂y4
+ T5

∂

∂y5
+ T6

∂

∂y6(
D̃2 = S1

∂

∂y1
+ S2

∂

∂y2
+ S3

∂

∂y3
+ S4

∂

∂y4
+ S5

∂

∂y5
+ S6

∂

∂y6

)

�
��

ρA = τ∗(ρÃ) �
��
ρB = η∗(ρÃ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dt = S1
∂

∂y1
+ S2

∂

∂y2
+ S3

∂

∂y3
,

Dt = S1
∂

∂y1
+ jS2

∂

∂y2
+ j2S3

∂

∂y3
,

Dt = S1
∂

∂y1
+ j2S2

∂

∂y2
+ jS3

∂

∂y3
;

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Db = T1
∂

∂y1
+ T2

∂

∂y2
+ T3

∂

∂y3
,

D∗
b = T4

∂

∂y4
+ T5

∂

∂y5
+ T6

∂

∂y6
.

In this manner we can give the equivalence between the ternary particles and the
binary particles.
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BINARNA I TERNARNA ANALIZA CLIFFORDA
A NIEPRZEMIENNE ROZSZERZENIA GALOIS II
ODPOWIEDNIOŚĆ MIȨDZY TERNARNYMI I BINARNYMI OPERATORAMI POLA

S t r e s z c z e n i e
Wprowadzono pomys�l nieprzemiennego rozszerzenia Galois przy wyborze rozszerzeń

binarnych i ternarnych. Wprowadzono ternarna̧ algebrȩ Clifforda oraz naszkicowano odpo-
wiednia̧ analizȩ Clifforda i zwia̧zek z rozszerzeniem Galois. W konsekwencji potrafimy
sformu�lować binarne i ternarne warunki typu Hurwitza i uzyskać z tych warunków ope-
rator Diraca. Tak wiȩc operatory Diraca, binarny i ternarny, dadza̧ siȩ jednolicie scharak-
teryzować.

W drugiej czȩści pracy omawiamy binarny warunek Hurwitza w odniesieniu do ope-
ratorów Diraca i Kleina-Gordona, ternarny warunek Hurwitza w odniesieniu do binarnego
warunku Hurwitza oraz odpowiedniość miȩdzy operatorami pola: ternarnym i binarnym.
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