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10.

INSTRUCTION AUX AUTEURS

La présente Série du Bulletin de la Société des Sciences et des Lettres de Lédz
comprend des communications du domaine des mathématiques, de la physique
ainsi que de leurs applications liées aux déformations au sense large.

. Toute communications est présentée a la séance d’'une Commission de la Société

par un des members (avec deux opinions de spécialistes designés par la Ré-
daction). Elle doit lui étre adressée directement par lauteur.

L’article doit étre écrit en anglais, frangais, allemand ou russe et débuté par
un résumé en anglais ou en langue de la communication présentée. Dans tous
les travaux écrits par des auteurs étrangers le titre et le résumé en polonais
seront préparés par la rédaction. Il faut fournir le texte original qui ne peut
contenir plus de 15 pages (plus 2 copies).

Comme des articles seront reproduits par un procédé photographique, les au-
teurs sont priés de les préparer avec soin. Le texte tapé sur un ordinateur de
la classe IBM PC avec 'utilisation d’un imprimante de laser, est absolument
indispensable. Il doit étre tapé préférablement en AMS-TEX ou, exception-
nellement, en Plain-TEX ou LATEX. Apres Pacceptation de texte les auteurs
sont priés d’envoyer les disquettes (PC). Quelle que soient les dimensions des
feuilles de papier utilisées, le texte ne doit pas dépasser un cadre de frappe
de 12.3x18.7cm (0.9 cm pour la page courante y compris). Les deux marges
doivent étre le la méme largeur.

Le nom de lauteur (avec de prénom complet), écrit en italique sera placé a la
lere page, 5.6 cm au dessous du bord supérieur du cadre de frappe; le titre de
I’acticle, en majuscules d’orateur 14 points, 7.1 cm au dessous de méme bord.
Le texte doit étre tapé avec les caracteres Times 10 points typographiques et
I'interligne de 14 points hors de formules longues. Les résumés, les rénvois, la
bibliographie et 'adresse de 'auteurs doivent étre tapés avec le petites car-
acteres 8 points typographiques et 'interligne de 12 points. Ne laissez pas de
“blancs” inutiles pour respecter la densité du texte. En commencgant le texte
ou une formule par l'alinéa il faut taper 6 mm ou 2cm de la marge gauche,
respectivement.

Les texte des theorémes, propositions, lemmes et corollaries doivent étre écrits
en italique.

Les articles cités seront rangés dans ’ordre alphabétique et précédés de leurs
numéros placés entre crochets. Apres les références, I'auteur indiquera son
adress complete.

Envoi par la poste: protégez le manuscript a ’aide de cartons.

Les auteurs recevront une copie de fascicule correspondant & titre gratuit.

Adresse de la Rédaction de la Série:
Département de la Physique d’etat solide
de I’Université de Lédz
Pomorska 149/153, PL-90-236 Lédz, Pologne
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TITLE — INSTRUCTION FOR AUTHORS
SUBMITTING THE PAPERS FOR BULLETIN

Summary
Abstract should be written in clear and concise way, and should present all the main
points of the paper. In particular, new results obtained, new approaches or methods applied,

scientific significance of the paper and conclusions should be emphasized.

1. General information

The paper for BULLETIN DE LA SOCIETE DES SCIENCES ET DES LETTRES
DE LODZ should be written in LaTeX, preferably in LaTeX 2e, using the style (the
file bull.cls).

2. How to prepare a manuscript

To prepare the LaTeX 2e source file of your paper, copy the template file in-
str.tex with Figl.eps, give the title of the paper, the authors with their affilia-
tions/addresses, and go on with the body of the paper using all other means and
commands of the standard class/style ‘bull.cls’.

2.1. Example of a figure

Figures (including graphs and images) should be carefully prepared and submitted
in electronic form (as separate files) in Encapsulated PostScript (EPS) format.

(D

Fig. 1: The figure caption is located below the figure itself; it is automatically centered and
should be typeset in small letters.

2.2. Example of a table

Tab. 1: The table caption is located above the table itself; it is automatically centered and
should be typeset in small letters.

Description 1 | Description 2 | Description 3 | Description 4

Row 1, Col 1 | Row 1, Col 2 | Row 1, Col 3 | Row 1, Col 4
Row 2, Col 1 | Row 2, Col 2 | Row 2, Col 3 | Row 2, Col 4

[4]



2.3. “Ghostwriting” and “guest authorship” are strictly forbiden

The printed version of an article is primary (comparing with the electronic version).
Each contribution submitted is sent for evaluation to two independent referees before
publishing.

3. How to submit a manuscript

Manuscripts have to be submitted in electronic form, preferably via e-mail as attach-
ment files sent to the address zofija@uni.lodz.pl. If a whole manuscript exceeds
2 MB composed of more than one file, all parts of the manuscript, i.e. the text
(including equations, tables, acknowledgements and references) and figures, should
be ZIP-compressed to one file prior to transfer. If authors are unable to send their
manuscript electronically, it should be provided on a disk (DOS format floppy or
CD-ROM), containing the text and all electronic figures, and may be sent by reg-
ular mail to the address: Department of Solid State Physics, University of
Lodz, Bulletin de la Société des Sciences et des Lettres de L6dZ, Pomorska
149/153, 90-236 L6dz, Poland.
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LATE PROFESSOR PROMARZ TAMRAZOV (1933-2012)
AND 20 YEARS OF SCIENTIFIC COOPERATION LODZ-KYIV

Summary

Professor Promarz Tamrazov (*June 17, 1933), the outstanding scientist, our good
friend, and member of the Editorial Board of Bull. Soc. Sci. Lettres LédzZ Sér. Rech.
Déform., has passed away on February 11, 2012. We remember his research activities, ob-
tained results and developed theories, solved open problems, as well as his engagement in
initiation and prosperous development of scientific cooperation L6dz-Kyiv in mathemathics
and physics since 1992 (Photo 1).

Keywords and phrases: obituary, Tamrazov, mathematics, physics, Polish-Ukrainian coop-
eration, cooperation Lodz-Kyiv

Photo 1. Professor Pomarz Tamrazov
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Brief callendarium of the life

Professor Promarz Melikovich Tamrazov was a Corresponding Member of the Na-
tional Academy of Sciences of Ukraine and a worldwide known mathematician for
his works on complex and real analysis, geometric function theory, approximation
theory, potential theory and combinatorics.

He was born on 17.06.1933 in Kiev. His mathematical faculties appeared very
early. He told that when being a schoolboy of primary school, he played at home
and skulked from time to time under a table, where his elder brother was solving
mathematical school-problems under the supervision of parents. And when his elder
brother was at a loss with the answer to the next problem, little boy Proma informed
loudly a correct answer.

When Promarz studied in a high school, he became the winner of the Kiev mu-
nicipal competition on mathematics among the schoolboys. In 1951 he finished the
high school with the Gold Medal honor. From 1951 he studied at Kiev Polytechnic
Institute and in 1956 graduated with honor in Mechanical and Heat Engineering,
receiving an engineer degree (equivalent of the Master degree). Between 1956 and
1963 he worked in Kiev Polytechnic Institute and institutes of Ukrainian Academy of
Sciences as engineer and assistant professor. In 1958—61 he undertook post-graduate
studies in mathematics under the guidance of Professor V. A. Zmorovich. After prov-
ing a Ph.D./Candidate thesis in 1963 he had prepared in three years a brilliant
Doctor Sciences thesis (Physics and Mathematics) that was proved on 29.01.1966
in Institute of Mathematics of Ukrainian Academy of Sciences, Kiev. Since 1963 he
worked in the Institute of Mathematics of the Ukrainian Academy of Sciences as a
research fellow and then as the head of a laboratory. He got the title of Professor
in 1982. In 1989-2003 he was the head of the Department of Complex Analysis and
Potential Theory and since 2003 the leading research fellow of the mentioned depart-
ment. In 2006 P.M. Tamrazov was elected a Corresponding Member of the National
Academy of Sciences of Ukraine. In addition, he took up the following collaboration
positions: a lecturer (1970-71) and Professor (1988) at the Kiev State University,
Professor at the Kiev Polytechnic Institute (1976-83), and Rector of the Peoples
University of Modern Mathematics (1973-87).

Since 1958 he researched in mathematics and published 191 works (including
a monograph Smothnesses and Polynomial Approximation, Naukova Dumka, Kiev,
1975). 13 Ph D and 4 Doctor of Sciences theses have been proved under his super-
vision.

He participated in many international conferences and congresses, and received
the following grants:

e Long Term grant of ISF (International Science Foundation — Soros Foundation)
— 1994, Principal Investigator;

e Grant of ICM-94 — 1994;

e Grant of ISF and Ukraine — 1995, Leader;
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e Two grants of INTAS (European Union) — Call 1994 (1995-1998) and Call
1999 (2000-2003), Team Leader;

e Grant of the Royal Society (UK) — 1994;

e Grant of the Royal Swedish Academy of Sciences — 1997;

e Series of Soviet and Ukrainian grants;

e Grant of ICM-98 — 1998;

e Grant of NSF of USA for attending CMFT’01, 2001;

e Grant of ICM-02 — 2002;

e Travel Grant of International Mathematical Union for attending ICM-02 in
Beijing, 2002.

He was a member of the ISAAC Board (1998-2002) and a member of the ISAAC
Award Committee (1999).

Research activities of P. M. Tamrazov — Main topics

We list quite impressive variety of main research activities of Professor Tamrazov
(20 items in our classification) ordered in four groups:

1. Univalent functions, conformal mappings, geometric function theory:
e extremal problems, boundary behaviour, mappings of multiply and in-
finitely connected domains, problems on boundedness of functionals in

noncompact classes of mappings, exact estimates of functionals;

e extremal length, extremal metrics and quadratic differentials, general
properties and applications to problems of geometric function theory and
potential theory;

e difference and differential contour-solid problems for holomorphic (and
meromorphic) functions in the complex plane and in complex analytic
spaces;

e applications of geometric function theory to approximation theory;

e extremal metric and modulus problems on nonorientable and twisted Rie-
mannian manifolds.
2. Constructive function theory:
e inverse and direct theorems of polynomial (and rational) approximation of
functions on compacts of the complex plane, constructive characterization
of functions;

e complex finite-difference smoothnesses (of orders k& > 1) for functions on
sets of the complex plane;

e problems of constructive function theory for complex finite-difference
smothnesses of any order;

e applications to the theory of singular integral operators;



10 A. Bakhtin, J. Lawrynowicz, S. Plaksa, and Yu. Zelinskii

e (strongly) local theory of approximation and (strongly) local constructive
characterization of functions;

e finite-difference smothnesses of Cauchy integral operator and related sin-
gular operators;

e finite-difference smoothnesses of functions’ superpositions and their ap-
plication.
3. Potential theory:
e equilibrium potentials of general condensers, their complete description;

e Gonchar’s extremal problem on capacities of condensers;
e capacities and method of mixing of signed measures (charges);

e removable singularities, subharmonic and plurisubharmonic extensions of
functions in Euclidean, complex analytic and topological vector spaces;

e finely subharmonic (and finely holomorphic) functions in the contour-solid
and cluster problems;

e Eremenko’s extremal problem on harmonic functions.
4. Combinatorics:
e harmonic analysis in vector spaces of complex finite and divided differ-
ences;

e harmonic analysis for complex finite and divided differences of functions’
superpositions.

Obtained results and developed theories

Professor Tamrazov proved the boundedness of certain functionals on noncompact
classes of pairs of conformal mappings of doubly and multiply connected domains,
and he proved the convergence of the analogues of the Blaschke product in such
domains.

He investigated general properties of extremal lengths and extremal metrics:

e suggested an approach based on definitions in which volume (in the plane-areal)
integrals are taken in the Lebesgue sense while linear integrals are taken in the
lower Darboux sense;

e this allowed to take into consideration all metrics L-measurable in space (for
the plane-areal) sense and all curves without requirement of local rectifiability;
— this approach results in advantages from a general point of view and in
applications;

e he established the local extremal property of extremal metrics;

e introduced a general limit modulus problem and proved the uniqueness of
extremal metric for this problem;

e gave applications of these general results to extremal conformal mappings of
multiply (infinitely) connected domains.
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Photo 2: Professor Fyodor Photo 3: Profs. Julian Lawrynowicz and Yuri
Kravchenko in front of the Kamenec Trokhimchuk during a conference in Plock
Podilski castle (1987). (1993).

Promarz Tamrazov solved extremal problems for conformal mappings associated
with multipole quadratic differentials and gave complements to general coefficients
theorem of J. A. Jenkins. He solved problems concerned with finding extremal met-
rics and moduli of some nonorientable and other twisted Riemannian manifolds,
including the problem for Mobius strip tried by Pu in 1952 but not solved then.

Proma solved geometric problems related to conformal mappings, their boundary
properties, symmetrization of multiply connected domains etc. He extended to an
arbitrary bounded continuum inverse theorems of polynomial approximation in the
complex plane known before only for some good piecewise smooth Jordan domains.
He proved such theorems for a wide class of compacts.

Promarz established solid inverse theorems of polynomial approximation for the
same continua and compacts (this problem was open even for the unit disc). He
proved direct theorems of polynomial approximation and obtained constructive char-
acterization of functions on some new classes of sets. He solved the open problem of
local constructive characterization of functions; as a particular case this enabled to
localize also the Jackson-Bernstein characterization of periodic functions on the real
axis which was an open problem.

Proma solved the definition problem for difference smoothnesses of order k£ > 1
for functions on arbitrary sets of the complex plane, which was open even for the
case when k = 2 and a set is a good piecewise smooth Jordan domain. He developed
the theory of complex finite-difference smoothnesses of any order on general sets in
the complex plane.
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Professor Tamrazov established direct and inverse theorems of polynomial ap-
proximation, constructive characterization of functions. He proved theorems on fi-
nite-difference smoothnesses of conjugate harmonic functions, of Cauchy type inte-
grals and related singular operators.

Promarz Tamrazov solved the problem of moduli of smoothness for functions’
superpositions on sets of the complex plane which for a long time was open even
for the case when simple functions on a real intervals and classical real moduli
of smoothness were considered. He solved the difference contour-solid problems for
holomorphic functions posed by Sewell in 1942, and developed a general contour-solid
theory for holomorphic functions in open sets of the complex plane and in complex
analytic spaces.

Promarz extended some of these results to meromorphic and subharmonic func-
tions, holomorphic functions and mappings in complex analytic spaces and to moduli
of smoothness of orders k > 1. He solved the differential boundary problem for ana-
lytic functions in arbitrary open set of the complex plane and at every fixed boundary
point. This gave the ultimate positive solution for the problem discussed at an in-
formal problem seminar in Zurich held in 1994 by participants of the International
Congress of Mathematicians.

Proma solved the Gonchar’s extremal problem on capacities of condensers and for
this purpose he developed a new method based on mixing signed measures (charges).
He extended the Brelot-Cartan Theorem on removable singularities for subharmonic
functions to arbitrary polar sets (1983) and onto arbitrary sets of inner capacity zero
(1993).

Promarz obtained characterization of sets removable under subharmonic exten-
sion of functions: first for singular capacitable sets (1983), and later on — without
the restriction of capacitability (1993). He obtained results on plurisubharmonic
extension of functions in complex analytic and topological vector spaces. In particu-
lar, he proved theorems on removability of perturbatively restricted singularities for
plurisubharmonic functions in topological complex vector spaces. Such a theorem
was announced in the 60th but not proved (in infinitely-dimensional spaces).

Proma established contour-solid and cluster theorems for finely subharmonic and
finely holomorphic functions in finely open sets. He developed harmonic analysis in
vector spaces of complex finite and divided differences.

Professor Tamrazov developed harmonic analysis for complex finite and divided
differences of functions superpositions which was an open problem even for simple
functions on real interval and classical real finite differences. These theories were
needed for various applications in constructive and geometrical function theory. He
developed methods for solving extremal problems associated with quadratic differ-
entials having free poles.
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Photo 4: Profs. Tamrazov (front row) and Lawrynowicz (back row, centre), and
Dr. Przemystaw Skibinski (right to L.) during a conference on complex analysis
at Druzhba near Varna (1987).

Photo 5: Professors Tamrazov and Photo 6: Professors Trokhimchuk and
Lawrynowicz during the VIIth ICAF Zielinskii during the VIIth ICAF
at Kozubnik (1979). at Kozubnik (1979).
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Solved open problems

In addition we list open problems solved by Professor Tamrazov (in chronological
order) which were posed and tried by other scientists:

1.

10.

The problem on boundedness of certain functionals on noncompact classes
of pairs of conformal mappings of doubly (and multiply) connected domains
and on convergence of analogues of the Blaschke products in doubly and
multiply connected domains needed for extending of the theory of special
classes of functions to multiply connected domains; this problem was posed
by V. A.Zmorovich and discussed by A.I. Markushevich, S. Ya. Khavinson and
H. Ts. Tumarkin. Proved the convergence of the mentioned analogues of the
Blaschke product.

The problem on behaviour of conformal modulus of multiply connected do-
mains under symmetrization, posed by I. P. Mitjuk.

The problem on conformal mapping of strip domains posed by A. A. Goldberg
and applied by him in the theory of meromorphic functions.

. The problem on boundary behaviour of conformal mapping posed by G.D. Su-

vorov in connection with compactification problems.

A uniqueness problem for an extremal problem of conformal mapping investi-
gated by P.Duren.

A geometric function theory problem on boundedness of harmonization func-
tionals posed by N. A.Lebedev at the International Congress of Mathemati-
cians in 1966 and needed for solving open problems of approximation theory.

The solid problem of polynomial approximation of analytic functions which
was open even for the unit disc (this latter particular problem was posed by
V. K. Dzjadyk).

The contour-solid problem for analytic functions posed by Sewell in 1942.
Obtained results enabled to solve a number of open problems of the theory of
analytic and harmonic functions (about smoothnesses of conjugated harmonic
functions and conformal mappings, of singular integral operators and solutions
to singular integral equations), of approximation theory (in direct and inverse
problems of polynomial approximation on the complex sets), of the theory of
holomorphic functions and mappings of several complex variables etc.

The problem of defining finite-difference smoothnesses of functions in complex
domains attacked by specialists during a long time. The founded approach
enabled to extend to finite-difference smoothnesses of orders k£ > 1 various
results of complex constructive theory known for & = 1.

The problem of finite differences and modules of smoothness for function su-
perpositions, which for a long time was open even in simplest situations. The
solving of this problem enabled to solve also a problem on finite-difference
smoothnesses of conformal mapping.
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Photo 7: Professors Natalia Zoril and Julian Lawrynowicz (extreme left)
during the XIth ICAF in Warsaw and Rynia (1994).

Photo 8: Prof. Zorii during the Seminar Photo 9: Professors Tamrazov and Zorii
in Czestochowa (2001). during the Summer School 1989 in
Complex Analysis and Potential Theory
at Kaciveli (Crimea).
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/s 9

Ad Photo 10 (next page)

Professor Promarz Tanrazov (1) and his colleagues, professors and doctors from L6dz
(2-9), among a group of participants of the Seminar at Bd (2000) in honour of Professors
Charzynski and Tietz:

2.
3
4.
5

11.

12.
13.
14.

15.
16.

Dorota Klim 6. Adam Paszkiewicz

. Julian Lawrynowicz 7. Stanistaw Romanowski
Leon Mikotajczyk 8. Andrzej Sukiennicki

. Andrzej Nowakowski 9. Kazimierz Wlodarczyk

The problem of local constructive characterization of functions. The developed
approach enabled also to localize well known Jackson-Bernstein constructive
characterization of periodic functions on the real axis (this latter particular lo-
calization problem was discussed by specialists for a long time, but was treated
in unsuccessful ways not giving positive result).

The Gonchar’s extremal problem on capacities of condensers.

The problem on removing of perturbatively restricted singularities for plurisub-
harmonic functions in complex vector topological spaces; tried, but not solved
in the 60th.

The problem on the conformal modulus and extremal metric of a Riemannian
Mobius strip posed by Pu in 1952.

The extremal problem on harmonic functions posed by A.Eremenko in 1995.
A parameterization for extremals of the Tchebotaryov’s problem posed in 1925
and the problem formulated by H. Grotzsch in 1930 as the hyperbolic analog
of the Tchebotaryov’s problem has been established.

Promarz M. Tamrazov has died on 11.02.2012 after a prolonged illness.

Promarz Melikovich Tamrazov was a remarkable man: he was kind, responsive
and exceptionally attentive to the people. Yet, mathematics was his true love. It was
a sense and a happiness with all his life. Contacting with him at mathematical dis-
cussions, we were convinced repeatedly of his large mathematical talent. Sometimes
the impression was created that there were practically no mathematical difficulties
for him. He had tremendous mathematical intuition and shared generously ideas
with disciples. We had a good luck to meet this eminent person on our creative way.
He will remain in our memory as an intellectually gifted and outstanding person for

ever.
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Photo 10: Professor Promarz Tamrazov and his eight colleagues from LédZ (for their
names see the proceding page) during the Seminar at Bd (2000).

Photo 11: Profs. Oleg Gerus Photo 12: A group of participants of

and Julian Lawrynowicz (right-hand side) the Bd Seminar 2005, including
at the bank of Teterev river Dr. Oksana Sumyk (front row, centre)

near Zhytomyr (2003). and Profs. Yaroslav G.Prytula,

Zelinskii and Lawrynowicz (back row,
right-hand side).
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Cooperation L6dz-Kyiv in mathematics and physics

Direct scientific cooperation between the

e Univeristy of L6dz

e L6d7Z Society of Sciences and Arts

National Academy of Sciences of Ukraine, Institute of Mathematics

National Academy of Sciences of Ukraine, Institute of Physics

was initiated officially in 1992, but regular cooperation between mathematicians and
physicists of Lédz and Kyiv started much earlier. In particular, the coordinators from
both sides, Professors Julian Lawrynowicz and Promarz Tamrazov had met for the
first time in 1964 in Moscow. Personal contacts between Profs. Lawrynowicz, Fyodor
G. Kravchenko and Yuri Trokhimchuk started in 1972 in Kamenec Podilski (Photos
2 and 3).

Already before 1992 exchange of scientific visits as well as participation in con-
ferences and summer schools in Poland and Ukraine led to the following important
contributions, in particular in relation with the IVth—Xth International Conferences
on Analytic Functions (hareafter abbr. ICAF) held in L46dZ (1966), Lublin (1970),
Krakéw (1974), at Kozubnik (1979), at Blazejewko (1982), in Lublin (1986), and at
Szczyrk (1990), respectively:

Gutlyanski [Gul, 2] Palka and Skibinski [PS] (Photo 4)
Karupu [Ka] Tamrazov [T1-5] (Photos 4 and 5)
Lawrynowicz and Rembieliniski [LR] Trokhimchuk [Tr1, 2]

Melnichenko [Me] Zelinskii [Zel-3] (Photo 6)
Navoyan and Tamrazov [NT] Zorii [Zol] (Photos 7-9)

The leading topic in the cooperation agreement was Potential theory vs. inves-
tigations on semiconductors and crystals. In the decade 1992-2001 L6d7z scientists
took an artive part in several summer schools on complex analysis and potential
theory in Crimea, in particular in the Hydrodynamical Institute of the National
Academy of Sciences of Ukraine at Kaciveli, and in the International Conference on
Complex Analysis and Potential Theory in Kyiv in 2001 (Figs.1 and 2).

On the other hand, the Ukrainian scientists from Kyiv, Lviv, and Zhytomyr took
an active part in the following events in Poland:

e XIth ICAF in Warszawa and at Rynia 1994
e XIIth ICAF in Lublin 1998

e Advanced Seminar on Deformations of Mathematical Structures Applied in
Physics, L6dz and Warszawa 1992/97

e Workshop on Generalizations of Complex Analysis, Warszawa 1994

e The Finnish-Polish-Ukrainian Summer School in Complex Analysis, Lublin
1996



Late Professor Promarz Tamrazov (1933-2012) 19

e Seminar (hereafter abbr. S): Geometrical Methods of Generalized Quaternionic
Analysis with Applications in Physics, Bedlewo (hereafter abbr. Bd) 1999

e S: Applied Algebraic Functions and Eigenfunctions (in Honour of Professors
Charzynski and Tietz), Bd 2000 (Photo 10)

e S: Generalized Cauchy-Riemann Structures and Surface Properties of Crystals,

Bd and Czestochowa 2001

These activities led to the following important contributions:

Aguilar, Contreras, Cardenas, Rutkow-
ski, Gnatenko, and Bukivsky [AC]
Allyev [Al]
Céardenas, Contreras,
Rutkowski [CC]
Castillo, Contreras, Lawrynowicz, and
Wojtczak [Cal

Gaveau, Lawrynowicz, and Wojtczak
GLJ

Gerus [Ge]

Gnatenko, Shigilchev, Rutkowski,
Cérdenas, and Contreras [GS1]

—, Contreras, and Cé&rdenas

Gnatenko, and

) )

[GS2]
Golberg [Gol]
Jakubowski and Zyskowska [JZ]
Kalynets and Kondratyuk [KK]
Kravchenko V. V. and Shapiro [KrS]
Krawiecki, Sukiennicki, and Wojtczak
[KrSu] (Photo 10)
Lawrynowicz [L]
—, Martio, and Tamrazov [LM1, 2]
—, Porter, Ramirez, and Rembielinski
[L.P]

—, Rembielinski, and Succi [ERS]

— and Tamrazov [LT]

—, Wojtczak, Koshi, and Suzuki [LW]

Malinowski, Rembielinski, Tybor, and
Papaloucas [MR]

Muliava and Sheremeta [MS]

Okhrimenko [O]

Pokhilevich [Po]

Poreda and Wilczyriski [PoW]

Prytula Ya. Ya. [Pry]

Romanowski, Pietrzak, and Baldomir
[RoP] (Photo 10)

Sheremeta [S]

Tamrazov [T6, 7]

—, Vuorinen, and Wielgus [TV]

Trokhimchuk [T3]

Urbaniak-Kucharczyk [U]

Wagner-Bojakowska [W]

Wojtczak and Gértner [WG|

—, Urbaniak-Kucharczyk, Zasada, and
Rutkowski [WU]

Zabolotskii [Z]

Zoril [Zo2-5]

In the decade 2002—2011 L6d7 scientists took an active part in further meetings in
Kyiv, Zhytomyr, and Lviv. In particular, since 2001 Julian Lawrynowicz is an elected
foreign member of the Polish Scientific Society of Zhytomyr (Photo 11). The Society
is not restricted to local friends of science of Polish origin, but has as members also
Ukrainians interested in the Polish culture.

On the other hand, the Ukrainian scientists related to Kyiv, Lviv, and Zhytomyr
took an active part in the following events in Poland:

e XIITth ICAF at Bedlewo (abbr. Bd) 2002

e XIVth ICAF in Chetm 2007
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Ad Photo 13 (next page)
Professor Yuri Zelinskii (1) with his Ukrainian colleagues, professors (2-4), and col-

leagues, professors and doctors from Lédz (5-7), among a group of participants of the
XIIIth ICAF at Bd:

2.
3.
4.

Oleg Gerus 5. Piotr Liczberski
Anatoly Golberg 6. Wiestaw Majchrzak
Natalia Zorii 7. Krystyna Skalska

XVth ICAF in Chelm 2011

International Conference: Ideas of Albert Abraham Michelson in Mathematical
Physics, Bd 2002

Seminar (abbr. S): Generalized Cauchy-Riemann Structures, Complex Approx-
imation, and Surface Properties of Crystals, Bd 2003

S: Applied Quaternionic and Finslerian Structures, Bd 2004

S: Lvov Mathmatical School in the Period 191545 as Seen Today, Bd 2005
(Photo 12)

S: Applied Complex and Quaternionic Approximation vs. Finslerian Struc-
tures, Bd 2006

S: (Hyper)Complex Methods, Chaotic Features, Fractals, and Physical Appli-
cations, Bd 2007

Hypercomplex Seminar (abbr. HS) 2008: Foliation Modelling of Hypercomplex
Crystal Geometry vs. Randers-Ingarden and Fractal Structures, and Nano-
structures, Bd 2008

HS 2009: From Schauder Basis to Hypercomplex, Randers-Ingarden and Frac-
tal Structures, and Nanostructures, Bd 2009

HS 2010: (Hyper)Complex and Randers-Ingarden Structures in Mathematics
and Physics, Bd 2010

HS 2011: (Hyper)Complex Function Theory, Dolbeault Cohomology, Fractals,
and Physics, Bd 2011

HS 2012: (Hyper)Complex Function Theory, Regression, (Crystal) Lattices,
Fractals, Chaos, and Physics; dedicated to the memory of Professor Promarz

Tamrazov on the occasion of 20 years of the direct cooperation agreement
Lédz-Kyiv, Bd 2012
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Photo 13: Professor Yuri Zelinskii, his three colleagues from Ukraine,
and three colleagues from LdédZ (for their names see the proceding page)
during the XIIIth ICAF at Bd (2002).

Photo 14: XIITth ICAF at Bd Photo 15: Bd Seminar 2007 — Profs. Zorii and
(2002) — Prof. Zelinskii during a Lawrynowicz during
free discussion meeting. a free discussion meeting
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These activities led to the following important contributions:

— and Shpakivskyi (Szpakowski) [MiS]
Moneta and Pantelica [MoP]
PrytulaYa. G. [Pr] (Photo 12)
Rembieliniski and Smoliniski [RS]
Sheremeta and Sumyk [SS]
Shpakivskyi (Szpakowski) [Sh]

— and Plaksa [ShP)

Slyusarchuk [S]]

Wilezyniski [Wi]

Zajac, Kalchuk, and Stepanyk [ZaK]
Zasada, Wojtczak, and Surry [ZaW]
Zelinskii [Ze3—-6] (Photos 13, 14)
Zhyhallo [Zh]

Zorii [Zo6-9] (Photos 13, 15)

Bojarski, Lawrynowicz, and Prytula Ya.
G. [BLL, 2]

Casillo Pérez and Kravchenko V. [CaK]

Chuyko [Ch]

Denega [D]

Filevych and Sheremeta [FS]

Golberg [Go2] (Photo 13)

Ibdnez [11-4]

Kharkovych and Zhyhallo [KhZ]

KravchenkoV. and Ramirez Tachiquin
[KrR]

Lawrynowicz, Suzuki, and Castillo [LS]

Luna and Shapiro [LuS]

Mierzejeski [Mil-6]

UKRAINIAN MATHEMATICAL CONGRESS 2001 ORGANIZERS OF THE CONFERENCE

INSTITUTE OF MATHEMATICS OF THE NATIONAL
ACADEMY OF SCIENCES OF UKRAINE

INTERNATIONAL MATHEMATICAL CENTER OF
THE NATIONAL ACADEMY OF SCIENCES OF UKRAINE

UNIVERSITY OF HELSINKI

INSTITUTE OF MATHEMATICS OF THE POLISH
ACADEMY OF SCIENCES

JOENSUU UNIVERSITY
KHARKOV NATIONAL UNIVERSITY
KIEV STATE UNIVERSITY OF TECHNOLOGY AND DESIGN
UNIVERSITY OF LODZ
LVIV NATIONAL UNIVERSITY
UNIVERSITY OF PADOVA

PROGRAM
OF
THE INTERNATIONAL CONFERENCE

ON COMPLEX ANALYSIS
AND POTENTIAL THEORY

UKRAINE, KIEV
7 - 12 AUGUST 2001

Thursday, 9 August

MORNING SESSION
Chairman - Professor O. Martio
10.00 - 10.45 J. Lawrynowicz (Lodz, Poland)
From countour-solid theorems to graded fractal bun-
dles related to the complez and Paul structures
1105 1150 O. Suzuki (Tokyo, Japan)
A fractal method for infinite-dimensional Clifford al-
gebras

Fig. 1: The Kyiv Conference 2001.

ORGANIZING COMMITTEE
A. Bakhtin (Kiev, Ukraine) — Scientific Secretary
S. Favorov (Kharkov, Ukraine)
A. Grishin (Kharkov, Ukraine)
L.-I. Hedberg (Linképing, Sweden)
A. Kondratyuk (Lviv, Ukraine)
1. Laine (Joensuu, Finland)
M. Lanza de Cristoforis (Padova, Italy)
J. Lawrynowicz (Lodz, Poland)
O. Limarchenko (Kiev, Ukraine)
O. Martio (Helsinki, Finland) - Vice-Chairman
G. Matarazzo (Salerno, Italy)
A. Pokrovskii (Kiev, Ukraine)
S. Ruscheweyh (Wuerzburg, Germany)
M. Sheremeta (Lviv, Ukraine)
P. Tamrazov (Kiev, Ukraine)
R. Toscano (Caserta, Italy)

Chairman

Fig. 2: Organizers of the Kyiv
Conference 2001.
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Abbreviations (hereafter): BCP — Banach Center Publications; E. — Ed. by = Edited
by; BS — Bull. Soc. Sci. Lettres L6dz = Bulletin de la Société des sciences et des Let-
tres de L6dz; JL — Julian Lawrynowicz; RD — Sér. Rech. Déform. = Série: Recherches
sur les déformations.
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PAMIECI PROFESORA PROMARZA TAMRAZOWA (1933-2012).
DWADZIESCIA LAT WSPOLPRACY NAUKOWEJ LODZ-KIJOW

Streszczenie

11 lutego 2012 roku odszedl Profesor Promarz Tamrazow (* 17 czerwca 1933 roku),
znakomity Uczony, nasz Kolega i Przyjaciel, cztonek Komitetu Redakcyjnego Bull. Soc. Sci.
Lettres LodZ Sér. Rech. Déform. Pamietamy Jego aktywnos¢ naukowa, uzyskane wyniki:
sformutowane i udowodnione twierdzenia, rozstrzygniete hipotezy, jak réwniez zaangazowa-
nie w zawarcie i owocny rozwdéj wspétpracy naukowej osrodkéw w Lodzi i Kijowie w zakresie
matematyki i fizyki od roku 1992.
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ON THE DIRICHLET PROBLEM FOR GENERAL DEGENERATE
BELTRAMI EQUATIONS

Summary _
_We study the Dirichlet problem for general degenerate Beltrami equation 0f = pdf +
vOf in the unit disk. New criteria for the existence of regular solutions are proven.

Keywords and phrases: Dirichlet problem, regular solutions, Beltrami equations with two
characteristics

1. Introduction

Let D be a domain in the complex plane C. Throughout this paper we use the
notations B(zp,r) : ={z€ C:|z—z| <r}forzp € Candr > 0,B(r) : = B(0,r),
B: =B(1),and C : =CUcc.

The Beltrami equation of the first type

(1) fz=p(z)- f.

is basic in the theory of quasiconformal mappings in the plane. It is the equation
that provides the connection of the geometric theory of quasiconformal mappings
to complex analysis and elliptic PDEs. Here fz = 0f = (fi +if,)/2, f. = Of =
(fo —ify)/2, 2 = z + iy, and f, and f, are partial derivatives of f = u + v in
the variables x and y, respectively, and p : D — C is a measurable function with
|#(2)] < 1 a.e. For the equation (1) the existence problem was resolved for the
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uniformly elliptic case when ||p]|o < 1, see e.g. |1,2,21]. The existence problem for
degenerate Beltrami equation (1) when

®) Kulo) o = el ¢ L

is currently an active area of research, see e.g. the monographs [14] and [22] and the

surveys [13] and [29] and further references therein.
On the other hand, the Beltrami equations of the second type

(3) fr=v() [
play a great role in many problems of mathematical physics, see e.g. [19]. In this

connection, we established a series of criteria on existence of regular solutions for
the Beltrami equations with two characteristics

(4) fe= =) fotv(2) f

in our recent papers [4]- [6]. There we called a homeomorphism f € VV,%)Cl(D) by a
regular solution of (4) if f satisfies (4) a.e. and J;(2) = |f.]? — | fz]? # 0 a.e.
Boundary value problems for the Beltrami equations are due to the well-known
Riemann dissertation in the case of p(z) = 0 and v(z) = 0 and to the papers of
Hilbert (1904, 1924) and Poincare (1910) for the corresponding Cauchy—Riemann
system. The Dirichlet problem was well studied for uniformly elliptic systems and
for the corresponding Beltrami equations (4) when K, , € L>, see e.g. [2] and [31].
Recall that every analytic function f in a domain D in C satisfies the simplest
Beltrami equation fz = 0 with u(z) = 0 and v(z) = 0. If an analytic function f
given in the unit disk is continuous in its closure, then by the Schwarz formula

. 1 (+zdC
o) £ =it f0)+ 5 [ Ref©)- 2%
I¢1=1

see, e.g., Section 8, Chapter III, Part 3 in [16]. Thus, the analytic function f in the
unit disk B is defined, up to a purely imaginary additive constant ic, ¢ = Im f(0),
by its real part ©(¢) = Re f(¢) on the boundary of B.

The Dirichlet problem for the Beltrami equation (4) in a domain D C C is
the problem on the existence of a continuous function f : D — C having partial

derivatives of the first order a.e., satisfying (4) a.e. and such that
(6) lim Re /() = ¢(¢) V¢ e D

for a prescribed continuous function ¢ : 9D — R.

If p(¢) # const, then a regular solution of the Dirichlet problem
7 fE:/L(Z)'fZ+V(Z)'E5 zeD,
(™) limCRef(z):go(C) v ({edD

in a domain D is a continuous, discrete and open mapping f : D — C of the Sobolev
class VV&)cl with its Jacobian Jy(z) # 0 a.e. satisfying (4) a.e. and the condition (6).
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Recall that a mapping f : D — C is called discrete if the preimage f ~*(y) consists
of isolated points for every y € C, and open if f maps every open set U C D onto
an open set in C.

The Dirichlet problem for the degenerate Beltrami equations of the first type (1)
in the unit disk was recently studied in [10]. Moreover, in [20] it was proven a series
of new criteria in terms of K, on the existence of regular solutions of the Dirichlet
problem for the degenerate Beltrami equation (1) with continuous boundary data in
an arbitrary Jordan domain.

The purpose of this paper is to study the Dirichlet problem in the unit disk with
continuous boundary data for degenerate Beltrami equation of the form (4) with
measurable coefficients p(z), v(z), satisfying the inequality |u(2)| + [v(2)] < 1 a.e.
The degeneracy of the ellipticity is controlled by the dilatation coefficient

L+ |p(z)| + [v(2)]

(8) Kuu(2) @ =
. 1= |p(2)] = |v(2)]
To solve the Dirichlet problem with continuous boundary data we impose on K, , ()
some additional conditions and give new criteria for the existence of regular solutions.

1
€ Lige-

2. Preliminaries

To derive criteria for existence of regular solutions for the Dirichlet problem (7) we
make use of the approximate procedure based on the existence theorems for the
case K, € L™ given in [2] and convergence theorems for the Beltrami equations
(4) when K, € Li established in [5]. The Arzela-Askoli theorem combined with
moduli techniques is also used.

In particular, by Theorems 5.1 and 6.1 and the point 8.1 in [2], see also Theorem
VI.2.2 and the point VI.2.3 in [21] and (5) above, we have the following statement.

Proposition 2.1. Let ¢ : 0B — R be a nonconstant continuous function and K, ,, €
L in the unit disk B. Then the Dirichlet problem (7) in the unit disk B has a
unique regular solution f normalized by Imf(0) = 0. Moreover, this solution has the
representation

(9) f=Aocy

where g : B — B is a homeomorphic regular solution of the equation
A'(g(2)) _

10 Iz = z2) gy +——5-V(2) 3G,

(10) gz = m(2) - g T902) (2)-7

in B normalized by g(0) =0, g(1) =1, and A: B — C is an analytic function such
that

(11) Aw) = 5= [ olg7HQ) ——= .
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Remark 2.1. Let u* : C — C be the function that coincide a.e in B with

9z 9= A'9(2))

g. ~ MO H )

and is equal to 0 outside of B. Then K,- < K, , a.e. in B and there is a regular
solution G : C — C of the equation G> = u*G, such that G(0) = 0, |G(1)| = 1 and
G(c0) = 0o. Moreover, G = hogin B where h : B — G(B) is a conformal mapping
with #(0) = 0 and A/(0) > 0. Thus,

(12)

(13) f=AohtoG
and

w) = L -1 (Gtwdd
(14) Ao =g | HOON 0T

Denote such f, g, A, G and h by fuv.0: Guv,er Apve Guue and by, o, respec-
tively.

Recall also that, given a family of paths I' in C, a Borel function p : C — [0, 00]
is called admissible for I, abbr. p € adm 7T, if

(15) [ ol = 1
¥
for each v € T'. The modulus of T" is defined by
(16) M@)= inf /pz(z) dady .

pEadm ™
C

Remark 2.2. Note the following inequality for a quasiconformal mapping f: D — C,
see e.g. V(6.6) in [21],

(17) M) £ [ K- ) dody
C
This inequality holds for every path family I in D and for all p € adm T where
1 + 1
(18) K(z) = o—
|fol = 1f=]

is the (local) maximal dilatation of the mapping f at a point z € D.

Given a domain D and two sets E and F in C, A(E, F, D) denotes the family
of all paths v : [a,b] — C which join E and F in D, i.e., y(a) € E, v(b) € F and
v(t) € D for a < t < b. Recall that a ring domain, or shortly a ringin C is a domain
R whose complement C \ R consists of two connected components.

The following statement is a direct consequence of the known estimate of the
capacity of a ring formulated in terms of moduli, see e.g. Lemma 2.16 in [5].
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Lemma 2.1. Let f : D — C be a homeomorphism with 6§(C\ f(D)) > A > 0 and
let zg be a point in D, ¢ € B(zo,70), ro < dist (z0,0D). Then

32 2m
19 S , J(z < —-exp| —
(19) (1o < %o (- sraresen )
where Co = {2z € C : |z — 20| = ro}, C = {2 € C : |z — 20| = [ — 20|} and
A={2€C:|C— 2] <|z— 20| <70}

Recall that, for points z,( € C, the spherical (chordal) distance s(z,() between
z and ( is given by

lz—¢l
(20) 8(27<) = 1 1 z # 00#(,
(1+[22)z(1+[¢?)2
s(z,00) = ———— z # o0,
52 = ey
Here 6(A) denotes the spherical diameter of a set A C C, i.e. sup s(z,().
z,(EA

3. BMO, VMO and FMO functions

Recall that a real-valued function v in a domain D in C is said to be of bounded
mean oscillation in D, abbr. u € BMO(D), if u € L},.(D) and

1
(21) |lee]l s := sup — / |u(z) —up|dm(z) < 0o,
3781 )

where the supremum is taken over all discs B in D, dm(z) corresponds to the
Lebesgue measure in C and

1
up = Bl B/u(z) dm(z) .

We write w € BMOjoc(D) if uw € BMO(U) for every relatively compact subdomain
U of D (we also write BMO or BMOjqc if it is clear from the context what D is).

The class BMO was introduced by John and Nirenberg (1961) in the paper [18]
and soon became an important concept in harmonic analysis, partial differential
equations and related areas, see e.g. [15] and [24].

A function ¢ in BMO is said to have vanishing mean oscillation, abbr. ¢ € VMO,
if the supremum in (21) taken over all balls B in D with |B| < ¢ converges to 0
as € — 0. VMO has been introduced by Sarason in [28]. There exists a number of
papers devoted to the study of partial differential equations with coefficients of the
class VMO.

Remark 3.1. Note that W12 (D) c VMO (D), see e.g. [7].

Following [17], we say that a function ¢ : D — R has finite mean oscillation at a
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point zp € D if
(22) T 9(2) — Bez0)] dedy < oo

=0 JB(z0.,0)

where
B0l = le) dudy
B(z0,¢)

is the mean value of the function ¢(z) over the disk B(zp,¢) with small € > 0. We
also say that a function ¢ : D — R is of finite mean oscillation in D, abbr. ¢ €
FMO(D) or simply ¢ € FMO, if (22) holds at every point zg € D.

Remark 3.2. Clearly BMO C FMO. There exist examples showing that FMO is not
BMOjqc, see e.g. [14]. By definition FMO C L{, . but FMO is not a subset of L

loc
for any p > 1 in comparison with BMO)ec C Li, . for all p € [1, 00).

Proposition 3.1. If, for some collection of numbers . € R, ¢ € (0,¢eq],
(23) Ty 9(2) — pe] dady < oo,
e—0 B(z0,)

then ¢ is of finite mean oscillation at zp.

Corollary 3.1. If, for a point zo € D,
(24) Tim lo(2)| dedy < oo,
e70 JB(z0,0)

then ¢ has finite mean oscillation at zg.

Remark 8.3. Note that the function ¢(z) = logﬁ belongs to BMO in the unit disk
B, see e.g. [24], p. 5, and hence also to FMO. However, $,.(0) — oo as ¢ — 0, showing
that the condition (24) is only sufficient but not necessary for a function ¢ to be of
finite mean oscillation at zg.

Lemma 3.1. Let ¢ : D — R be a nonnegative function with finite mean oscillation
at 0 € D and let o be integrable in B(0,e1) C D. Then

¢(2) dxdy

1
(25) 5 < C-loglog - Vee(0,e7°)
Alee-1) (|z|log %)

Here we use the notation A(e,e9) = {z € C:e < |z| < eo}.

4. The main lemma

The following lemma is the main tool for obtaining criteria of the existence of regular
solutions of the Dirichlet problem for the Beltrami equations with two characteristics
in the unit disk.
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Lemma 4.1. Let i, v : B — C be measurable functions with K,, , € LY(B). Suppose
that for every zo € B there exist cg = £(20) and a family of measurable functions
Va6t (0,00) = (0,00), € € (0,0), such that

€0
(26) 0 < I,(e) : = /d)zw(t) dt < oo,

€

and such that
(27) / Kpun(2) 02, (12 — z0]) dudy = o(I2(c))

e<|z—zp|<eo

as € — 0. Then the Beltrami equation (4) has a regular solution f satisfying the
boundary condition (6) for each nonconstant continuous function ¢ : 0B — R.

Here we assume that @ and v are extended by zero outside of the unit disk B.

Proof. Setting

_ =),
(28) i) = { 1)
and

[ ulz), i K(z)<n,
(29) vn(z) = { 0, otherwisein C,

it K,,.,(2) <n,
otherwise in C,

we have that K, ., (z) < nin C. Denote by fyn, gn, An, G and h,, the functions
Jinvner Gunvnsor Apnwnip G A0 Ay, 1, o, Tespectively, from Proposition 2.1
and Remark 2.1.

Let I'. be a family of all paths joining the circles C. = {z € C: |z — 20| = ¢} and
Co={2€C:|z— 2| =c¢co}inthering A. = {z € C:e < |z — 20| < €0} Let also
1* be a Borel function such that *(t) = v(¢) for a.e. t € (0,00). Such a function
1* exists by the theorem of Lusin, see e.g. [27], p. 69. Then the function

pe(2) = V(|2 = 20[)/ 1z, (e), if z € A,
) 0, if z e C\A,,
is admissible for I'.. Hence by Remark 2.2 applied to G,

MEGIIE [ Kuule) p2(le -~ sol) dody.
e<|z—z0|<e0
and, by the condition (27), M(G,I'.) — 0 as ¢ — 0 uniformly with respect to the
parameter n = 1,2,....

Thus, in view of the normalization G,,(0) = 0, |G,(1)] = 1 and G, (c0) = oo, the
sequence G, is equicontinuous in C with respect to the spherical distance by Lemma
2.1 with A = 1/v/2. Consequently, by the Arzela—Ascoli theorem, see e.g. [8], p. 267,
and [9], p. 382, it has a subsequence G,,, which converges uniformly in C with respect
to the spherical metric to a continuous mapping G in C with the normalization
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G(0) =0, |G(1)] =1 and G(<) = 0. G : C — C is a homeomorphism of the class
VV&)Cl((C) by Corollary 3.8 in [5].

Hence by the Rado theorem, see e.g. Theorem I1.5.2 in [12], hy, — h as | — oo
uniformly in B where h : B — G(B) is the conformal mapping of B onto G(B)
with the normalization £(0) = 0 and h’(0) > 0. Moreover, since the locally uniform
convergence G, — G and h,, — h of the sequences G,, and h,, is equivalent to
their continuous convergence, i.e., Gp,(z1) — G(z4) if 2 — 2z, and hy,, () — h(¢) if
¢t — (s, see [Du], p. 268, and since G and h are injective, it follows that G;ll -Gt
and h;ll — h~! continuously, and hence locally uniformly.

Then we have that A,, — A locally uniformly in B where

1 _1 C+wdC
(30) A(w) = 5 (G (h(C))) - —we
[¢I=1

Note that the analytic functions A, and A are not constant and hence A;, and A’
have only isolated zeros in B. Thus, by Theorem 3.1 and Corollary 3.8 in [5] gn, — ¢
where g = h™10 G : B — B is a homeomorphic VV,icl solution in B of the quasilinear
equation

AGE) ) o
(31) gz = n(z) gz + X000 v(2) -9z
with the normalization g(0) = 0 and g(1) = 1. Hence f,, — f where f = Aogisa
continuous discrete open VV,%J’C solution in B of (4).

Next, note that ReA,, — Re.A uniformly in B by the maximum principle for
harmonic functions and Re A = ¢ o g~ on B and, consequently, Re f,, — Re f
uniformly in B and Re f = ¢ on 0B, i.e., f is a continuous discrete open VV&)cl
solution of the Dirichlet problem (6) in B to the equation (4). It remains to show
that J¢(z) # 0 a.e. in B.

By a change of variables which is permitted because g,, and g,, = g, ! belong to
the class W,o2, see e.g. Lemmas I11.2.1 and 111.3.2 and Theorems I11.3.1 and I11.6.1

in [21], we obtain that for large enough !

- dxdy
(32) /|3gm|2 dudv < / T= (22 S/Kﬂ,y(z) drdy < o
B 5"1(3) B*
where ki(z) = |pn, (2)| + |vn,(2)| and B* and B are relatively compact domains

in B and §(B), respectively, such that g(B) C B*. The relation (32) implies that
the sequence g, is bounded in WY2(B), and hence g=* € W2, see e.g. Lemma
II1.3.5 in [25] or Theorem 4.6.1 in [11]. The latter condition brings in turn that g
has (N~1)—property, see e.g. Theorem IIL.6.1 in [21], and hence J,(z) # 0 a.e., see
Theorem 1 in [23]. Thus, f = Ao g is a regular solution of the Dirichlet problem (6)
to the equation (4).

Corollary 4.1. Let u, v : B — C be measurable functions with K, , € L'(B).
Suppose that for every zo € B there is eg > 0 such that
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(33) [ Ko (s = o) dny < 0 [ wie)
e<|z—z0|<eo €

as € — 0, where ¢ : (0,00) — (0,00) is a measurable function with
(34) /w(t) dt = oo, 0 < /¢(t) dt < oo Ve € (0,e0) -
0 €

Then the Beltrami equation (4) has a regular solution f satisfying the boundary
condition (6) for each nonconstant continuous function ¢ : 0B — R.

5. Existence theorems

Everywhere further we assume that the functions ¢ and v : B — B are extended by
zero outside of the unit disk B in C.

Theorem 5.1. Let 4 and v : B — B be measurable functions such that
1+ |p(z)| + |v(2)]
1—[u(z)| = [v(2)]
Then the Dirichlet problem (7) in the disk B has regular solution for each nonconstant
continuous function ¢ : OB — R.

(35) Kuw(z) =

IN

Q(z) € FMO .

Proof. Lemma 4.1 yields this conclusion by choosing

1

36 2 t) = ——~ )
(36) V2o, (t) flog L
see also Lemma 3.1.
Corollary 5.1. In particular, if

N 1 —
(37) lim Lt p(2)] dxdy < o0 VzeDB,

=0 Jp(z,e) 1 = [V(2)]
then the Dirichlet problem

f?zy(z)'ﬁa ZGE,

(38) lim Re f(2) = ¢(¢), V€ OB

z—C

in the disk B has reqular solution for each nonconstant continuous function @ : OB —
R.

Theorem 5.2. Let u, v : B — B be measurable functions, K, , € L*(B), k., (r) be
the mean value of K, ,,(z) over the circle |z — zo| = r. Suppose that



38 B. Bojarski, V. Gutlyanski, and V. Ryazanov

3(20) i
r —

Then the Dirichlet problem (7) in the disk B has regular solution for each nonconstant
continuous function ¢ : OB — R.

Proof. Theorem 5.2 follows from Lemma 4.1 by special choosing the functional pa-
rameter

(40) ey o(t) = Uoy(t) © = { 1/[th, ()], t€(0,20) ,

0, otherwise

where g0 = d(20).

Corollary 5.2. In particular, the conclusion of Theorem 5.2 holds if

1 —
(41) ky(r) = O (log —) as r—0 VzeDB.
T

In fact, it is clear that the condition (39) implies the whole scale of conditions in
terms of log, for instance, with using functions of the form 1/(¢tlog...log1/t).
In the theory of mappings called quasiconformal in the mean, conditions of the

type
(42) /@(Q(z)) dzedy < oo

B
are standard for various characteristics @) of these mappings.

In this connection, in the paper [26], see also the monograph [14], it was estab-
lished interconnections between a series of various integral conditions on the function
®. We give here the corresponding conditions for ® under which (42) implies (39).

Later on, we use the following notion of the inverse function for monotone func-
tions. Namely, for every non-decreasing function ® : [0,00] — [0, 00], the inverse
function @1 : [0, 00] — [0, 00] can be well defined by setting

4 o1 = inf t.
(43) (7) ol

As usual, here inf is equal to oo if the set of ¢ € [0, 00] such that ®(¢) > 7 is empty.
Note that the function ®~* is non-decreasing, too.

Remark 5.1. 1t is evident immediately by the definition that
(44) > HD(t) < t Y t€[0,00]
with the equality in (44) except intervals of constancy of the function ®.

Further, in (46) and (47), we complete the definition of integrals by oo if ®(¢) =
o0, correspondingly, H(t) = oo, for all t > T € [0,00). The integral in (47) is
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understood as the Lebesgue-Stieltjes integral and the integrals (46) and (48)—(51)
as the ordinary Lebesgue integrals.

Proposition 5.1. Let @ : [0,00] — [0, 00] be a non-decreasing function and set

(45) H(t) = log®(t) .
Then the equality
o dt
(46) /H’(t) 5 = ©
A
implies the equality
[ dH(t
(47) /% = o0
A
and (47) is equivalent to
o dt
(48) /H(t) =
A

for some A > 0, and (48) is equivalent to every of the equalities:

0 () =

0
for some 6 > 0,

Tod
(50) /H‘?(n) -
AN

for some A, > H(+0),

dr

for some 6, > ®(+0).

Moreover, (46) is equivalent to (47) and hence (46)—(51) are equivalent each to
other if ® is in addition absolutely continuous. In particular, all the conditions (46)—
(51) are equivalent if ® is convex and non-decreasing.

Finally, we give the connection of the above conditions with the condition of the
type (39).

Recall that a function ¢ : [0, 00] — [0, 00] is called convez if (A1 + (1 — N)t2) <
Ap(t1) + (1 — N)(t2) for all t; and ¢, € [0,00] and X € [0, 1].
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Proposition 5.2. Let Q : B — [0, 00] be a measurable function such that

(52) O(Q(2)) dxdy < o0
/

where @ : [0, 00] — [0, 00] is a non-decreasing convex function such that

o0

dr

5

for some § > ®(0). Then
1

dr
>4 0/ ra(r)

where q(r) is the average of the function Q(z) over the circle |z| = r.

Finally, combining Propositions 5.1 and 5.2 we obtain the following conclusion.

Corollary 5.3. If ® : [0,00] — [0,00] is a non-decreasing convex function and Q)
satisfies the condition (52), then every of the conditions (46)—(51) implies (54).

Theorem 5.2 and Corollary 5.3 imply the following statement

Theorem 5.3. Let i and v : B — B be measurable functions such that

(55) /@(KW,(Z)) drdy < oo

B
where ® : [0,00] — [0,00] is a non-decreasing convex function satisfying at least
one of the conditions (46)—(51). Then the Dirichlet problem (7) in the disk B has a
reqular solution for each monconstant continuous function p : 0B — R,

Remark 5.1. Note that Theorem 5.50 from the work [26] for the Beltrami equations
of the first type (1) shows that the conditions (46)—(51) are not only sufficient but
also necessary for the general Beltrami equations (4) with the restriction (55) to
have regular solutions to the Dirichlet problem (6) for each nonconstant continuous
function ¢ : 0B — R because by the Stoilow theorem, see e.g. [30], every such a
solution F' has the representation F' = ¢ o f where f is a regular homeomorphic
solution of (1).

Note also that in the above theorem we may assume that the functions ®,,(t)
and ®(¢) are not convex and non-decreasing on the whole segment [0, oo] but only
on a segment [T, 0o] for some T € (1, 00). Indeed, every function @ : [0, c0] — [0, 00]
which is convex and non-decreasing on a segment [T, oo}, T' € (0, 00), can be replaced
by a non-decreasing convex function @1 : [0, 00] — [0, 00] in the following way. We
set @p(t) =0 for all t € [0,T], D(t) = ¢(t), t € [T,Tx], and @p = (1), t € [Ty, 0],
where 7 = (t) is the line passing through the point (0,7") and supporting the graph
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of the function 7 = ®(t) at a point (T, ®(T%)), T > T. For such a function we have
by the construction that ®r(t) < ®(¢) for all ¢ € [1,00] and @7 (¢) = P(¢t) for all
t>T,.

The equation of the form
(56) fz = (2) Re f.
with |(2)] < 1 a.e. is called a reduced Beltrami equation, considered e.g. in [2]| and |32],

though the term is not introduced there. The equation (56) can be written as the
equation (4) with

(57) ui) = viz) = =
and then
(58) Koo() = K(2) : = 231G

1—1(z)]
Thus, we obtain from Theorem 5.3 the following consequence for the reduced Bel-
trami equation (56).

Theorem 5.4. Let : B — B be a measurable function such that

(59) / B(K(2)) dady < o
B

where @ : [0, 00] — [0,00] is a non-decreasing convex function satisfying at least one
of the conditions (46)—(51). Then the Dirichlet problem in the disk B

f= = (2) Re f., z € B,

(60) lim Re f(2) = p(¢), ¥ ¢ € OB

has a regular solution for each nonconstant continuous function ¢ : 0B — R.

Remark 5.2. Remarks 5.1 are valid for reduced Beltrami equations. Moreover, the
above results remain true for the case when in (4)
(61) v(z) = wlz) e

with an arbitrary measurable function 6(z) : D — R and, in particular, for the
equations of the form

(62) f==(z) Imf.

with a measurable coefficient : B — C, |(2)| < 1 a.e., see e.g. [3].
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PROBLEM DIRICHLETA DLA OGOLNYCH ZDEGENEROWANYCH
ROWNAN BELTRAMIEGO

Streszczenie _

Badamy problem Dirichleta dla ogélnego zdegenerowanego rownania Beltramiego 0f =
pof +vdf w kole jednostkowym. Dowodzimy nowych kryteriow istnienia rozwigzan regu-
larnych.
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RATIONAL CHEBYSHEV APPROXIMANTS — THE REAL CASE,
SURVEY

Summary

In the present paper, a survey about convergence results and distribution of zeros, free
poles and alternation points of rational functions of best uniform rational approximants —
the real case is provided.

Keywords and phrases: Chebyshev approximant, distribution of zeros and free poles, dis-
tribution of alteration points

1. Introduction

Let A be a real segment, say A := [—1,1]. Given a positive integer n(n € N), we set
I1,, for the class of all polynomials of degree < n. For each pair (n,m),n,m € N{J{0}
we introduce Ry, m, := {R, R =p/q,p € II,,,q € II,,, ¢ # 0}. Let now f be a function
continuous and real-valued on A (f € C,(A)). Throughout the paper, we shall be
dealing with nonrational functions f.

We further introduce the value of p;, ., as the minimal deviation of f from the
class R, on the segment A, that is:

Pn,m = Relgf ||f - R”A;

n,m

where the norm is taken in the Chebyshev (max) metric on A. Let ry, , € Ry m be
a real-valued function on A such that

I[f - rn,m”A = Pn,m
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The function r, ,, is called rational function of best Chebyshev approzimation of
f in the class Ry m; as known [1], it always exists and is uniquely determined by
the alternation theorem of Chebyshev. By the classical Weierstrass’ approximation
theorem [9], for instance py, ., — 0 as n+ m — oo (recall that f € C,.(A)).

The theory of best Chebyshev approximants plays an important role in the mod-
ern mathematical analysis, because of its strong relation to the logarithmic potential
theory. In the present paper, we concentrate ourselves at the subjects of convergence
of Chebyshev rational approzimants and of the distribution of a-points, free poles
and points of alternations. The convergence consists of two components: the inverse
problems which refer to characterizing functions using an information about the be-
havior of rational Chebyshev approximants and direct problems what means to get
a look into the asymptotic behavior of sequences of best Chebyshev approximants
going out of properties of the approximated function f itself.

Before stating our considerations, we introduce some notations. Let

o(2):=2+V22—1 with ¢(o0) = o0.
For each r,r > 1, let
E, :={z,|¢(z)| <r} and T, := OE,
be the Joukovsky ellipse with parameter r.
Given a pair (n,m), let
Tn,m = pn,m/Qn,ma
where both polynomials py, », and ¢y, have no common divisors. The zeros o, m,k,
kE <l(n,m) <m of ¢, are called the free poles of 7, p,.

The next theorem is the basis for rational Chebyshev approximation (the real
case).

Alternation Theorem by Chebyshev, [1]. Given f € C,.(A) and (n,m) a fized
pair, let vy, ., be the rational function of best Chebyhev approzimation of f on A in
the class Ry, m. Then there exist at least n +m + 2 — d,, ,,, points

-1< Cén,m) < e <& C}En’m) rE C(n,m)

’n+’ITL7d(nY,m)

n+m—d, m)y+1l —
such that
(f = rnm(G™) =
(~D*pnm(—=1)°, k=0, ,n+m—dpm+ 1,5 ==+1,

where dy, pm = min (n — degpp,m, m — deg gn.m) -

The extreme points {C,En’m)} are called alternation points of f — vy, .

As well known, the sequence of those pairs, for which d,, ,, = 0 is infinite iff
f is not a rational function. Hence, one may assume without losing the generality
(should a situation arise) that d,, ,, = 0 for every (n,m).
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To each function f € C,(d) we assign the s.c. Walsh’s table := W (f), that is:

7'0,07 7"1,Oa IR rn,O)
7'0,17 rl,l; IR rn,l)
W) = | ooy ey e e
To,ms T1,m, oy Tnom,

The sequence {r, m}, m-fixed, n — oo is called the row in Walsh’s table, the
sequence {7y}, n — oo — the diagonal, and {7y m., }, mn = o(n), {rnm, }s Mn/n —
¢, ¢ >0 — a closed to the row and a ray-sequence, respectively.

2. Direct results

We start with some notations and definitions.

For B C C, we denote by C(B) the class of continuous functions on B and A(B)
(resp. M(B)) represents the class of functions f that are holomorphic — analytic
and single valued (resp. meromorphic) in B. Moreover, we will denote by M., (B)
the subset of functions f of M(B) with no more than m poles in B, each pole
counted with its multiplicity. To each function f € C(A) we associate the radius of
holomorphy po(f), that is:

po(f) =sup{p > 1, f € A(E,)}

and, analogously, the radius of m-meromorphy p,,(f) and the radius of meromorphy
pr. If f € Cr(A) has a nonpolar singularity on A, then we set po(f) = 1.

By the classical theorem of Weierstrass, r, m(z) — f(z), 2 € A asn+m —
o0o. We pose the question about the behavior of sequences of rational Chebyshev
approximants outside the interval A.

Theorem 1 [21]. Assume that the function f € Cr.(A)\Mm(E.), r > 1, has
exactly m poles in the ellipse E,.. Then each pole of f attracts as many poles of the
sequence {ry m}, n — 0o, m-fized, as its multiplicity; in the remaining domain the
sequence {r, m} converges to f uniformly on compact subsets. More precisely, the
sequence {rn,m}, n — oo converges in mai-measure to [ inside E,.

This result of Walsh generalizes Bernsteins’ result about the convergence of best
Chebyshev polynomial approximants to f inside the ellipse of holomorphy E, (4.
Furthermore, Theorem 1 is a partial case of Gonchar’s theorem about the rate of
best uniform approximation with rational function with fixed number if the free
poles [15].

Things are not so good when the degrees of the denominators increase. Before
presenting Theorem 2 we remind the reader of the term of an almost uniform m;-
convergence inside some domain B |10]. A sequence of functions {¢,, }, meromorphic
in B, is said to converge to a function ¢ ms-almost uniformly inside B if for any
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compact set K C B and any ¢ > 0 there exists a set K. C K such that m1(K\ K,) <
¢ and the sequence {p,} converges uniformly to ¢ on K..

Theorem 2 [5]. Assume that f € C.(A)(A(A), and assume that py < co. Let
{mn} be a sequence of positive integers such that

mn§n7mngmn+1§mn+1

and

my, = o(n/logn), n — oco.

Then there is a subsequence A C N such that the sequence {ry m,} converges ma-
almost uniformly to f inside E, . More precisely, the sequence A is that sequence of
positive integers for which

Pr,ma, = Pn+lmpq 1

>
pn,mm + pn+17mn+1 n

We introduce the next result established by H. Stahl about the diagonal in the
Walsh’s table:

Theorem 3 [19]. Suppose that the function f € C.(A)(A(A) admits an analytic
continuation everywhere in the extended complex plane C except for a finite num-

ber of multivalued singularities a;,© = 1,...75. Then there is a regular compact set
F, FNA =0, F > {ai}i=1,.; such that for every compact set C\ (FJA)

1 _
1£(2) = Tan(2)[[}" 0P 7265 < 1,

where — P means a convergence in capacity on K, p — the equilibrium measure
of the interval A,
1 dx

dp=—— 2
a 21 /1 — 22

and G% — the Green’s potential of A with respect to F.

The compact set F, called the stationary compact set, is unique and consists of a
finite number of disjoint curves nonintersecting the interval A.
For the most general case, we have, so far

Theorem 4 [13]. Let f € C.(A) be analytic in the ellipse E,,r > 1. Assume that
Tnn € A(Ey) for all n from some ng. Then the sequence {r, ,} converges to f as
n — oo inside the ellipse F, for every p with

(rp—1)?

<1.
r(r—p)?
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3. Inverse results

As a first result in this direction, we mention

Theorem 5 [18]. Given f € C.(A), assume that there is a polynomial q of degree
ezactly m, q(z) = [['=,(z — a;) with no zeros on A such that
limsup ||g — gn.m||Y/" =0 < 1.
n—oo

Then f admits a meromorphic continuation with exactly m poles into the ellipse Er

with
R> max |¢(ai)
1<i<m o
and all point a;,i =1,... ,m are poles of f.
Given now an n € N, we introduce the set a,, = {amm,k}?:l. Let L and [ be

the sets of accumulation points of {a,,} and of limit points, respectively, as n — oo.
The next result is due to K. Lungu.

Theorem 6 [16]. Given a function f € C.(A), assume that L =1 with L being a
finite set, nonintersecting the interval A. Then f admits a holomorphic continuation
from A into C\ L.

Given now a point a € C, an integer n and a positive number ¢, we introduce the
value of 7,(a,e) as the number of all free poles of 7, which are lying in the circle
K,(¢) :={z,|z — a| < €}. Finally, set

T(a,€) ;= lim infM and 7(a) := hII(l) T(a,¢).
n—oo n £—
Obviously, if for some point a we have 7(a) > 0, then a € I.

The following result was announced by Lungu:

Theorem 7 [16]. Let f € C.(A). Assume that AN L =0 and that the set L does
not separate the plane. If there is a point a € C such that

7(a) > 0,

then the function f admits a holomorphic continuation from A into C\L.

Sufficient conditions under the conditions of Theorems 6 and 7 for the function
f to have a pole at some point a € L were given in [14].

Information about the holomorphic continuation of functions in terms of the
associated rational Chebyshev approximants could be provided by the behavior of
the zeros. Before continuing, we introduce the term of N,(g,A). Given a set A,
function ¢ meromorphic in A and o € C, we denote by N, (g, A) the number of the
a-points of g in A. Under this definition, Np(g, A) stands for the number of the zeros
of g in A, whereas Noo(g, A) means the number of the poles.
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Theorem 8 [12]. Let f € C,.(A). Suppose that all ry, ., € M., (U) for some domain
U D A. Suppose further that for any compact subset K of U

No(rpm, K) =o(n), n — .

Then f € My (U) and the sequence {r, ,} converges to f, as n — oo ma-almost
uniformly inside U.

4. Distribution of alternation point, of a-points and of free
poles

Recall the classical theorem of Kadec [11].

Theorem 9 [11]. Given f € C.(A) and n a fized positive integer. Let P, be the
polynomial of best Chebyshev approzimation of f on A. Denote by {mk}zzé the set
of the alternation points of f — P,. Then there is a sequence A C N such that for
every positive €

wk )< 1
n+1"7 " nt/2=e’

lim (maxo<k<n+1|Tr — COS
nen ==

Denote by v, the unit (counting ) measures associated with the polynomials of
best Chebyshev approximation. As a consequence, we get:

Corollary 1 . Under the conditions of Kadec’s theorem, there is a sequence A such
that
Up => pasn € A,

where 1 is the equilibrium measure on A and = means convergence of measures
in the weak sense.

We remark that the sequence A is that one, for which
Pn,0 — Pn+1,0
Pn,0 T Pn+1,0

1
Z—Z,HGA
n

(comp. footnote 2), p.4).
The next result was proved by H. P. Blatt, R. Grothmann and R. K. Kovacheva [3].

Theorem 10 . Let f € C.(A) and
My <My +1<Mmp+y1<my+1,n=1,2,.--

Then for the sequence sequence A

A= {ne N, rme ~ Prrtmac, i}

Pn,my + pn+1,mn+1 o nZ

there holds

b
Vn,mn, — an,mnﬂgznn - (1 - Oén,mn)ﬂ =0, as ne A,
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where vy m, 15 the unit measures associated with the alternation points of f —
rnymn,ﬂg{%n — the ballayage onto the segment A of the unit measure, associated

with the polynomial ¢n m, Gn+1,m, ., and

My + Mp+1
an)m’ﬂ -

n—+m,+2°

Theorem 9 generalizes the result of Kadec for m,, = o,n = 1,2,..., as well as
the results in [6] and [7] for closed to row sequences, ray-sequences and diagonal
sequences in the table of Walsh, respectively.

Given an f € C,(A), denote by &; the ellipse of meromorphy of f, that is the
maximal Joukovsky ellipse with foci at +1 into which f admits a continuation as a
meromorphic function. Given a set A and point o € C, we denote by N (7. m,,, A)
the number of the a-points of 7, ., in A.

The next theorem [12] and [4] is an Analogue of Sohotzky’s Theorem about the
behavior of a-points of a function around an essential singularity:

Theorem 11 . Assume that f € C,.(A) is holomorphic (analytic and single valued)
on A. Assume, further, that m, = o(n/logn) as n — oco. Then the sequence ry, m,
converges in mi-measure to f asn € A, uniformly on compact subsets of the ellipse
Ef. Let zo € OEf be a point through f does not admit a holomorphic continuation,
and let U be a neighborhood of zo. Then for every number o € C with at most one
exception there holds

lim sup Ng (7nm.,, U) = 0.

Theorem 12 introduced below could be considered as an analogue of Jentzsch-
Szegd theorem about the asymptotic distribution of zeros of approximation polyno-
mials.

Theorem 12 [5]. Under the same conditions on f and {my} as in Theorem 2,
assume that f has at least one singularity on 0y of multivalued character. Then the
zeros of the sequence Ty, distribute asymptotically, as n € A, like the equilibrium
measure of the boundary of &;.

In the spirit of Theorem 12, we consider the case, when f is not holomorphic on
A. In this case, we have

Theorem 13 Andrievsky-Blatt-Kovacheva, [2]. Let a € A be a point of non-
holomorphy of f. Then for every neighborhood U, U (A C A and any a € C there

holds:
either  limsup Noo (7n,m,,, U) = 00,

or lim sup 7N”(T";{""’U) > 0.
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This result generalizes results by Blatt, Iserles, Saff and Stahl about distribuution of
zeros and poles of Chebyshev approximants for the functions |z| and 2,1 > « > 0.
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WYMIERNE APROKSYMANTY CZEBYSZEWA —
— PRZYPADEK RZECZYWISTY. PRZEGLAD

Streszczenie

W niniejszej pracy dokonujemy przegladu wynikéw dotyczacych rozmieszczenia zer,
swobodnych biegunéw i punktéw alteracji funkcji wymiernych z najlepszej jednorodnej
aproksymanty wymiernej w przypadku rzeczywistym.
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Summary

We consider monogenic functions taking values in topological vector spaces being ex-
pansions of certain infinite-dimensional commutative Banach algebras associated with the
three-dimensional Laplace equation. We establish that every harmonic function is a com-
ponent of the mentioned monogenic functions
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1. Introduction

An effectiveness of the analytic function methods in the complex plane for research-
ing plane potential fields inspires mathematicians to develop analogous methods for
spatial fields.

An algebraic-analytic approach to equations of mathematical physics is developed
at the Department of Complex Analysis and Potential Theory of the Institute of
Mathematics of the National Academy of Sciences of Ukraine. Being the first head
of this Department, Professor P. M. Tamrazov concerned very closely to development
of the mentioned approach that were essentially developed thanking his support.

This approach means a finding of commutative Banach algebra such that func-
tions differentiable in the sense of Gateaux with values in this algebra have com-
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ponents satisfying the given equation with partial derivatives. Such algebras are
constructed for the biharmonic equation and the three-dimensional Laplace equa-
tion and elliptic equations degenerating on an axis that describe axial-symmetric
potential fields (see [1-5]).

Defining a potential solenoid field in a simply connected domain @ of the three-
dimensional real space R3, the vector-function V satisfies the system of equations

(1) divV =0, rotV =0.

Then there exists a scalar potential function u(x,y, z) such that V = gradu and u
satisfies the three-dimensional Laplace equation

2 2 2
(2) Asu(z,y,2) = (% + 88—1/2 + %) u(z,y,z) =0.

Doubly continuously differentiable functions satisfying Eq. (2) are called har-
monic functions, and solutions of the system (1) are called harmonic vectors.

Let A be a n-dimensional commutative associative Banach algebra over either the
field of real numbers R or the field of complex numbers C, 3 < n < co. Let {e1, ea,e3}
be a part of the basis of A and E3 := {{ = we1 + yea + zes : x,y,2z € R} be the
linear span generated by the vectors ey, e, e3. In what follows, ( := ze; + yes + zes
and z,y,z € R.

We say that a continuous function ® : £, — A is monogenic in a domain Q¢ C E3
if ® is differentiable in the sense of Gateaux in every point of ()¢, i.e. if for every
¢ € ¢ there exists an element ®'(¢) € A such that
) lim (@(C+eh) —B(Q) e = h(Q) Vh € Ea

We use the notion of monogenic function in the sense of existence of derived
numbers for this function in the domain D¢ (cf. [6,7]).

In the scientific literature the denomination of monogenic function is used else
for functions satisfying certain conditions similar to the classical Cauchy — Riemann
conditions (cf. [8,9]). Such functions are also called regular functions (cf. [10]) or
hyperholomorphic functions (cf. [11,12]).

If the basic elements eq, es, e3 satisfy the condition

(4) el tester=0,

then every doubly differentiable in the sense of Gateaux function ® : Q¢ — A satisfies
the following equality in the domain §):

(5) A3®(¢) = "(C) (ef +e3+¢5) =0.

We say that an algebra A is harmonic (cf. [3,4,13]) if in A there exists a triad
of linearly independent vectors {ey, ea, e3} satisfying the equality (4) provided that
ei #0 for k = 1,2,3. We say also that such a triad {e1, e2, e3} is harmonic.

P. W. Ketchum [13] considered the C. Segre algebra of quaternions [14] as an
example of harmonic algebra. I. P. Mel’nichenko solved completely the problem on
finding three-dimensional harmonic algebras with unit (see [1,3,4]). More exactly,
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he proved that there does not exist such an algebra over the field R, he found all
three-dimensional harmonic algebras over the field C and constructed all harmonic
bases in these algebras.

Yet, it is the fact that it is impossible to obtain all solutions of Eq. (2) in the
form of components of monogenic functions taking values in finite-dimensional com-
mutative algebras (see, e.g., [4, p. 43]).

Meanwhile, it is proved in [4] that potential functions of axial-symmetric fields
are expressed in the form of components of monogenic functions taking values in an
infinite-dimensional commutative Banach algebra if certain natural requirements are
fulfilled. Spherical functions are the first components of expansions of corresponding
monogenic functions with respect to the basis of infinite-dimensional commutative
Banach algebra F considered in the papers [4,5]. Note that the algebra F is con-
tained in a vector space considered by P. W. Ketchum [15]. This vector space is
not an algebra, though. P. W. Ketchum proved that a set of components of func-
tions taking values in the mentioned space includes all analytic solutions of Eq.
(2). M. N. Rogculet, [16] considered an other infinite-dimensional vector space and
functions generating solutions of Eq. (2).

Below, we consider a topological vector space containing the algebra F and prove
that all harmonic functions are components of monogenic functions taking values
in this space. We prove also a similar result for monogenic functions taking values
in a topological vector space whose support coincides with the vector space of the
paper [16].

2. A topological vector space F containing the algebra F

Consider an infinite-dimensional commutative associative Banach algebra
o0 o0
F:.= {g—chek D ck 6R,Z|ck| < oo}
k=1 k=1
over the field R with the norm ||g||r := Z lck| and the basis {ex};>, where the

k=
multiplication table for elements of basis is of the following form:

1
a5 “dn N >17
264 n -~

(€2n+2m - (*1)me2n72m) VTL >m Z 1 )

€n€l = €n, €2n+1€2n =

1
2

€an41€2m =

1
€2nt1€2m = 5 <€2n+2m + (71)n€2m72n) Ym>n>1,

1
€an+1€2m+1 = 5 (€2n+2m+1 + (_1)me2n—2m+l> Yn>m>1,
1
€aneam = 5 (*€2n+2m+1 + (71)me2n72m+1) Vn>m>1.

It is evident that here eq, e, e3 form a harmonic triad of vectors.
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Note that the algebra F is isomorphic to the algebra F of absolutely convergent
trigonometric Fourier series

g(T) = ap + Z (a;~c i* cos kT + b i sin ]{37’)
k=1

o0
with real coefficients ag, ax, by and the norm | g||r := |ao| + > (|ak| + |bk|) In this
k=1

k=lcos(k — 1)7, ear < i¥sin kT between

case, we have the isomorphism egf_1 < @
basic elements.

Now, let us to insert the algebra F in the topological vector space

- o0
F:= {g_chek D Ck GR}
k=1
with the topology of coordinate-wise convergence.

Essentially, P. W. Ketchum [15] considered the space F though he did not use
the notion of topological vector space as well as the differentiability in the sense of
Gateaux.

Note that F is not an algebra because the product of elements g1, g2 € F is defined
not always. But for each g = io: crer € F and ¢ = xey + yes + zes, one can define

k=1
the product

> c c cy
9C =Cg :Zx;%eker(—;eﬁr (ﬁ—é’) ez — 5 et

+

N | =

oo 1 o0
Z(Cqu — Cok+3) €2k — B Z(C2k72 + cok12) 62k+1> +

k=2 k=2

1 o0
+z (%3 €1 — %4 ez + (61 - %5) es + 3 g(ckfz — Ckt2) 6k> .
Let © be a domain in R? and Q¢ := {¢ = ze1 +yea+ze3 : (2,9, 2) € Q}. Consider
a function @ : Q¢ — F of the form

(6) () =Y Uklz,y,2) ek,
k=1

where the functions U, : Q — R are differentiable in 2. Then ® is a continuous
function in ¢ and, therefore, ® is a monogenic function in Q¢ if ®'(¢) € F in the
equality (3).

In the following theorem we establish necessary and sufficient conditions for a
function ® : Q¢ — F to be monogenic in a domain ).

Theorem 2.1. Let a function ® : Q¢ — F be of the form (6) and the functions
Uk : Q — R be differentiable in Q. In order that the function ® be monogenic in
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the domain ¢, it is necessary and sufficient that the following Cauchy-Riemann
conditions be satisfied in Q¢:

9o 0P 9o 0P
(7) =

8_y_%62’ E—%G:’,-

The proof of Theorem 2.1 is similar to the proof of Theorem 1.16 [5] where the
necessary and sufficient conditions for a function ® : {3 — F to be monogenic
include certain additional relations conditioned by the norm of absolute convergence
in the algebra F.

It is proved in [5] that the system (7) can be rewritten in the following equivalent
form:

ou; 10U, 10Us

dr 208y 2 0z

oy vy _
Oy oz
oU; 10Uy
1. -2"2_
Ay + 2 Or ’
oUy 10U
. 2: T2
sk OUsk—z  OUzk
Ox 0z dy
OWapi1 _ OUzp—2  OUszp—y
dr Oy 0z
Uz OUskt1 _ OUsk—2
0z oy ox
OUa,  OUzpy1  OUzp1
Oy + 0z ox 3

Relations between solutions of the system (8) and spatial potential fields is de-
scribed in the paper [5]. In particular, the following theorem is a direct consequence
of Theorem 1.19 [5].

Theorem 2.2. Every monogenic function ® : Q — F generates a harmonic vector
V := (U, —3 U, —3 Us) in the domain €.

Note that the same relation between harmonic vectors and monogenic functions
taking values in a three-dimensional semisimple harmonic algebra was discovered by
I. P. Mel’nichenko [1,4].

The following theorem is a direct consequence of Theorem 1.20 [5].

Theorem 2.3. For every function Uy : 0 — R harmonic in a simply connected
domain Q C R3 there exist a monogenic function ® : Q¢ — F such that Uy is the
first component of the expansion (6).
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In particular, every spherical function is the first component of the expansion (6)
of monogenic function taking values in the algebra T, videlicet, ®(¢) = a(™, where
a €F (see, e.g., [5]).

3. A topological vector space containing another
infinite-dimensional harmonic algebra

Consider an infinite-dimensional commutative associative Banach algebra

G := {g—ickekzck GR,i|ck| <oo}

k=1 k=1

over the field R with the norm ||g|lg := >_ |ck| and the basis {ex}72, where the
k=1
multiplication table for elements of basis is of the following form:

(9) €n€l = €n, €2n+1€m = €2n+m, €2n€am = —€2n+4+2m—3 — €2n4+2m+1

for all natural numbers n and m.

It is evident that here e, eo, e3 form a harmonic triad of vectors.

Setting the following correspondence between basic elements ey and trigonometric
functions: esn—1 < " Lcos” LT, eqn < i"sinT cos
of the algebra G.

Let © and € denote the same domains as above. Consider a function ® : ¢ — G
of the form (6), where the functions Uy : @ — R are differentiable in €. In the
following theorem we establish necessary and sufficient conditions for such a function

® to be monogenic in a domain €2¢.

"=+ one can obtain a model

Theorem 3.1. Let a function ® : Q¢ — G be continuous in a domain Q¢ and the
functions Uy : Q@ — R in the expansion (6) be differentiable in ). In order that the
function ® be monogenic in Q¢, it is necessary and sufficient that the conditions (7)
be satisfied and the following relations be fulfilled in €:

| OUR(x,y, 2)
(10) Z T < 00,
k=1
: — U (x,y, 2
sgg}r(); Ui(z + eh1,y + €ha, 2z + €hs) — Uk(x,y, z) — 7k((9my ) ch1—
oU, 1510)
(11) —k(+z’/y’z)ah2 - %Ehg el =0 Vhy, ho,hs €R.

The proof of Theorem 3.1 is similar to the proof of Theorem 1.16 [5]. The relations
(10) and (11) are conditioned by the norm of absolute convergence in the algebra G.
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Probably, it is impossible to obtain all harmonic functions in the form of com-
ponents of monogenic functions taking values in the algebra G. Therefore, let us to
insert the algebra G in the topological vector space

G:= {g— Z ckek:ckGR}

k=—o0

with the topology of coordinate-wise convergence and the basis {e,}7>_ . We set
that the elements of basis are multiplied by rules (9) for all integer numbers n and
m.

Essentially, M. N. Rogculet, [16] considered the space G though he did not use
the notion of topological vector space as well as the differentiability in the sense of
Gateaux. It is proved in [16] that every spherical function is a component of the
expansion with respect of the basis of function A(", where \ € G.

Note that G is not an algebra because the product of elements g1, g2 € G is defined

not always. But, at least, for each g = Z cker € G and ( = xey + yes + zes, one
k=—oc0
can define the product

9o =Cg =z Z Crer+

k=—o0

e o) o o
+y( Z C2k—1 €2k — Z (cok—2 + C2k+2)€2k+1> +z Z Ck—2 €k -

k=—o0 k=—o0 k=—o0

Now, consider a function ® : Q¢ — G of the form

(12) (I)(<) = Z Uk(x,y,z) €k

k=—o0

where the functions U, : @ — R are differentiable in 2. Then ® is a continuous
function in Q. and, therefore, ® is a monogenic function in Q¢ if ®'(¢) € G in the
equality (3).

In the following theorem we establish necessary and sufficient conditions for a
function ® : Q¢ — G to be monogenic in a domain 2.

Theorem 3.2. Let a function ® : Q¢ — G be of the form (12) and the functions
Uk : Q — R be differentiable in 2. In order that the function ® be monogenic in the
domain ¢, it is necessary and sufficient that the conditions (7) be satisfied in Q.

The proof of Theorem 3.2 is similar to the proof of Theorem 1.16 [5] but relations
of the form (10) and (11) are needless.
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Let us to rewrite the conditions (7) in expanded form:
8U2m+2 8U2m+1

Oy oxr
(13) OUsmi1 _ OUsm—2 _ OUsmyz 7
Jy or or
sz OUp
0z Oz

for all integer number m.

It is evident that if the functions Uy : © — R have continuous second-order
partial derivatives in a domain  and satisfy the conditions (13), then they satisfy
Eq. (2) in Q. Indeed, in this case the function (12) is doubly differentiable in the
sense of Gateaux and, therefore, satisfies the equality (5) in the domain Q..

In the following theorem we establish that every monogenic function ® : Q — G
generates a family of harmonic vectors.

Theorem 3.3. Every monogenic function ® : Q¢ — G generates harmonic vectors
V = (Uz2m+2, U2my1, Uam)

in the domain Q for all integer number m.

Proof. Note that the system (13) can be rewritten in the following equivalent form:
Uz, Uz, OUzm
2mt2 | OUami1 | 002

Ox Oy 0z =0,
Uz, OUspy1
oy 0:
(14) )
OUamiz  OUsm _ 0
0z oxr
Oamir _ OUsmiz _ 0
or Jy

for all integer number m. Thus, the vector

V := (Uam+2, Uamt1, Uam)

satisfies the equations (1) in 2. The theorem is proved.

The following theorem show that all harmonic vectors have a relation to mono-
genic functions taking values in the topological vector space G.

Theorem 3.4. For every function Uy : & — R harmonic in_a simply connected
domain Q C R? there exist a monogenic function ® : Q¢ — G such that Uy is a
component of the expansion (12).

Proof. First of all, note that there exists a harmonic vector V§ := (v9, Uy, v§) in the
domain Q. Moreover, for any vector Vg := (v2, Uy, v9) harmonic in €2, the compo-
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nents vg, v are determined accurate within the real part and the imaginary part of
any function fy(¢) holomorphic in the domain {t = x + iz : (z,y,2) € Q} of the
complex plane, i.e. the equalities

vo(z,y, 2) = v)(x,y, 2) + Re fo(z +iz),
va(x,y, 2) = v9(2,y, 2) + Im fo(x +iz)

hold for all (x,y, z) € Q. Then, using Theorem 3.3, we find the functions Uy and Us,
namely: Uy :=vg, Us := vs.

Now, let us show that the conditions (14) allow to determine the functions Uz, 41,
Uam+2 if the function Us, are already determined for all natural m. Indeed, in this
case there exists a harmonic vector

0 ._ (0 0
Vam = (V2m42: V2m41: U2m)
in the domain ). Moreover, for any vector
Vom = (V2m+2; V2m+1, Uzam)

harmonic in 2, the components vo,,41, Vam42 are determined accurate within the
real part and the imaginary part of any function fa,,(t) holomorphic in the domain
{t=2+1iy: (x,y,2) € Q} of the complex plane, i.e. the equalities

U2m+l(x7ya Z) = ’Ungrl(ma Y, Z) + Re f2m($ + Zy) )

U2m+2(x7ya Z) = v8m+2($a Y, Z) + Im f2m(x + ’Ly)

hold for all (x,y, z) € Q. Then, using Theorem 3.3, we find the functions Us;,+1 and
U2m+2, namely: U2m+1 = V2m+41; U2m+2 = UV2m+42-

Finally, let us also show that the conditions (14) allow to determine the functions
Uam, Uamy1 if the function Us,, 4o are already determined for all negative integer
number m. Indeed, in this case there exists a harmonic vector

0 .f 0 0
V2m+1 = (U2m+23 Vom+1s U2m)
in the domain ). Moreover, for any vector
Vomt1 = (Uam+2, Vam+1, V2m)

harmonic in 2, the components va,,, Vo, +1 are determined accurate within the real
part and the imaginary part of any function fo,,41(¢) holomorphic in the domain
{t=z+1y: (z,y,2) € Q} of the complex plane, i.e. the equalities

U2m(x7ya Z) = ’Ugm(ma Y, Z) + Im f2m+l(2 + Zy) )

'U2m+1($a Y, Z) = Ugm+l(x7 Y, Z) +Re f2m+1(2 + Zy)

hold for all (x,y,2) € Q. Then, using Theorem 3.3, we find the functions Us,, and
U2m+1, namely: Ugm = V2m, U2m+1 = UV2m+41-

Thus, the functions Uy, obtained in such a way satisfy the system (14) and form
the function (12) monogenic in Q¢. The theorem is proved.
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CHARAKTERYZACJA PRZESTRZENNYCH POL
POTENCJALNYCH PRZEZ FUNKCJE MONOGENICZNE

W PRZESTRZENIACH NIESKONCZENIE WYMIAROWYCH
Z PRZEMIENNYM MNOZENIEM

Streszczenie

Rozwazamy funkcje monogeniczne o wartosciach w topologicznych przestrzeniach wek-
torowych bedacych rozszerzeniem pewnych nieskoiiczenie wymiarowych przemiennych al-
gebr Banacha stowarzyszonych z tréjwymiarowym réwnaniem Laplace’a. Wykazujemy, ze
kazda funkcja harmoniczna jest sktadowa wspomnianych funkcji monogenicznych.
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ON LOCAL APPROXIMATION OF FUNCTIONS IN ANISOTROPIC
SPACES

Summary

We prove a generalization of the theorem on existence of total differential at a point for
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1. Anisotropic metric

Let X be a nonempty set and let » : X x X — R — be a function satisfying the
following properties:

a) r(x,z) =0andr(x,y) >0foral z,yeX;
B) r(x,y) <r(x,z)+r(zy) foral z,y,ze€ X.

The pair (X,r) is called anisotropic space, and the function r anisotropic metric.
Note that we do not assume here the symmetry of the pseudometric r, i.e. in general
r(z,y) # r(y, @)

Special cases of anisotropic spaces are pseudometric and metric spaces (see, for
example, [1, §21], [2]).

For other examples of anisotropic spaces arising in the theory of abstract surfaces
see, for example, in [3, Ch. 1].



68 V. M. Miklyukov

Let a € X and € > 0 be a real number. Define e-neighbourhood of a putting
O(a,e) ={z € X : pla,z) < e}

and by standard way we define the basis topological concepts for anisotropic spaces.

2. Ends of domains

Let X be an anisotropic space and D C X be a domain.

We define ends of D using an analogy with the theory of Carathéodory prime
ends (see, for example, [4, §3]). Below we follow [5, Sec. 5.1.2].

For an arbitrary set U C D we put [U] = U\ 0D, where U is closure with respect
to D. Let {Ui}, k =1,2,... be a sequence of subdomains Uy, C D with properties:

(¢) forall k =1,2,... [Ugy1] C Ug,
(i) () [Us] = 0.
k=1

We will call chain of subdomains in D an arbitray sequence {Uy} with above
described properties (i) and (4).

Let {U.}, {U}!} be two chains of subdomains in D. We say that the chain U}, is
contained in the chain {U}'}, if for every m > 1 there exists a number k(m) such
that for all £ > k(m) the following property holds U, C U,,. Two chains each of
which is containing in other are called equivalent. The classes of equivalency ¢ of
chains are called ends of the domain D.

In order to define an end ¢ it is enough to give at least one representative in
the class of equivalence. If an end ¢ is defined by the chain {Uy}, then we write
f = {Uk}

The body of an end & =< {Uy} is the following set

€] = M2, Uk -
It is clear that this set is independent of the choice of the chain {Uy}.

Let {2, }22_; be a sequence of points x,, € D which does not have limit points
in D. Such sequences are known as nonconvergent in D.

Let a¢ € |¢| be an arbitrary point. A nonconvergent in D sequence of points
xi € D converges to a point as with respect to the topology of &, it i, — a¢ (with
respect to the topology of X') and for some chain {Uy} € £ the following property
holds: for every k = 1,2,... there exists a number m(k) such that x,, € Uy for all
m > m(k).

Let D be a domain in X, £ be an end of D, and as € || be a point. We say
that a subdomain D’ of D adjoins at the point ae, if ag € D’ and every sequence
x € D' converging at ae with respect to the topology of X converges at this point
with respect to the topology of &.
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We say that a function f : D — R! satisfies the relation
lim f(z) =A,

Zl)‘?aé

it f(xx) = A as 1z — ae along every sequence x; € D which converges at a¢
with respect to the topology of £. The quantity A is denoted in this case by the
symbol f(ag).

Let y and a be an arbitrary pair of points such that y € D and a is either an
inner point of D or a = a¢ € ||, where ¢ is an end of the domain D C X. We say
that a simple Jordan arc «, given by a parametrization x(7) : [0,1) — D, leads from
the point y to the point a, if £(0) =y and

limz(r)=a as a€D
T—1
and there exists a sequence 7, — 1, along which
lim (1) =ae as a€[€].

Tr—1

3. Intrinsic anisotropic distance

Let D C X be a domain. Let ép be the intrinsic anisotropic distance in the domain
D, i.e.

dp(x',2") = inflength~y, 2, 2" € D,
where the infimum is taken over all oriented, locally rectifiable arcs v C D, leading
from point z’ to point x”.

Let D be a domain in an anisotropic space X with a metric r. Let a € D. In
addition, if a € 0D, then we assume that a = a¢ € |{|, where { is an end of the
domain D.

For an arbitrary ¢ > 0, we put

Bp(a,t) ={x € D :6p(a,z) <t}, B} (a,t) ={x € D : 6p(z,a) < t},
and for a function f: D\ {a} — R! let
lim ™ f(z) = lim f(x),

Tr—a Sp(a,z)—0

zeD
limTf(z) = lim f(z).
T—a Sp(xz,a)—0

zeD

Note that in general
lim ~ f(z) # lim * f(x).

r—a r—a

4. Admissible domains

Let X be a space with an anisotropic metric 7 and D be a domain in X'. We call the
domain D admissible, if
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1) for an arbitrary pair of points 2/, 2’/ in D the intrinsic distance dp (2, ") < oo,
and
2) above property 1) holds for any subdomain D’ C D,

Simplest examples of domains without the property 1) are open arcs lying in R?
and not having rectifiable subarcs.

Examples of domains with the property 1) however without the property 2), we
can easilay construct if we take as X some nonintersection discs connected with
one-dimensional rectifiable arcs.

Lemma 4.1. If a domain D C X is admissible then for any pairs of points a',a” €
D there exists an open locally rectifiable arc v C D, leading from a' to a”.

Proof. By virtue of the assumption 1) for the domain D, it is enough to consider the
case, in which @’ € D and o belongs to the body || of some end & of D.

Denote by Ap(t,a”) a connected component of the set B (a”,t). It is clear that
Ap(t,a’) adjoins at the end €.

Fix a point 1 € Ap(1,a”), different from o’. By the assumption 1), there exists
an Jordan rectifiable arc 1 C D, leading from o’ to 7.

Fix 2o € Ap(3,a”). By virtue of the assumption 2) for Ap(1,a”), there exists
an Jordan rectifiable arc 74, leading from x; to z3. The arc v2 = 1 U~} is rectifiable
and leads from a’ to zs.

Fix x5 € Ap(3,a”), different from o/, z1 and z5. Using 2) for the domain
Ap(%,d”), we find an Jordan rectifiable arc 74, leading from x5 to x3. The arc
v3 =11 U~5 U~4 is rectifiable and leads from a’ to 3.

If we continue this process indefinitely, then we obtain the arc

y=mUyyU...Uy,U...,
where the arcs 7/, are rectifiable, connect points z,_1, x, and are situated in
Ap(-L=,a"). The arc v is desired. O

n—1’

Remark 4.1. From the proof of the lemma, it follows that if a/,a” € D and
dp(a’,a"”) < oo, then the arc v C D can be chosen such that its length is any
amount close to dp(a’,a’).

5. Setting of the problem

Let D be a domain in an anisotropic space X with a metric . Let a € D be a fixed
point such that
(1) 6;%13(35) <oo VreD,

where
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Moreover if a € 9D, we assume that some end & of D is given and a € |¢|. Here and
below the notation 5251)(1‘) < 0o means one of two conditions: either 01 ,(z) < oo
or §, p(x) < co. Thus by (1) we denote two different relations.
Consider two classes ¢ (D, a) of functions ¢ : D — R! with corresponding prop-
erties:
1- + N
img;_,,<(a’) =0.

We call such functions by simplest.
Let f: D\ {a} — R! be a function. Our goal is to explain conditions under which
there exist functions ¢ € ¢*(D, a) and

(2) e:D\ {a} = R, hmai’—mg(a/) =0,
such that, respectively,
(3) fla) — f(a) = c(a’) +e(a’) 5;'[,D(a’) , a eDb.

6. Inclination of a graph

Let X be an anisotropic space X with a metric . Let D be a domain in X', and
f: D — R! be a function. For an arbitrary point x € D we put
)\+(I, f) — supﬁyﬂz |f(y) - f(SC)|
vox v r(y, @)
where the supremum is taken over all locally rectifiable arcs v C D, v 3 .
The quantity Ay (z, f) characterizes an inclination of the graph f at z € X to X.
In the case, D is a subdomain of R” and f : D — R! is a C'-function, we have

Ap(z, f) = V(@)

)

Below we will need

Lemma 6.1. If a function f : D C X — R! is absolutely continuous along an
oriented locally rectifiable arc v C D, leading from a point a to a point b, then

@) 56~ F@] | [ Aelef)ds, |

~

The proof is exactly as in [4, §2, Ch. IJfor D C R™.

7. Main theorem

The following statement is true:

Theorem 7.1. Let D C X be an admissible domain, a € D be a fized point satisfying
to (1), and g : D — R! be a function with the properties:
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(5) Ap(x,9) <o VxeD and lim Ai(z,g9)=0.
5iD(a:)—>0
Then there exists g(a) = lim  g(z) such that
8% 5 (2)—0
(6) g(a') = g(a) + 6% (a') ea(a’), where , lim gq(a’) = 0.
’ 6a,D(a/)*)0

Moreover, we can put

(7) gqo(d)y= sup Ai(w,g9), t= (%,D(a’).
xEBg(a,t)

Proof. At first, we note that the finitness in D of the quantity A;(z,g) implies
continuity of g. Let R > 0 and s > 0 be such that

A (z,9) <s Vze Bi(a,R).

The set BE (a, R) is open and adjoins to the boundary point a. Take an arbitrarily
a point b € BE (a, R). Since D is admissible then by Lemma 4.1 there exists a locally
rectifiable arc v C B} (a, R) leading from b to a.

Everywhere along +, the property Ai(z,g9) < s holds. Thus, the function g is
absolutely continuous along «, and by Lemma 6.1 for an arbitrary pair of points
2’2" € v, we have

® o) =g < [ Ailwg)ds,
A 2)
From here, in particular, it follows the existence of lim g(z) as z — a along ~.

Moreover, it is clear that this limit does not depend on v C Bi(a, R) and there
exists

glag) = lim g(x).

Tz —a

weBE (a,9)

By (8) we conclude that for every point @’ € 7 the following property holds

@) - 9@l < [ Acleg)ds, <
7(a,a’)

<length~(a,a’) sup Ai(z,9).
a:EB% (a,R)

Using the Remark 4 we see that the arc 7(a,a’) can be choosen such that
length y(a, a’) will be any amount close to (%,D(a’). Because the quantity

sup )\+($7g) *)Ov (RHOL
xEB%(a,R)

the relations (6) and (7) hold. O
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Putting

we obtain

Corollary 7.1. If a domain D is admissible and satisfies to (1), and a function f
is such that for g the assumptions (5) hold, then f satisfies to (3).

8. Applications for functions on subdomains of R"

8.1. Cases conserning inner points
At first we denote the following well-known statement.

Theorem 8.1. Let D be a domain in the Fuclidean space R" anda € D. If f : D —
R is a function having the partial derivatives Of /0x; (i = 1,2,... ,n) at every point
y € D and these derivatives are continuous at a, then f has a total differential at
the point a.

Proof. Put in Theorem 7.1
"9
g(z) = f(z) — fla) — Z 855— (a)(x; —a;), a=(a1,...,Gi...,05).
i=1 "

We have

dg _of af
Bz, (z) = 6%(56) ~ o, (a).
Because .
oo+ A2) — g(a) = fla+ A2) ~ fla) = Y 22 (a) Az,
i=1
where

Azr = (Axy, ... Az, ... Axy),

it then follows by the mean value theorem,

gla+ Az) — g(a) = Z (gi (&) — g—i(a)> Ax; .

i=1

Here &; are some points such that |§; —a| < |Az|. Thus, for sufficiently small Az, the
quantity A4 (z, g) satisfies to (5). The necessary statement follows from Theorem 7.1.
0

Now we consider other known statement on existence of the total differential of
order m at a point.

Theorem 8.2. Let m,n > 1 be integers, let D be a subdomain of the Euclidean
space R™ and a = (a1,...,a,) € D. If f : D — R is a function having on D the
continuous partial derivatives of the orders k, 1 < k < m,
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ok f
—(z 1<4,...,i.<n
3xi1...3xik( o 1St i,
and the continuous at the point a partial derivatives of the order m + 1:
am+1f ) )
(y)a 1§Zl7"-alm+1§n7

833i1 ...al‘ierl
then

62
b Y S (e - ) -0+

1<ip,i2<n ZEZI(9$Z2
1 am+1f
+(m + 1)' Z aﬂle-..al’z +1 (a)(xll ah) (ml"“rl alm+1>+

_% > ) > = (a)(zi, —ai,) (@i, — ai,)—

1<i1,i2<n Liy 81312
1 gty
T 5 B e ) =)

Here

Let m = 1. We have

dg of of 10 |w— “ 0%f
3%( T) = 3%( r) — o (a) — 53—% [Z(l’p —ap) Z_: M(a)(% — aq)
p=1 q=1
We find
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_ i D4y )5 (0) =
azlaxq = 8501,3501
=2 Z axlaxj ~ )
Thus, using the mean value theorem, for an arbltrary 1=1,2,... ,n we have
Jdg af 8f - B
ox; () = 81:1( 3501 Z 81:18133 — ) =
n 82f n
= 2 s, S Z amzamj —a) =
Jj=1
[ 0*f O*f
B Z (6.’1‘16.’1']‘ (&i) = 81‘181‘3( )) (w5 = as),
Jj=1

where ¢j; are some points of the set B(a, |z — al).
Hence it is clear that quantities A4 (z, g) satisty (5).
The necessary statement follows from Theorem 7.1, because the quantity

ca(z) =o(|z —al*) as z —a.

In the case m = 2 it is enough to remark in addition only, that

of 7 (4 - Ny _
83:1-( 3501 Z 8%8:03 —ay) =

= Z Wf&ﬁk(é” k)(xj - llj)(mk —ag), &ijk € B(a, |z — al).
iU

In the case m > 2 the arguments are analogous. g

8.2. Cases concerning boundary points

Below we bring boundary versions of Theorem 8.2. See also some boundary versions
of Theorem 8.1 for weight Sobolev classes in [5, Sect. 5.6-5.8].

Theorem 8.3. Let D be a domain in R™, n > 1, let £ be an end of D and a =

(a1,...,an) € |&| be a boundary point satisfying (1) with respect to the intrinsic
distance dp(x,y) on D.

Let f: D — R! be a function having on D the continuous partial derivatives:
af 0% f
8171'1 (-1')7 8xi1 8171'2 (-1')7

1§i1,i2§n.
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Suppose that the following finite limits exist

A= A(a) = lim f(x), Ak:Ak()—hmg—f() k=1,...,n,
T,

as 0p(xz,a) — 0.
Then

f(l’) =A+ Z Ail (x'il - ail) + 0(5%(1’,0,)) ((5[)(12,&) - 0)

=1
Proof. We use Theorem 7.1. We put

( ) - A- Z Ah Tiy — a’ll - Z Ailiz (mil - ail)(miz - aiz)'

7,1 1 1§i1,i2§n

DN =

As above, we remark that

We have
/
(9) oL (z) = 6a:<(x)7Ai7 lZ(zpap)Zqu(xqaq)] (I<i<n).
i [ p—1 a=1 .
Next we find
n n /
(10) lZ(xp —ap) Z Apq(Tq — aq)] =
p=1 q=1 ;i
= Z(Ip - ap);i Z Apq (g —aq) + Z Z Apq (xp — ap)(zqg — aq);i
p=1 q=1 p=1g=1
=2 ZAiq(xq — ag)
q=1
Thus, for arbitrary ¢ = 1,2, ... ,n the following property holds

g of
amz( T) = ami(fﬂ)*Ai*;Aij(a)(Ij*%‘)-

The domain D is admissible and the boundary point a € || is accessible outwards
D by an arc of finite length. Fix z € D and a path v C D, leading from a to x,
infinite smooth and such that

(11) 1(y) < 26p(a,x), 1(y)=length~.
Let
z(s) : (0,1(v)) = D, xz(s) € C*°, limz(s)=a, lim z(s) ==z

s—0 s—1(v)

7
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be a natural parametrization of .
Using the mean value theorem, we have

L (2) - i = (§i<<>>)5_nl<w, ne 0.10).

and

6 n
ai Z zlaxj w(si)2j(s)107), ' (sa)l = 1,

where s; € (0,1(v)) are some points.
The points & = x(s;) € v C Bp(a, |x — a|) Thus,

6f B
3171 — A= Z 81:16@ (SZ) 1)
and by virtue of (11),
of " 9%f
| < )
) = A <2 2|56 ol
Remark that
ZA”(Z‘J a;)| < (ZA%) |z —a| < (ZA%) op(a,x)
j=1 j=1 j=1

X (z,9) = [Vg()? <22( ) +2Z (ZAU(@)(%‘—%‘)) <

0*f

) +2lz—al?> > A%(a)

i=1 j=1

<8p(a,7)» (Z

i=1 \j=1
and the quantity Ay (z, g) satisfies (5).
Using Theorem 7.1 we have

" 1
flz)=A+ Z Ay (i) —ag,) + 3 Z Aiyis (Tiy — aiy)(Ti, — aiy) +0p(a, x)eq (),
i1=1 1<i1,ia<n
where
eo(2) =O(0p(a,z)) as dp(a,z) — 0.
Then

N =

—A- ZA“ vi, —ai,)| < slv—al’> Y |Aiu|+0p(a,1)ea(r) =

i1=1 1<iy,i2<n
=0(0p(a,7))  (dp(a,x) = 0)

and the necessary statement is true. O
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Let D be a subdomain of R™, n > 1, let £ be an end of D and let a =
(a1,...,a,) € |€] be a boundary point, satisfying (1) with respect to the intrin-
sic distance dp(x,y) on D. We will say that the point a satisfies the a-condition,
0 < a <1, if there exist constants R > 0 and 0 < A < oo such that for an arbitrary
point € Bp(a, R) there exists a Cl-path v C Bp(a, R), leading from a to = and
having the tangent vectors

E(y)’ |E(y)| =1, Vyen,
with
(12) sup 2(y)1(v) — (y — a)] < Adp ™ (z,a).

It is clear that the condition (12) is invariant with respect to the bi-Lipschitz
homeomorphisms f : D — R™.

Theorem 8.4. Let D be a subdomain of R", n > 1, let £ be an end of D and let
a=(a,...,a,) € & be a point satisfying (12).
Let f : D — R! be a function having on D continuous partial derivatives of the

orders k, 0 < k < m+ 1, moreover there exist the limits (with respect to the topology
of the end &)

ak
(13) limﬁ(m)zo, 1<i,...,4.<n, 2<k<m,
r—=a 0Ty ...0Tq,
and the finite limits
a9 4 it S
14 i1imy, = liM ), 1<i1,...,0m+1<n
! 35 Oy, 0x;,, .,
Then
£ = f@) + 3 (@) an)t
i=1 ¢
1
sy D DR R A R RS
T 1<k, imp1 <0
+0(05 ) (2,0)) xa(2)  (9p(x,a) — 0),
where

Xa(x) =0 as dp(x,a) — 0.
If except (14) the assumptions are true, and derivatives
3m+1f
— 2 L (@), 1<i1,...,ima1 <,
8:% e al‘im+1 ( ) = m

are bounded near £, then
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1
- (m + 1)' Z Ail"'i"“rl (171'1 - ail) e (zim+1 - aim+1)Jr
T 1<y, imp1<n
+0(05 ) (3,0)) xa(w)  (dp(x,a) = 0),
where
Xa(x) =0O(1) as dp(z,a) — 0.
Proof. Let

(@) = £(@) = @) = 3 5L @)1 - )~

1
*m . Z Ail---im+1 (Iil - ail) s (Iim+1 - aim+1)'

We have 9 of of
9 — _
81‘1' (I) N 81‘1' (I) 61’1 (a)
/
1
*m Z Ail...ierl (xil - ail) cee (Iierl - aim+1)
" 1<, i1 <0 .
and
/
Z A'L-l...’im+1 (xil - ail) L (I'L-m+1 - aim+1) =
1§’i1,... ,im+1§n €T

= Z AZ]l]m (.le — (Zjl) N (‘T]m — ajm)+

1<j15e5dm<n

+(x; — a;) Yo Ay —ag) (@, —ag,)| =

1<j1,0dm<n

= Z AZ]l]m (.le — (Zjl) N (‘T]m — ajm)+

1<j15e5dm<n

+(Ii - ai) Z Aiikl»»»km—l(zkl - a’kl) s ("L‘kmfl - a'kmfl) +
1<k1, . skm—1<n

Tq

Thus,

dg . Of of
81‘1' (I) N 81‘1' (I) B (9.1‘1 (a)

1
C(m+ 1) Do A @ — ) (3, — 6,

T1<h < <gm<n

Ti— Qi
B (Wll + 13' Z Aiiklmkmfl (‘rkl - akl) e (‘Tkm—l - aknl—l) T
’ 1<k1,... skm—1<n
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From here, A (z,9) = |Vg(x)| and (5), (6) are true.
Fix an C'-arc v with described properties. Introduce its natural parametrization

z(s) - (0,1(7)) = v, 2(0) =a, 2(I()) = =
By the mean value theorem we find s; € (0,1(7y)) such that

=2 T ()7, U(y) + 3 (a% (x(s1)) — 6(1]; (a)> 2 (s1)1(7).

Now, using (13) and the mean value theorem we have

0 0
T (6) - 5 ta) Z 6% (@) (). & =asr), s € 050),
and
— Of /
fla) = @)+ D g (@), (s)l()+
=14
+ i i L (E2)a, (s1)a7, (52)1(7), &2 =x(s2), 0 <s2<s1<I(y).
io=1141=1 axilaziz " "2 ’ ’
Therefore, after m steps we obtain
"0
F@) = 5@+ 32 2 a)al, (i) +
=1 "

n n am+1
t "'Zaxil...—f,@mH)z%(Sl)---x2m+1<sm+1>zm“<v>,

where
i1 = 2(Smt1), 0<smp1 <...<s1<I(v).
From here
n af ,
f@) = fla)+ Y 5-(a)ay, (s0)I(7)+
ii=1 "
3 Y Al (1) (S I ()
tm41=1 11=1
am+1f .
+ Z (W(fmﬂ) - Ai1,...,im+1> zp (s1) . ah (sma)l™ T (y) =
i1 yedmt1 2] tm41

= 3 A i@ (1) )TN I () (7)), () — 0,
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Now we use a-condition. We note that from (12) for all i =1,... ,n it follows
|2} 1(7) = (2 — a;)] < A *(z,a), x=(21,...,2), a=(a1,...,an).
Thus,

S A i@ (s1) o (s () =

1<iy, imt1<n

= Z Aily"' yim41 (Iil - ail) s (Iim+1 - a‘ierl)+

1<t imyp1<n

+o(8 Iy (5p(2,a) — 0)

and in the case (14) the theorem is proved.
The case of boundedness of (m + 1)-derivatives near £ is analogous. O

Remark. Problems connecting with questions of the smooth approximation of func-
tions near boundary points it is have many exits to tasks of the classic analysis.
For example, if the boundary of the domain D is quasiconformal (see [6]), i.e. there
exists a quasiconformal homeomorphism

T:R"—>R", T(B)=D, B={zecR":|z|<1},

then smoothness of T near a boundary point implies a possibility of reduction of the
initial problem of approximation near the point @ € 9D to a problem of approxima-
tion near inner point a € R™. Observe, however, that the structure of D, admitting
existence of m-smooth mapping 7" of the showed form, has not been investigated up
to now.
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O LOKALNEJ APROKSYMACJI FUNKCJI W PRZSTRZENIACH
ANIZOTROPOWYCH

Streszczenie

Dowodzimy uogoélnionego twierdzenia o istnieniu rézniczki zupelnej w punkcie dla
funkcji w obszarach przestrzeni anizotropowych. Jako wnioski uzyskujemy pewne wyniki
o aproksymacji funkcji n-wielomianami bliskimi do punktow wewnetrznych i brzegowych
w podobszarach przestrzeni R".
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ADDENDUM TO A THEOREM ON EXTREMAL DECOMPOSITION
OF THE COMPLEX PLANE

Summary

The paper is devoted to extremal problems of the geometric function theory of com-
plex variable related with estimates of functionals defined on systems of non-overlapping
domains. In particular, the investigation is focused on the strengthening and generalization
of some known results in this theory.

Keywords and phrases: functionals on systems of non-overlapping domains, extremal de-

composition of the complex plane

1. Introduction

In geometric function theory of complex variable extremal problems on non-over-
lapping domains are well-known classic direction and have a rich history (see [1-20]).
Paper [1] was start point for this direction, in which, was first proposed and solved
the problem of maximizing the product of conformal radii of two non-overlapping
simply connected domains. It was the first result of this direction. Further, this
problem was generalized in the many works of other authors. This article concerns
one of the well-known problem of the direction.

Let N, R be a set of positive integers and real numbers, respectively, C be a
complex plane, C = C|J{oc} be a Riemann sphere and RT = (0, 00).

Let 7(B,a) be a inner radius of domain B C C, with respect to a point a € B
(see [3], [13], [17])-

Let n € N. A set of points A, := {ak eC: k= L—n} , is called n-radial system,
if |ax| € R, k=1,n, and 0 = arga; < argas < ... < arga, < 2.
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Denote )
ag = —aurg%7 Qnt1 :=a1, k=1,n.
™ Ak
Consider next functional
n
(1) Tn(7) =17 (Bo,0) [[ (B, ax),

k=1
where v € R*, By, By, Bs,..., By, n > 2 is non-overlapping domains (e.i. B,NB; =
if p#£37)inC, a9 =0, |ar| =1, k=T1,n, ap € By, k =0,n and v < n.

In this paper we consider one open problem of V.N. Dubinin, which was formu-
lated in the works [13, p. 68, n0.9.2] [18, p. 381,n0.16]:

Problem. (V.N.Dubinin) Prove that the maximum of functional (1) is attended for
some configuration of domains which have n-tuple symmetry.

This problem has been studied in many papers (see, for example, [12,15,17,18,
20]). Currently for this problem are well-known only partial results. This extremal
problem related to class of extremal problems with so-called “free” poles of corre-
sponding quadratic differentials. The fact that a quadratic differential corresponds
to each extremal problem was announced by O. Teichmuller (see [4, p. 49]). By the
middle of 70-ty extremal problems on non-overlapping domains were associated with
quadratic differentials with fixed poles.

In 1968 P. M. Tamrazov in article [7] suggested that the study of extremal prob-
lems which correspond to quadratic differentials with free poles is very interesting
and useful. In this paper P. M. Tamrazov first considered and fully solved one very
important extremal problem of geometric function theory of complex variable with
five simple poles. It is well known that extremal problems on non-overlapping do-
mains corresponding quadratic differentials with poles second order. This profound
idea of P. M. Tamrazov has considerably developed in the work of many scientists
(see, for example, [8,9,13,15-17]).

In 1974-1975 in papers of G. P. Bakhtina [8,9] this idea found an unexpected con-
tinuation in the theory of extremal problems on non-overlapping domains. Later ex-
tremal problems on non-overlapping domains considered by G.P. Bakhtina is called
“extremal problems on non-overlapping domains with free poles on the circle”. In
2004 A.K.Bakhtin continued development of the idea of P. M. Tamrazov and stud-
ied a number of new extremal problems on the n-radial system of points. In 1988
V.N. Dubinin studying and generalizing the formulation of extremal problems with
free poles first proposed a method which allows us to solve many classes of extremal
problems. V.N.Dubinin based on his method of separating transformation could
solved some difficult extremal problems on non-overlapping domains with free poles
on the circle. Namely, he proved next result.

Theorem 1. [12, Theorem 4| For any different points ax, k = 0,n, (n > 2), which
lie on the circle |z| = 1, and any system of non-overlapping domains Dy,



Addendum to a theorem on extremal decomposition of the complex plane 85

ar € DL, CC, k=0,n, ao=0E¢ Dy,

following inequality holds:

(2) kf[OT(Dmak)S ( 4t (n_1>2.

n? — 1)%""" n+1

If the domains Dy, k = 0,n, have classical Green’s function then equality in (2) is
attained if and only if when domains Dy and points ay are, respectively, circular
domains and poles of the quadratic differential

2 n
s MP-Duw"+1 .,
Q(w)dw* = e an — 1) dw*.
From the method of proof of Theorem 1 immediately follows that it holds for v €
[0,1].

In 1996 L. V. Kovalev [15] solved the Dubinin’s problem if the following conditions
holds

0<oar<2/\/7, k=1,n,n>5.

Noted that the results of paper [15] is interesting by the method of investigation
and in itself. In the case n = 2,3,4 L.V. Kovalev has not given any statements.
Moreover, from the method of paper [15] follows that the result of theorem 1 holds
for all v € [0, 1]. In 2003 in paper [16] theorem 1 for v € [0, 1] was obtained by other
method.

In monograph [17] was proposed a method of “control” functionals, which weaken
the requirements on the geometry location system of points. In this way, in [17, p.
255] in 2008 it was shown that theorem 1 holds for arbitrary v € R but starting
from some number ng(y), no € N. In 2009 in paper [19] it was shown that we can
get more accurate results for some v > 1 if n > 5. In 2011 Y. Zabolotnii [20] got a
solution for the Dubinin’s problem for n > 8 and 0 < v < V/n.

2. Main result

The following theorem gives additions to the result of L. V.Kovalev [15]. We shall
prove

Theorem 2. Let n € N, n > 2, 7o = 1,6, v3 = 2,8, and v, = n if n > 4. Let
0 < v < . Then for any n-radial system of points A, = {ar}p_,, lax| = 1 such
that 0 < oy, < 2/\/7, k = 1,n and any system of non-overlapping domains By,
ap € B, CC, k=1,n, ag =0 € By, we have inequality

n n 4~ % _ﬂ 2aval
(3) T'Y(B07O)HT(Bk,ak)§<é> ( (%) _ <1 n> '

k=1 " 1*%)7”; 1+g
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Equality in this inequality is attained when ap and By, k = 0,n, are, respectively,
poles and circular domains of the quadratic differential

o (0P —y)uw" 4+~ 2
Q(w)dw* = md

Theorem 2 for n > 5 is coincides with Theorem of L.V. Kovalev. The main result
consists in addition of n = 2,3,4. We prove that the Kovalev’s theorem completely
holds for n > 4.

Proof. Method of proof of this theorem is based on the use of separating transfor-
mation (see [12], [13]) and uses the ideas of [15,17].
Using the methods of papers [12,15,17] we obtain the inequality

= (fle) [ ()« - 020]

where Gok), ng , ng are circular domains of the quadratic differential

Q(w)dw® = “ _wgfzzlu; 1_) oy dw?

0ecl, —iec® ical).
Following the works [12], [15] we introduce a function

P(z) =27 16 . 2742 (2 _ )220 (9 4 4)=2 (42’ 5 [0, 2],

and, as a result, next inequality is true

=

n

T 7 (oev)

_n
2

Further, we use the method suggested in works [12], [15]. Consider the extremal

problem
[] P — max: Y =207

k=1 k=1
Tp = apy/y, 0<zp <2
Let

n

F(azx) = In(P(z})) and X(o>:{x,<g>}

be an arbitrary extremal point. Denote

X(O) Z F (0)

k=1

Repeating the arguments of paper [15] we obtain the statement: if 0 < x,(co) <
x;o) < 2, k # j, then there is a condition of Dubinin-Kovalev-Weierstrass
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F'(ay) = F'(2)")

and if m§-0) = 2, then for any %'I(CO) < 2,

Flz) <1,

where F'(z) =2zIn2z + (2 —2)In(2 —2) — (2+ ) In(2 + ) + 2 (see Fig. 1).

0,54

0,5 1 \_/w( 2

_o51
Fig. 1: Graph of a function F'(z)
Further, we will show that the following assertion is true: if the function
n
Z(xla"' ,In) = ZF(IIC)
k=1

attains its maximum at the point (zgo), e ,z%o)) under the conditions

0<ap<2, k=T,n, D a =27,
k=1

then
x§0) = %‘éo) =...= m%o).

Suppose for simplicity 2 < P <...< mglo). A function
1 2

P -n(2) - 2

— 2 2

is strictly increasing on (0,2) and there is xg, xo &~ 1, 324661 such that signF" (x)

(x — xp)-

87

Consider the case n = 2. If zgo) < zg then by the strict monotonicity F’'(x) on

[0, zo] from the conditions of the problem we obtain that x:(LO) = mgo).
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Let zp < méo) < 1,4, then by increasing F'(x) on [zg,2], we have F’(xéo)) <
F'(1,4) = —0, 155826.

Consider a function ¢(t) = (2v/t —b)/(t — 1), b < 2, t > 1, it decreases for ¢t > 2,
since for all t > 2

o)< (b-2)/(t—-1)*<0.
Then
20 =27 -2l <2/1,6 — 2o < 2¢/1,6 — 1,324661 < 1,205161,
hence :z:go) < 1,205161. By decreasing F’(z) on (0, zo), we have
F'(@%) > F/(1,205161) = —0, 1357233 > —0, 155826 = F'(1,4),

which contradicts the condition of the problem.

Let 1,4 < aséo) < 1,5, then by increasing F’(z) on [zg, 2], we have F’(:céo)) <

F'(1,5) = —0,10207378. Then
20 =272 <2,/1,6-1,4<1,129822,
hence mgo) < 1,129822. Thus
F'(2\?) > F/(1,129822) = —0,079788 > —0, 10207378 = F'(1,5),

which contradicts the condition of the problem.
Let 1,5 < xéo) < 1,6, then by increasing F’(x) on [zg, 2], we obtain F’(xéo)) <
F'(1,6) = —0,005796. Then

20 =25 — 2 <2/1,6-1,5<1,029822,
hence mgo) < 1,029822. Thus
F'(@\”) > F'(1,029822) = 0,042302 > —0,005796 = F’(1,6),

which contradicts the condition of the problem.

Let 1,6 < xéo) < 1,7, then by increasing F’(z) on [zg, 2], we have F’(:céo)) <

F'(1,7) = 0,135284. Then
21 =27 — 28 <2,/1,6— 1,6 < 0,929822,
from here z\*) < 0,929822. Thus
F'(2{") > F'(0,929822) = 0,227842 > 0, 135284 = F'(1,7),

which contradicts the condition of the problem.
Let 1,7 < :z:éo) < 1,85, then by increasing F'(z) on [zg, 2], we obtain F’(:céo)) <
F'(1,85) = 0,447263. Then

21 =207 — 2l <2/1,6 — 1,7 < 0,829822,
hence mgo) < 0,829822. Thus
F'(z\%) > F'(0,829822) = 0,491217 > 0, 447363 = F’(1,85),

which contradicts the condition of the problem.
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Let 1,85 < 2 Oy <

F'(2) = 1. Then

< 2, then by increasing F'(z) on [xg,2], we have F'(z

ap =27 — 2 <2,/1,6 — 1,85 < 0,679822,
from here xgo) < 0,679822. Thus
F'(@\%) > F/(0,679822) = 1,084726 > 1 = F'(2),

which contradicts the condition of the problem. Thus for n = 2 theorem is proved

Consider the case n = 3. If z:(,) ) <z then by the strict monotonicity F'(z) o

[0, xo] from the conditions of the problem we obtain that xg ) = go) = xgo).

Let 2o < 23 < 1,65, then F'(2{") < F'(1,65) = 0,058873. And
1
3 (¢ zé”) — @y —a)2 <
< (2¢/2,8 — 20)/2 < (2¢/2,8 — 1,324661)/2 < 1,010990,
hence 1:( ) < 1,010990. By decreasing F’(z) on (0, o), we have
F'(z\") > F'(1,010990) = 0,072039 > 0, 058873 = F(1,65),

which contradicts the assumption.
Let 1,65 < 2{”) < 1,8, then F'(z{")) < F'(1,8) = 0,327581. And

1
5 (ng> + ng>) = 27— 2)/2 < (20/2,8 — 1,65)/2 < 0, 848320,
hence :L‘go) < 0,848320. Thus

F'(z\”) > F'(0,848320) = 0, 435751 > 0,327581 = F'(1,8),

which contradicts the assumption.
Let 1,8 < 2{”) < 1,92, then F'(z{")) < F'(1,92) = 0,651143. And

5( o +af) = 27— af")/2 < (2928 - 1,8)/2 < 0,773320,
hence z\” < 0,773320. Thus
F'(2\) > F/(0,773320) = 0,682431 > 0,651143 = F’'(1,92),

which contradicts the assumption.
Let 1,92 < z{”) < 1,98, then F'(z{")) < F/(1,98) = 0,884285. And

5 ( © 4 :L‘(O)> = (207 — 20)/2 < (24/2,8 — 1,92)/2 < 0, 713320,
from here 2\*) < 0,713320. Thus

F'(z{") > F'(0,713320) = 0,926672 > 0, 884285 = F'(1,98),

which contradicts the assumption.
Let 1,98 < 2”) < 2, then F’(2)) < F/(2) = 1. And

2(<o>+x) (2v7 — 2$)/2 < (21/2,8 — 1,98)/2 < 0, 68332,
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from here xgo) < 0,68332. Thus
F'(#%) > F/(0,68332) = 1,067416 > 1 = F'(2),

which contradicts the assumptlon Thus for n = 3 theorem is proved.

Consider the case n = 4. If x, © < xp then by the strict monotonicity F’(x) on

[0, zo] from the conditions of the problem we obtain that xg ) = go) = é ) = :z:(

Let 2o < 2" < 1,75, then F'(2'”) < F'(1,75) = 0,224369. And

0)

(n—1)" Zxk 2y7 — a™)/3 < (2V4 — 20) /3 < 0,891780,

hence a:(o) < 0,891780. By decreasing F’(z) on (0, ), we have
F'(z\%) > F'(0,891780) = 0, 317868 > 0, 224369 = F’(1,75),

which contradicts the assumption.
Let 1,75 < xfl ) < 1,95, then by i increasing F'(z) on [z, 2], we have F’(mio)) <
F'(1,95) = 0, 757486. Then

(n—1)" Z 29 = 27 —2")/3 < (2v4—1,75)/3 < 0,75,

hence z\”) < 0,75. Thus
F'@?) > F'(0,75) = 0, 771891 > 0, 757486 = F'(1,95),
which contradicts the assumption.

Let 1,95 < :z:iO) < 2, then by increasing F'(z) on [xo,2], we have F’(xflo)) <

F'(2) = 1. Then

i
.

-3 29 = 27 -2\)/3 < (2v4 - 1,95)/3 < 0,683333,
1

from here xgo) < 0,683333. Thus
F'(x (0)) > F'(0,683333) = 1,067351 > 1 = F'(2),

B
Il

which contradicts the assumption. Thus for n = 4 theorem is proved.
The method of proof this theorem for n > 5 follows from the paper [15]. From
the foregoing it follows that

Jn(y) <772 [P (%ﬁ)]m

Hence, performing simple transformations we obtain the inequality (3). The imple-
mentation of the equal sign is verified directly. Theorem is proved.
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ROZSZERZENIE TWIERDZENIA O EKSTREMALNYM
ROZKLADZIE PLASZCZYZNY ZESPOLONEJ

Streszczenie

Praca jest po$wigcona zagadnieniom ekstremalnym teorii funkcji analitycznych zmien-
nej zespolonej zwiazanych z oszcowaniami funkcjonatéw okreslonych na uktadach nie za-
chodzacych na siebie obszaréw. W szczegélnodci, badania sa zogniskowane na zaostrzeniu
i uogo6lnieniu pewnych znanych wynikéw tej teorii.
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RELATION BETWEEN THE MAXIMUM MODULUS
AND THE MAXIMAL TERM OF DIRICHLET SERIES IN TERMS
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Summary
A relation between the growth of maximum modulus and the growth of maximal term
of Dirichlet series in terms of a convergence class is investigated.
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1. Introduction

Suppose that A = ()\,) is a sequence of positive numbers, increasing to +oo, and
S(A, A) is the class of Dirichlet series

(1) F(s) = Zan exp{si,}, s=o0+it,
n=0

with abscissa of absolute convergence o, = A € (—00, +o0]. For 0 < A we put
M(o,F) = sup{|F(c +it)| : t € R},

and let
w(o, F) = max{|an| exp (cA,) : n >0}

be the maximal term of series (1),

v(o, F) =max{n > 0: |a,|exp (c\,) = u(o, F)}
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be its central index and
_In lan| —1In |an41]

" /\n+1 - An

By Q(A) we denote the class of positive functions ®, unbounded on (—oo, 4),
such that the derivative ®’ is continuously differentiable, positive and increasing to
+00 on (—oo, A). For ® € Q(A) let ¢ be the function inverse to ®’ and let

?(0)

@'(a)
b on associated with ® in the sense of Newton. Then [1; 2, p. 30] ¥ is continuously
differentiable and increasing to A on (—oo, A) and ¢ is continuously differentiable
and increasing to A on (0, +00).

As in [3], we say that Dirichlet series belongs to a convergence ®-class if

U(o)=o0

do < 4+o0.

A
@) /@(U)ln M(o, F)

(o)

g0

By Cauchy inequality from (2) it follows that

do < +00.

A
3) / O (o) In p(o, F)

®%(0)
oo
The next question arises: which conditions do ensure that (3) implies (2)? Further
we assume that either A = +00 or A = 0, because the case A € (—o0,+00) can be
reduced to the case A = 0 by substituting s — A for s.
In [4] it is proved that if

®'(o)In (o
(4) / %dd < +o0,
oo
then for each entire (A = 4+00) Dirichlet series with \,, = n relations (2) and (3) are
equivalent. We remark that from (4) it follows that In ®'(0) = o(®(0)) as o — +o0.
If ®(o) = €2 (p > 0) then from (2) we obtain the definition of a convergence
class, introduced in [5]. For such convergence class in [6] the following theorem is

proved.

Theorem A. For the relations

(o] (o]

/Mda < 4o and /Mdg < 4o
exp{oo} exp{oo}

to be equivalent for each F € S(A,+00) it is necessary and sufficient that
Inn=0(\,) (n — o0).
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If (o) = o (p > 1) for 0 > o0¢ then from (2) we obtain the definition of a
logarithmic convergence class, for which the following theorem is true [7].

Theorem B. For the relations

/a*(pﬂ) In M(o,F)do < +o00  and /0*(3"*1) In u(o, F)do < 400
1 1

to be equivalent for each F € S(A,+00) it is necessary and sufficient that
Inn=0MN/P1)  (n—o0).

For Dirichlet series with o, = 0 the convergence class is defined [8] by condition
(2) with ®(0) = |o|72 (0 > 0). The following theorem is true.

Theorem C. For the relations

0 0
/|0|9_1 In M (o, F)do < +o0 and /|0|9_1 In pu(o, F)do < 400
—1 -1

to be equivalent for each F € S(A,0) it is necessary and sufficient that

Inlnn=o(n\,) (n — 00).

Finally, if we choose in (2) ®(c0) = e?/I1°! (9 > 0) then we obtain [8] the definition
of the convergence class for Dirichlet series with o, = 0 of finite R-order. In [9] the
following theorem is proved.

Theorem D. For the relations

In M(o, F)
| lol? exp{e/lol}

In u(o, F)

——————do < +00
| lol* exp{e/|ol}

do < 400 and

to be equivalent for each F € S(A,0) it is necessary that
Inn=0M\,/In*\,) (n — o0)
and sufficient that
In n=0(\,/In? \y) (n — o00) with ¢ > 3.

The aim of the present investigation is to find condition on ()\,,), under which
the relations (2) and (3) are equivalent in the case when the function ® increases
rapidly enough, that is ®’(c)/® (o) is a nondecreasing function.
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2. Sufficient condition

Let n(t) = >_,, <;1 be the counting function of the sequence (A,). From the proof
of Theorem 1 from [10] the following statement follows.

Lemma 1. Let either A= 400 or A=0, ® € Q(A), and ®'(c)/P(0) be a function,
nondecreasing on (09, A). If In p(o, F) < ®(o) for all o € [09, A) and In n(t) = o(t)
as t — +oo, then M(0,F) < p(o, F)n(y(o)) + 1 for o € [09,A), where v(o) =
(U0 + B(0))) and B(o) = 2(0)/P" (¥ (0)).

Using Lemma 1 we prove the following theorem.

Theorem 1. Let either A = 400 or A =0, & € Q(A), D' (0)/P(0) be a function,
nondecreasing on oo, A), and
9"(0)®(0)
(@'(0))?
for all o € [0g, A). Then, for conditions (2) and (3) to be equivalent for any function
f e S(AA) it is sufficient that

7 n(t)
(5) /mdt < +o0.

< H < 4

to

Proof. Since

3" ()P (o) (¥ (p(1)))
(@ (0))2 (W (p()))

V(o) =

we have

=00 B (00) 30(0)

Therefore, for every € > 0 and all ¢ > to(e) we obtain from (5)

Py
©

o0

In n(z) > 1o T dx
5>/ e 20 | et
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whence it follows that
In n(t) = o(®(¥(p(t)))) as t— +oo.
But &(¥(¢(t))) < ®(p(t)) = O(t) as t — 400, because (o) = O(P’(0)) as o 1 A.
Thus, In n(t) = o(t) as t — +oc.
From (3) it follows that In p(o, F) < ®(o) for all o € [0g, A). Therefore, by
(

Lemma 11In M(0,F) <In p(o, F)+1In n(y(c))+o(1) as o T A. Hence it follows that
(3) implies (2) provided

A
(6) I(A) = / (o) In n(q>q)(2\1(fg) (04 6(0)))

do < 4o0.

g0

From the nondecrease of ®'/® it follows [10] that o+ 3(c) < ¥~!(0) and ®(0) <
e®(V(0)) for og < o < A. Therefore,
A
(o) In (@' (¥~ (¥~1(0))))
<
1w [ 55 (o) ’

go

®’(o) In n( 1(0))) p
/ (o) U'(0)do
= (o0

Since

hence and from (5) we obtain

) I nte)_olo(a)
<6H/ o) ) a2 S

o(x) ln n(xz) P(p(x)) _ OOM T 00
<€H/ p(r) (¥(p(x))) 2 = /OC‘I’(‘I’( (z )))d =

Zo

that is (6) holds, and Theorem 1 is proved.
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3. Necessary condition

We need the following lemmas.

Lemma 2. |10, 11| Suppose that v, defined on [0,+00), is a positive, continuous
and increasing to +oo function and
Inn
lim —— > 1.
n—to0(An)

Then there exists a subsequence (X\}) of the sequence (\,) such that
k<exp{y(A\p)}+1 forall k>1 and k;>exp{y(\;,)}

for an increasing sequence of (k;) of positive integers.

Lemma 3. [3] The relation (3) holds if and only if

A
AI/(O’,F)
(7) / (o) do < +o0.

g0

Lemma 4. |12, p. 115 ]| Ifln n=o(\,) as n — oo then
o= — lim 2ol
n—-+oo n

Using Lemmas 2-4, we prove the following theorem.

Theorem 2. Suppose that A = +oco or A = 0 and the function ® € Q(A) is such
that
(o)

?(0)

9’ ()
®%(0)

T +oo,

10

as o T A and
O(p(x))® (@ (z)) = O(z?) as x — 4o0.

Then, for relations (2) and (3) to be equivalent for any function F € S(A, A), it is
necessary that

(®) 1nn_o<(m®§7§m>, B — 0o,

Proof. At first we note that
2
X

@ @) | T

and
T

mlo as $—>+OO
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Now we assume that the sequence A does not satisfy condition (8). Then there
exists defined on (0, +00), positive, continuous and slowly increasing to +oo function
l such that

xl(x)
(9) m — O, T — +OO,
and
(10) nli—Tooq) L l(?"n))) LK

Conditions of Theorem 2 imply

o (e

¢ (7 (st ) <o

for some Ky = const > 1 and a sequence (zy) increasing to +oo then

O (p(Koxy)) (@1 (ap)) <K P(p(xx)) P (@ (21)) =0(1), k— oo
Kozy, Tk =00 .’L‘i 7 ’

as © — +oo. Indeed, if

l(zk) S Ko

which is impossible. Hence it follows that there exists defined on (0, 4+00), positive,
continuous and increasing to +oo function L such that

*U()
11 o (o (222 ) > L > 0.
- (o (st ) 2 ot w2
In view of (10) by Lemma 2 there exists a subsequence (\}) of the sequence (A,,)
such that A0
k< oxp {M} 1
(21 (AL))

for all £k > 1 and
PYRRIOS)
> R NRG
ki 2 exp { @)

for an increasing sequence of (k;) of positive integers.

For A, € (A}) we put a,, = 0 and in the obtained Dirichlet series we replace A}
by A,. We come to Dirichlet series (1) with the exponents )\, satisfying following
conditions

2
(12) lnnS%Jrl, n>1,
and

An L(Any)
(13) In n; > m
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for an increasing sequence of (n;) of positive integers. We can consider that the
sequence (n;) is such that nj.1 > 2n; and Ay, > 2X,; for m; = [n;41/2] and all
7 >1,and

oo

(14) > I <

— n]+1)

Let (gx) be a sequence, increasmg to A. We put ng =0, an, = 1, a,, = 0 for all
n; <n < mj,

J

(15) Anj = H eXp{_qk()‘nk+1 - Ank)}7 i=0,1,...,
k=0

and

(16) Un = Gn; exXp{—q;(An — An;)}, my <n < njya,

that is we obtain the Dirichlet series
0o nj41—1

(17) F*(s) = Z U, €XP{sAn, } + Z an, exp{si,}
7=0 n=mj;

From (15) and (16) it follows that

In an;, —In ay,,, B In an; —In am, In an;, —In an,;+1

S _

njy1 >\nj >\’ITLJ' - >\nj >\nj+1 - >\nj
_Inap, —Inapyr
/\n+1 - >\n
Therefore, if ¢; < 0 < gj41 then v(o, F*) = njy1 and pu(o, F*) = an,,, exp{oin,,, }.
Since

= gy, mj§n<nj+1—1.

"(0)0(0) — (9'(0))* = ©*(0)(2'(0)/®(0))" = 0,

hence we have

A 0o dit1 qj+1 d
V(O'F) o
Z/ do Z)‘"a+1 / (o) =
q1 q;

o 95+ <I>” o
(18) Z o~ / Z n”l
On the other hand,
nj+1—1

(19)  M(q;, F*) > > anexp{giAn} = (nj11 — my)u(g;, F*) > Kinjy,

n=mj;

— <I>_1 /\721j+1[()‘”1'+1)
= (D (Anyyy)) )

where K1 = const.
We choose
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Then from (19) and (13) we obtain

>\’I21J+1l(>\nj+l)
In M(g;, F¥) > In njy1 +1n K7 > m
that is the relation (2) does not hold, because (2) implies In M (o, F) = o(®(0)),
o1 A
From (18), (11) and (14) we have

+1In Kq = (I)(Qj) +In Ky,

A
)\U(U,F*) = >\nj+1 b 1
/ o) 7S 2 2 10w )\ 2 TOw ) ~
a =l g [ -1 Myt1 "\ 41 j=1 it
(2~ (Anyyn))

that is by Lemma 3 relation (3) holds.
Finally, we prove that o, = A. Since g, T A (k — o0), from (15) we have

J
- ZO qk()\"k+l - )\"k)

ln/\anjH _ k; l _A7 j = 0.
e Z ()‘nk+1 - )\nk)
If mj <n <mnjp1 and A =0 then from ( ) we obtain
Ina, Inay; Ay, An,
o A qg+qu 1_>\n =o(1), n— oo,

and if A = +oo then
In a, A .
%f‘%‘(l‘x’)ﬁ‘%*‘w’ j = oo,

Therefore,
In a,

lim
n—-+4oo n

:—A’

and since, in view of (12) and (9), In n = o(A\,) (n — o0) by Lemma 4 we have
o, = A.

Thus, if the sequence A does not satisfy condition (8) then there exists a function
F € S(A, A), for which relation (2) and (3) are not equivalent. Theorem 2 is proved.

4. Remarks

Using Theorems 1 and 2, it is easy to prove the following statement, which is a slight
generalization of Theorem D.

Corollary 1. Let o > 0. For the relations

In M(o, F 1 F
n M@ F) o and n p(o, F)

——— —s——————do < +00
J ToPep{e/lo) J ToPesp{e/lo}
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to be equivalent for any function f € S(A,0), it is sufficient that

oo

In® ¢
(20) / e In n(t)dt < +o0

to

and necessary that In n(t) = O(tIn"2 t) (t — +o0).

Indeed, for
4
®(0) = exp {—}
o
we have
(o) = oz exps o b
|o[? o
o)l = L, () = T
Clnz’ )
and since

ﬁp{ﬁ}z

we also have

_ (I +o1)e
o) = L2
and )
B(p(x)) = zlp(@)|® _ (1 +02(1))x9 as s oo,
0 In® z
Therefore,
?'(0) ®'(0)
(o) T 400, (o) 10 as o170
and
O(p(x))® (@ (z)) = (1 +0(1))2* as x — +oo.
Finally,
9"(0)®(0) 2|o|
i A A B A
(®(0))? 0
Thus, the function
0
®(0) = exp {H}
satisfies all conditions of Theorems 1 and 2. Since ¥ (o) = —|o|(1 + |o|/0) we have

B(V(0)) = exp {% <1 + %') 1}

o (£ (1 roel) ] (rolt) g

o 0
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as o T 0 and, thus,
(1+o0(1))xo
(U (p(x) = —=——
eln” z
as © — 400, which implies equivalence of (5) and (20). Finally, since
zln? x
o

the conditions (8) and In n(t) = O(tIn"2 t) (t — +o0) are also equivalent. Corollary
1 is proved.

(07 () =

Corollary 2. Let p > 1. For the relations

+oo

/ oP~t1n M (o, F)
——— 7 ‘do < +o0
exp{o?}
oo
and
o in o, F)
n
/ 2% s < o0
exp{o?}
oo
to be equivalent for any function f € S(A,400) , it is sufficient that
Fne-D/p ¢
(21) /T In n(t)dt < 400

to

and necessary that In n(t) = O(tln~P~V/P t) (t - +00).

Indeed, for
®(0) = exp{o®} (o0 > 09)

we have

®'(0) = poPtexp{o?}, @ '(z)=(Inz)'/?, &' (®(z)) = pa(n z)P /P
and since

p(p())P~exp {(p(x))P} =«
we also have
o(z) = (1+0(1))(In z)'/?

and

Blp(a)) = (/) (@)~ ") = (14 o) (@/p)(In @)~ =D/ a5 & — foo.

Therefore,
9'(0)

D(0)

T 400, i;((?)l() as o — +oo

and

O(p(x))® (@1 (z)) = (1 +0(1))2? as x — +oo.
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Finally,
Y()00) | 1)
(®'(0))? po?
Thus, the function ®(c) = exp{c?} satisfies all conditions of Theorems 1 and 2.
Since ¥ (o) = o — 1/(poP~!) we have

B(U () = exp {ap (1 - LY} — exp {ap (1 I 0(1)>} _ 0+0M) 40

poP oP e
as 0 — +o00 and, thus,

1 1
B(0(p(e)) = DL 1 0) 0 e o,
whence it follows that (5) and (21) are equivalent. Finally, since ®'(®~1(z)) =
pz(In z)®=D/? the conditions (8) and In n(t) = O(tIn~P~Y/P ¢) (t — +00) are also
equivalent. Corollary 2 is proved.
We remark that (21) holds provided In n(t) = O(tIn™* t) (t — +o0) with o >

(2p—1)/p.
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ZALEZNOSC MIEDZY NAJWIEKSZYM MODULEM
I NAJWIEKSZYM WYRAZEM SZEREGU DIRICHLETA
W TERMINACH KLASY ZBIEZNOSCI

Streszczenie
Zbadana zostala zalezno$¢ miedzy wzrostem najwiekszego modulu i wzrostem najwiek-
szego wyrazu szeregu Dirichleta w terminach klasy zbieznosci.
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Summary

It is proved that a simultaneous regular growth of modulus and argument of an entire
function with respect to a growth function A is possible if and only if A(r) = r”L(r),
p >0, L(r) is a slowly varying function.
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Before we formulate and prove the main result let us give the definitions needed.

Definition 1 [1]. A positive measurable function L defined on R} is called slowly
varying (in the sense of Karamata) if L(er)/L(r) — 1 as r — +oo uniformly with
respect to ¢ on each segment [a,b] C Ry.

Definition 2. A function A(r) defined on R, is said to be function of moderate
growth if it is positive, continuous, non-decreasing, A(r) — +oo as r — +o0o, and
A(2r) < MA(r) for some M > 0 and all » > 0.

Let f be an entire function, f(0) # 0. Choose a value log f(0) and define
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f'(<)
f(s) e

in the complex plane with radial slits from the zeroes of f to co.
Our main result is the following.

tog 1 (2) = log f(0) + [

Theorem A. Let A be a function of moderate growth. In order that the relation

P

(1) / |10g f(rew) — )\(T)H(Q)|p do =o(A(r)), r— 4oo,
0

hold for some entire function f, f(0) # 0, some p € [1,400), and a complez-valued
function H from L,[0, 2] with non-constant part Re H it is necessary and sufficient
that A\(r) = rPL(r), p> 0, L(r) is a slowly varying function.

In order to prove the Theorem A we give preliminary lemmas.
Let A be a function of moderate growth. Denote

)\1(’)") :/ét)dt

0

We assume A(r) near the origin such that the integral exists.

Lemma 1. If )\ is a function of moderate growth, then so is A1, and

A(r) =0 (M(r), r— +oo.

Proof. We have, changing the variable,

A (2r) :/#)dt: / ACD) 4 < M),
0 0

Further
e"‘)\ t
A (er) > / (T)dt > Ar), r>0.

Hence, \(r) < M2\ (r). This completes the proof.

Let i (r, ) and ak(r, f) be the Fourier coeflicients of log | f| and arg f = Im (log f)
respectively,

2 2m
1 ) . 1 . )
ex(r, f) = o /e‘”’“a log|f(re?®)|db, ap(r, f) = — /e—me arg f(re'®) db,
0

21
0

where k € Z.
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Lemma 2. Let f be an entire function, f(0) # 0, and let X be a function of moderate
growth. If for some k # 0 there exist the limits

li Ck (T7 f) . Ii ag (T7 f)

r—{E@ )\('r) = Ck, ’I‘LIEO )\(T)

and ¢, # 0, then ar # 0 and \(r) = r?L(r), p > 0, L(r) is a slowly varying
function.

= a,

Proof. Tt follows from the polar form of the Cauchy-Riemann equations applied to
log f that

an(r, ) = —ik/ M dt, keZ.
0
Therefore, agA(r) + o(A(r)) = —ikegAi(r) + 0o (M(r)), r — oo, for some k # 0.
Using Lemma 1 we have

(2) apA(r) = —ikeA(r) + o (M (1)), 7 — oo,
Since ¢ # 0, it follows from (2) that ax # 0. Put
ik
p=——Ck.
ag

Relation (2) implies

@ i
Denote
log (pA1(r) _ |
logi’ - p(r)7

using (3) and applying I’'Hospital rule we obtain p(r) — p as r — +oc.
Further, we have

A(r)

Ax(r)

as r — +o0o. Hence p(r) is a proximate order ([2], [3]), and

§(r)rlogr =~ — p(r) -0

1
A (r) = =P,
(=2
Thus [3], A\(r) = ") = rPL(r), L(r) is a slowly varying function. This finishes the
proof.

Proof of Theorem A. The sufficiency was proved in [4]. Then f is a function of

completely regular growth in the Levin-Pfluger sense [5], [3] and H is its indicator

[4]. If the relation (1) holds for some p € [1, +00), then it holds for all p from [1, +00).
In order to prove the necessity note that (1) implies the existence of the limits

Ck(ﬁf) _ . ak(raf) _
r—400 /\(7’) = TEI-POO /\(7’) =k ke Z’
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where ¢, anday are the Fourier coefficients of Re H and Im H respectively. Since
Re H is non-constant then there is k # 0 such that ¢; # 0. Applying Lemma 2
we obtain A(r) = r?L(r), p > 0, L(r) is a slowly varying function. The proof is
complete.

Note that without the assumption “Re H is non-constant” the conclusion of the
Theorem A is not true. Indeed, in [3] an example of entire function satistying (1)
with a real constant H and an arbitrary convex with respect to logr function A(r)
of moderate growth was constructed.
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O JEDNOCZESNYM WZROSCIE REGULARNYM WARTOSCI
BEZWZGLEDNEJ I ARGUMENTU FUNKCJI CALKOWITEJ

Streszczenie

Udowodniono, ze jednoczesny wzrost regularny wartoéci bezwzglednej i argumentu
funkcji catkowite] jest mozliwy wtedy i tylko wtedy, kiedy funkcja rosnaca A ma postaé
X(r) =7rPL(r), p> 0, L(r) jest funkcja o stabej zmiennosci r > 0.
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Summary

Some new estimates for integral moduli of smoothness of arbitrary order for the function
realizing conformal mapping between the domains bounded by the smooth Jordan curves
are considered.
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1. Introduction

Let consider a simply connected domain G in the complex plane bounded by a
smooth Jordan curve I'. Let 7 = 7(s) be the angle between the tangent to I'" and the
positive real axis, s = s(w) be the arc length on T'.

Let w = ¢(z) be a homeomorphism of the closed unit disk D = {z : |z| < 1} onto
the closure G of the domain G, conformal in the open unit disk D. Let z = v(w)
the function inverse to the function w = ¢(z).

Kellog in 1912 proved that if 7 = 7(s) satisfies Holder condition with index «,
0 < a < 1, then the derivative ¢’(e?) of the function (z) on 9D satisfies Holder
condition with the same index «a. Afterwards this result was generalized in works
by several authors: S. E. Warshawski, J. L. Geronimus, S. J. Alper, R.N. Kovalchuk,
L.I. Kolesnik.

P. M. Tamrazov [1] obtained solid reinforcement for the modulus of continuity of
the function ((z) on D. Some close problems were investigated by E. P. Dolzenko.
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Results by S. E. Warshawski, R. N. Kovalchuk, L. I. Kolesnik, and the present au-
thor for moduli of smoothness of the 3rd order satisfying some additional conditions
were proved applying the method due to S.E. Warshawski which is based on the
introduction of additional point. However, this method contains a roughening step
in the replacement of finite differences (and moduli of smoothness) of order k by
finite differences (and moduli of smoothness) of the 2nd order. And as a result the
less sharp inequalities obtained by means of this method do not possess any property
important for applications and have essentially restricted range of applications.

In 1977 P. M. Tamrazov [2] solved the problem of estimating the finite difference
smoothnesses for composite function. These results gave possibility to receive gener-
alizations and inversations of Kellog type theorems for general moduli of smoothness
of arbitrary order.

Estimates for uniform curvilinear moduli of smoothness of an arbitrary order
introduced by P. M. Tamrazov [1] were obtained by the present author in [3-8] (for
more details see [1], [3] and [6]).

Beside this, some estimates were established by the present author for local and
integral moduli of smoothness.

Let wi . (f(2),0) be a noncentralized local arithmetic modulus of smoothness of
order k (k € N) of the function w = f(z) at a point z on the curve . Then the
integral modulus of smoothness of order k for the function w = f(z) on the curve =
is introduced by the formula

1/p

Wi, (f(2),0)p = /[wkyz(f(z),(S)]pd/\(z) , 1<p<4oo, keN,

where A = A(z) is the linear Lebesgue measure on the curve.

These integral moduli are the special case of integral moduli of smoothness in-
troduced by P. M. Tamrazov in 1977. He defined integral moduli of smoothness as
averaging on arbitrary measure on the curve of the respective local moduli of smooth-
ness.

Difference between these moduli and traditional integral moduli of smoothness,
introduced as the least upper bound of averaging absolute values of finite differences,
is that the operators of averaging and taking of least upper bound are applied in
reverse order.

2. Estimates for integral moduli of smoothness for the deriva-
tive of the function realizing conformal mapping of the unit
disk onto the Jordan domain

The following results for integral general moduli of smoothness of arbitrary order for
the derivative ¢’(z) of the function ¢(z) on 0D generalizing Kellog’s theorem were
earlier obtained by author.
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Theorem 1. (O. W.Karupu [5]). Let
T(S)ELP]C[OJL 1§p<+00, k € N.

Let integral modulus wi(7(s), 0)pi of smoothness of order k for the function T = 7(s)
satisfy the condition

wi(7(s), 6)pi = Olw(d)] (6 — 0),
where w(d) is the normal majorant such that
1
/ @dt < +o0.

t
0

Then the integral modulus of smoothness of order k of the derivative ¢'(e®) for
the function ¢(z) on 0D satisfies the condition:

wi(#'(e”),0), = O[(9)] (5 — 0),

where

Tp—1—Tp—1
X .Tpp Ty L .dijrl.

Corollary 1. In a partial case when the modulus of smoothness wy(7(s), ) of order
k for the function T(s) satisfies Holder condition

Wk(T(S)vé)pk = 0(504) (5 - O)v 0<a<k,

then the modulus of smoothness wy (¢’ (e?), ), of the same order k for the derivative
@' (2) of the function p(z) on D satisfies the condition

wi(#'(e”),0), = O(5%) (6 — 0)

with the same index a.
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3. Estimates for integral moduli of smoothness for the deriva-
tive of the function realizing conformal mapping of the Jor-
dan domain onto the unit disk

The following theorem for integral modulus of smoothness of arbitrary order for
the derivative ¢'(w) of the function ¥ (w) on the curve I' generalizes results earlier
obtained by the author for the uniform curvilinear moduli of smoothness.

Theorem 2. Let the integral modulus of smoothness wy(7(s),d)px of order k (k € N)
for the function 7(s) satisfy the condition

wi(7(8),0)p = Olw(d)] (6 — 0),

where w(0) is the normal majorant satisfying
1

t

/ #dt < +o0.
0

Then the nonzero derivative 1’ (w) continuous on G of the function 1 (w) exists

and satisfies on I the condition

wi (Y (w(s)),d), = O(n(9)) (6 — 0),
where

k(k+1)/2—1
l l k

77(5) :‘u(a) +5171@(1@71)/2/ /U'(y) dy 5k/&dt
5 5

Proof of this theorem is similar to the proof of Theorem 1.

Corollary 2. In a partial case when the integral modulus of smoothness wy(7(s),0)pk
of order k for the function 7(s) satisfies the Holder condition
wi(1(8),0)pk = O(6%) (§ = 0), O0<a<k,

then the integral modulus of smoothness wi (¢’ (w(s)),d), of the function (w) sat-
isfies the condition

wi (¢ (w(s)),0), = O(5%) (6 — 0)

with the same index a.

4. Estimates for integral moduli of smoothness for the deriva-
tive of the function realizing conformal mapping of the Jor-
dan domain onto the unit disk

Let G; and G2 be the simply connected domains in the complex plane, bounded by
smooth Jordan curves I'y and I's.



On some properties of integral moduli of smoothness of conformal mappings 115

Let 71(s1) be the angle between the tangent to I'y and the positive real axis,
51(¢) be the arc length on I'y. Let m2(s2) be the angle between the tangent to I'y
and the positive real axis, so(w) be the arc length on I's.

Let w = f(¢) be a homeomorphism of the closure G of the domain G; onto the
closure Gy of the domain G5, conformal in the domain G;.

Theorem 3. Let moduli of smoothness wi(11(s1),0)pr and wg(72(s2),9)pk of order
k (k € N) for the functions 11 (s1) and T2(s2) satisfy the Holder condition

wi(71(s1),6)pk = O(6%) (6 — 0)
and
wi(72(s2),6)pk = O(6%) (6 — 0)

with the same indexr o, 0 < a < k.
Then the integral modulus of smoothness wy(f',0), of the derivative of function
f(C) on Ty satisfies the Holder condition

wi(f',0)p = 0(6%) (6 — 0)

with the same index c.

Proof of this theorem is based on Corollary 1 to Theorem 1, Corollary 2 to Theo-
rem 2 and on estimates for finite difference smoothnesses for the composite function.
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O PEWNYCH WEASNOSCIACH CALKOWYCH MODULOW
GLADKOSCI ODWZOROWAN KONFOREMNYCH

Streszczenie

W pracy uzyskano pewne nowe oszacowania calkowych modutéw gtadkosci dowolnego
rzedu dla funkcji realizujacej odwzorowanie konforemne miedzy obszarami ograniczonymi
przez gtadkie krzywe Jordana.
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NUMERICAL SOLUTIONS OF NEARLY TIME-INDEPENDENT
GINZBURG-LANDAU EQUATION FOR VARIOUS

SUPERCONDUCTING STRUCTURES
I. COMPUTATIONAL MODEL AND CALCULATIONS

Summary

The use of relaxation method in solving static and nearly time independent Ginzburg-
Landau (GL) equations is described. The main interest is focused on the solution of
GL equations applied to unconventional Josephson junction made by putting non-super-
conducting strip on the top of superconducting strip for s, d and p-wave superconductor.
Certain solutions of Ginzburg-Landau equation are obtained in the case of placement of
Josephson junction in time dependent temperature gradient, time dependent or time inde-
pendent external magnetic field or when given junction is polarized by dependent or time
independent superconducting current. The results of numerical calculations are related to
the mesoscopic structures obtained in experiments.

Keywords and phrases: unconventional Josephson junction and device, TDGL relaxation
algorithm, temperature induced Josephson junction

1. Motivation

Studying superconducting structures is important both for fundamental and applied
science. There are many levels description of superconducting or superfluid phase as
by use of phenomenological or microscopic models. Because of technical complication
one usually starts from phenomenological level and then moves to more microscopic
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superconductor
Non-supercond.
hole

Fig. 1: Scheme of unconventional Josephson junction made by putting non-superconducting
strip on the top of superconductor strip (left) and SQUID made from such structure (right).
The pictures are made by Hubert Pomorski.

and fundamental description. Therefore in this paper we use Ginzburg-Landau model
what is the starting point for the use of more advanced formalism as Bogoliubov-de
Gennes, Usadel or Keldysh formalisms. Because of application perspectives as in
THz electronics, superconducting qubit [1, 2], particular attention is paid to uncon-
ventional Josephson junction made by putting non-superconducting, ferromagnetic
or ferroelectric strip on the top of superconducting strip as depicted in the Fig. 1.
When the ferromagnetic or ferroelectric material is placed on the top of unconven-
tional Josephson junction then such system is regarded as field induced Josephson
junction FIJJ. If the non-superconducting strip placed on the top of superconductor
is nonmagnetic we name such system as unconventional Josephson junction (uJJ).

In unconventional Josephson junction the Cooper pairs from superconductor
diffuse into non-superconducting element and therefore the superconducting order
parameter inside superconductor is decreased. Also unpaired electrons from non-
superconducting element diffuse into superconductor what brings further reduction
of superconducting order parameter. If ferromagnetic material with non-zero mag-
netization is placed on the top of superconductor then the magnetic field breaks the
Cooper pairs and lowers more the superconducting order parameter. Having certain
geometry of non-superconducting element placed on the top of thin superconduc-
tor it is possible to obtain the Josephson junction. This is because after placement
of the non-superconducting element on the top of superconductor, one Cooper pair
reservoir (superconductor) in terms of superconducting order parameter will be effec-
tively separated into 2 or more superconducting reservoirs as described in [5, 4]. The
interaction between reservoirs will be the origin of the Josephson effect. With such
defined Josephson junction, we can build superconducting devices as the Josephson
junction array, SQUID, current limiter and other elements.
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2. Computational model

There are various methods, which can be used to solve the Ginzburg-Landau equa-
tions as the finite difference method, spectral methods, annealing methods (as by
[18]) and many others. Because of simplicity and numerical stability even for the
case of complex set of nonlinear equations the relaxation method is used. Deriving
Ginzburg-Landau equations we look for the case of functional derivative of free en-
ergy functional F' set to the zero with respect to the physical fields upon which it
depends.
Then we obtain the following equations:

b .o 5 5 o o

1 —F[i, A, M, E] = 0,—F[¢, A, M, E] = 0,

(1) 50 [ ] 7 [ ]

(2) iF[wA’ME]—o iF[wA’ME]—o
5M ) 3 7 76E‘ ) 3 7 )

where A is vector potential, M is the magnetization, v is the superconducting order
parameter(s) and E is the electric field.

To approach the solutions given as the configuration of the (|¢|,]\Z[ ,/iEU fields we
need to make the initial guess of physical fields configuration and order parameter in
the given space using certain physical intuition. The initial guess should be not too
far from the solution. Having the initial guess we perform the calculation of fields
change on the given lattice with each iteration step virtual time §t¢ according to the
scheme:

5 4 o s 6 o 0A
(3) @F[¢7A,M7E]——Ulﬁaa»FW’aAvaE]__7725’
5 Lo oM 6 2 o= OE
4 i b} bl 9 = - T ) o= ? ) ) = Y
(4) s LW AM L E) = e, S Pl AM B} = —nag,

Here 1,12, 13,14 are phenomenological constants. The 0t cannot have too big value
since it might bring the numerical instability in the simulation. If §t has very small
value the arriving to the solution is long. One of the signature of approaching the
solution is the minimization of free energy functional. Then one can observe the char-
acteristic plateua in the free energy as the function of iteration (virtual time). The
instructive example of computation of superconducting order parameter distribution
inside square placed in vacuum is depicted in Fig.2. It should be underlined that
the relaxation method applied here is in the framework of the Ginzburg-Landau
formalism. One can use the relaxation method for other formalisms as Usadel or
Eilenberger formalisms. Many applications of relaxation method as in the gauge
fields are pointed by Adler [17].
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Fig. 2: Distribution of s-wave superconducing order parameter in the next iteration steps
(left top, right top, left bottom) made by relaxation method for 2 dimensional supercon-
ducting square placed in vacuum, with no magnetic fields.

3. S-wave superconducting structure in time-dependent
temperature gradient

For s-wave superconducting structure in time-dependent temperature gradient we
can write Ginzburg-Landau equation of the following form

d
Vg V@ y.t) = alwy, e,y 6) + B (z,y, )z, y, t)?

with

(5) Y(z,y,t) = [Y(z,y,1)| expl(id(z,y, z,1))



Numerical solutions of nearly time-independent Ginzburg-Landau equation 121

Zb
2et

Ty Yv
(6) ¢ = 7 /(Az(x7y,t)dz+/Am(m,y,t)dm—i—/Ay(x,y,t)dy)
a Tq Ya
where «a(z, y,t) incorporates the existing gradient of temperatures and temperature
field across the sample and the total electric current flowing via the sample is the
sum of superconducting current and normal Component of the form

jhe* d dA
=L (i - hc——A|¢|>

j d dA,
®) o= el 20— he = SA ) + o,

j d dA
9) o= T @ Ly~ he~ S Aol +

The normal current component is proportional to the derwative of vector poten-
tial with time. This brings the dissipation what heats the studied system locally as
it is accounted for in Drude model. It shall be underlined that the direct control of
A, (z,y,t) vector potential in laboratory conditions is possible only by the control
value of the integral

(10) [[ -t dzay = 10),

We can set certain electric current value flowing via the given sample to be of the
certain function of time I(¢). The condition of total current flowing via the system
is included in the relaxation algorithm. The second controllable integral is given by
external magnetic field as it can be fixed to be at the point B(xhyh t) , which
imposes conditions on A, and A,. It gives another constrain § Aodr = 27n, where
n is the integer number.

The additionary boundary conditions comes from normal to the surface super-
conductor-vacuum derivatives given as

h d
(_._ - 2_:Am(x7yat)) w(zayvt) = 07

i dx

(11)

h d 2e

and for superconductor-normal metal interface we have

hd 2, )w(z,y,t)

1
(12) s = (T4 -2
Let us consider the SQUID as depicted in Fig.1. In first numerical computations
we set A to be zero what means that there is no electric current flow and magnetic
field in the system. We incorporate the temperature gradient into GL equations by
keeping v coefficient to be constant and by setting a(z, y,t) = ag+ alz — zo)(t — to).
We set tg = g = 0.
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Alfa coefficient (temp indexfemp grac)1,1 Alfa coefficient (temp index femp grac)2,1 Alfa coefficient (temp index femp grac)3,1
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Fig. 3: a(z,y,t) for zero temperature gradient in times to, to + At, to + 2At

Alfa coefficient (temp index temp grad)1,2 Alfa coefficient (temp index temp grac)2.2 Alfa coefficient (temp index temp grac)3,2

Fig. 5: a(z,y,t) for second temperature gradient with times to,to + At, to + 2At

Then we obtain the following « fields as depicted in the Fig.3, 4 and 5. The
situation when there is no temperature gradient in the sample we name as zero
temperature gradient. Then temperature of sample is linearly time dependent so
alz,y,t) = ag+al(t —to). If a(z,y,t) = ag+ a(x — zo)(t — o) we call such situation
to be first temperature gradient. In case of a(z,y,t) = ag + 2a(x — xo)(t — t9) we
name it second temperature gradient. Having given « field in dependence on time
and space we can trace the time dependence of superconducting order parameter

distribution in the structure.
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3.1. Case of d-wave Ginzburg-Landau equation

One of the first work on study vortices in d-wave superconductor was conducted by
J. Alvarez [13]. Vortex in superconductor is the example of topological defect of the
superconducting order parameter induced by external magnetic field. Another type
of defects in superconducting order parameter is present in the Josephson junction.

3.1.1. Testing relaxation algorithm

Ginzburg-Landau equations for d-wave superconductor in ab plane are known as GL

22 — 32 equations and are given as

(=74 V2 + aq)ba + 1o (V2 — V2)tbs + 2B [vbal*tha + Bs|tbs|*va + 26840205 = 0,
(—73V2 + aS)ws + VU(vi - vzz/)wd + 261|¢S|2¢s + 53|’l/1d|2’l/13 + 254"/’3¢: = 0,
where v, = h?/2m,,, and p = d, s,v. The current density is given by
eh " eh .
J = m{wdwd —cc )+ M{wsws —cc.}

P eh % . . eh . §
_ (Em{wsvzwd - deﬂﬁs — C.C.} + ym{wsvywd — wdvyws — C.C.}7

In d-wave superconductors the superconducting order parameter A(z,y,z) is
given as

(13) A(Ivyaz) = Tﬁs(%yaz) +COS(2¢)wd(zayvz)

and boundary conditiones are expressed as

(T, + 51 = T)) = ~Vi(0),

(14)

(15) L (T + (I, — T1,)) = ~Valuia)

Here V; and V; depends on the material constants and n is the unit vector normal
to the surface. The A is the global order parameter as obtained from two order

parameters and Kk = % and

I 2e
I = —(1, I.) — — (A4, Ae),
i( b +nlle) hc( b +nAL)

and
Hap =1V +jVy,  Aw =14z +jAy, 1. =V,
n-parameter accounting electron effective mass anisotropy,
h 2e h 2e

Hz:_ w__Am7 Im, = - -
iv he Y zvy he

A,.
4. Properties of d-wave uJJ

We have conducted the computations of the superconducting order parameter
(SCOP) in 3 dimensional d-wave unconventional Josephson junction with no pres-
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ence of magnetic field. The presence of vector potential and magnetic field in the
system would induce additional effects in the superconducting order parameter dis-
tribution. Geometrical parametrization of the single asymmetric d-wave unconven-
tional Josephson junction structure is given by the Fig.16 and 2 unconventional
Josephson junctions is given by Fig. 21. Numerical computation results obtained af-
ter application of relaxation method for single asymmetric uJJ of different thickness
is depicted by Fig.12-15 and for asymmetric array of 2 unconventional Josephson
junction depicted by Fig. 17-20.

Experimental implementation of Magnetic Field induced Josephson junction
(F1JJ) array is described by Fig.19 and 20. The structure was produced by doc-
tor Luis Gomez from the University of Zurich. Its modeling by Ginzburg-Landau
formalism is challenging, but it is within the capacity of the relaxation method.

Magnitude of order parameter (temp index temp grad)1,1
0 e

30 30

Fig. 6: Order parameter for zero temperature gradient with times to,to + At,to + 2A¢,
v =0.

Magnitude of order parameter (temp index temp grad)1.2.
0

30 30

Fig. 7: Order parameter for first temperature gradient with times to,to + At,to + 2At,
v=0.

Magnitude of order parameter (temp
0 —

530"

Fig. 8: Order parameter for second temperature gradient with times to, to + At, to + 2A¢,
v=0.
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Fig. 9: D-wave uJJ, L, = 1.0 left side d-wave SCOP, right side s-wave SCOP.

Fig. 12: D-wave uJJ, L, = 0.3 left side d-wave SCOP, right side s-wave SCOP.

5. Some conclusions and further perspectives

In this work we have shown the case of numerical solutions of Ginzburg-Landau
equations applied to the mesoscopic structures made of s-wave or d-wave supercon-
ductor. In case of s-wave 1uJJ SQUID the distribution of superconducting order
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Fig. 13: Geometrical parametrization of single unconventional Josephson junction. Ly is in
direction of ¢ axis of d-wave superconductor.

parameter was quite similar to the static case as indicated by Fig. 3-8. In case of 2
d-wave uJJs as depicted in Fig. 9-18 it is not obvious whether lowering the thickness
of the superconductor as in L, direction will enhance the Josephson effect in the
given structure. This is because presence of topological defect in d-wave supercon-
ductor brings lowering the d component of superconducting order parameter in the
closest neighborhood and locally enhancement and later decrease the s-wave super-
conducting order parameter. Very good starting example to observe this effect is
the work of Alvarez on vortices in d-wave superconductors. The presence of temper-
ature griadient mishapes uniform distribution of superconducting order parameter
in s-wave superconductors and in d-wave superconductors. The mechanism of this
topology change is more complicated in d-wave superconductors and can be spotted
by further extension of the result presented in Fig. 23. If the temperature distribution
is constant around the d-wave 2 uJJs SQUID and is slowly changing the solutions
of GL equations in such case for v — 0 can be approximated by static solutions
for d-wave superconductor as reflected by Fig.24 and Fig.25. Typical distribution
of superconducting order parameter of s-wave uJJ SQUID with no magnetic field
without and with temperature gradient in x direction is depicted by Fig.21 and
Fig. 22.

All presented GL results for s-wave and d-wave superconductors have the impli-
cation of transport properties of the studied structures. This is particularly visible if
we apply s or d-wave Bogoliubov-de Gennes equations using superconductor order
parameter obtained from GL formalism. In very near future the conducted work will
describe the experiments with d-wave uJJ matrices conducted by Luis Gomez as
indicated in Fig. 19 and Fig. 20. We also believe that with use of relaxation method
we can obtain the numerical results for p-wave superconductor as well. In triplet
p-wave superconductors 2 superconducting order parameters coexist with non-zero
magnetization.
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Fig. 14: D-wave 2ulJJs, L, = 1.0 left side s-wave SCOP, right side d-wave SCOP.

Fig. 15: D-wave 2ulJJs, L, = 0.7 left side s-wave SCOP, right side d-wave SCOP.

Fig. 16: D-wave 2ulJJs, L, = 0.5 left side s-wave SCOP, right side d-wave SCOP.

i i

Fig. 17: SCOP distribution in D-wave 2uJJs in ab plane for L, = 0.3, left side s-wave
SCOP, right side d-wave SCOP.

Lx2

Lx1

Lx2

k3

Fig. 18: Geometrical parametrization of double d-wave unconventional Josephson junction.
L, is in direction of ¢ axis of d-wave superconductor.
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WNEFLLT arvays

Fig. 19: Experimental implementation of 2 dimensional matrix array of uJJs implemented
by putting Nb strips on the top of NbN superconducting layer. The structure was produced
by doctor Luis Gomez (University of Zurich).
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Fig. 20: Left side describes schematic view of 2 dimensional matrix array of uJJs described
above. Right side describes possible interactions between Josephson junctions placed in
Josephson junction matrix array. MFIJJ stands for Magnetic Field induced Josephson
junction. 3 main types of interaction are specified.
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Fig. 21: SCOP distribution inside superconductor in S-wave uJJ with no presence of tem-

perature gradient and magnetic field. The geometrical configuration of the structure is the
same as depicted in Fig. 13.

Fig. 22: SCOP distribution inside superconductor in S-wave uJJ with presence of temper-
ature gradient in horizontal direction and no magnetic field. The geometrical configuration
of the structure is the same as depicted in Fig. 13.

Fig. 23: ¢s and 14 components of superconducting order parameter for 2 d-wave uJJs
placed in uniform linearly changing in z and y temperature gradient.
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Fig. 24: 1q(z,y) for times to, to + At, to + 2At subjected to the uniform temperature field
rising linearly with time.

ol
o0}
ol
o0}
@

Fig. 25: 1s(z,y) for times to, to + At, to + 2At subjected to the uniform temperature field
rising linearly with time.
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NUMERYCZNE ROZWIAZANIA PRAWIE NIEZALEZNYCH
OD CZASU ROWNAN GINZBURGA-LANDAUA
DLA ROZNYCH NADPRZEWODZACYCH STRUKTUR

Streszczenie
Prezentujemy algorytm relaksacyjny rozwiazywania stabo zaleznych od czasu réwnan
Ginzburga-Landaua dla réznych geometrii nadprzewodzacych struktur.
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W szczegdlnoéci uwage koncentrujemy na niekonwencjonalnych zlaczach Josephsona
powstalych przez natozenie paska nienadprzewodzacego na pasek nadprzewodzacy. Uzysku-
jemy rozklad nadprzewodzacego parametru porzadku w przypadku nadprzewodnika typu s
i d w sytuacji wystepowania gradientu temperatury. Okazuje sie, ze w niekonwencjonalnym
ztaczu Josephsona zmniejszenie grubosci paska nadprzewodzacego nie zawsze powoduje
gladkie przykrycie nadprzewodzacych parametréw porzadku w obszarze nadprzewodnika
pod paskiem nadprzewodzacym. Oznacza to, ze w strukturach tego typu efekt Josephsona
nie zawsze jest indukowany, co jest istotne gdy chcemy implementowaé nadprzewodzaca
elektronike wykonujaca operacje logiczne w temperaturze wyzszej niz temperatura ciekltego
azotu.
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