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la bibliographie et l’adresse de l’auteurs doivent être tapés avec les petites
caractères 8 points typographiques et l’interligne de 12 points. Ne laissez pas
de ”blancs” inutiles pour respecter la densité du texte. En commençant le
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The paper for BULLETIN DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES
DE �LÓDŹ should be written in LaTeX, preferably in LaTeX 2e, using the style (the
file bull.cls).

2. How to prepare a manuscript

To prepare the LaTeX 2e source file of your paper, copy the template file in-
str.tex with Fig1.eps, give the title of the paper, the authors with their affilia-
tions/addresses, and go on with the body of the paper using all other means and
commands of the standard class/style ‘bull.cls’.

2.1. Example of a figure

Figures (including graphs and images) should be carefully prepared and submitted
in electronic form (as separate files) in Encapsulated PostScript (EPS) format.

Fig. 1: The figure caption is located below the figure itself; it is automatically centered and
should be typeset in small letters.

2.2. Example of a table

Tab. 1: The table caption is located above the table itself; it is automatically centered and
should be typeset in small letters.

Description 1 Description 2 Description 3 Description 4

Row 1, Col 1 Row 1, Col 2 Row 1, Col 3 Row 1, Col 4
Row 2, Col 1 Row 2, Col 2 Row 2, Col 3 Row 2, Col 4

[4]
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pp. 9–19

In memory of
Professor Roman Stanis�law Ingarden
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SOME QUESTIONS OF METRIC DIFFERENTIAL GEOMETRIES

Summary
We show that under mild conditions any general metric (distance) space determines a

Finsler space, nevertheless there are many metric spaces, which determine the same Finsler
space (Theorem 1). In the second part of the paper we obtain a necessary and sufficient
condition in order that the indicatrices of a Finsler space be in affine relation. In this case
the Finsler space is a generalized Berwald space (Theorem 2). Also certain isometries and
motions of a Finsler space are discussed, and two theorems are obtained.

Introduction

In this paper we deal with two questions of Finsler geometry. Finsler geometry is
built on the arc length of curves, and under certain very natural conditions it is the
most general one among the metric differential geometries. In a Finsler geometry
there exists the notion of the distance between two points, however the original
notion is arc length, and distance is a deduced notion only. In contrary to this,
in a general metric (distance) space the basic notion is distance, and arc length is
no organic part of this geometry. What is the relation between the two types of
metric geometries? When, and how can we define arc length of curves in a distance
space? What is the relation between Finsler and distance spaces? These questions
are investigated in Section 1.

The metric of the Euclidean space is defined by the unit sphere S. In a Finsler
space metric is defined by the metric function F(p, y), which is equivalent to the
indicatrix hypersurfaces Ip ⊂ TpM . Ip plays the role of the unit sphere S. In a
Riemann space these surfaces are ellipsoids. Affine deformatin is a regular linear
transformation in the tangent spaces. Affine deformation seems to be a useful tool
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for studying relations between different types of Finsler spaces, such as Euclidean,
Riemann, Minkowski, Berwald, and generalized Berwald spaces, and also still at
several other questions. Such affine deformations are studied in Section 2. Finally
in Section 3 we discuss some questions related to isometries and motions of Finsler
space.

1. Metric spaces

Arc length and distance are among the most important notions of any metric dif-
ferential geometric spaces. Let M be a connected n-dimensional manifold, and p(t),
t ∈ [0, 1] a curve in it. Then the arc length of p(t) is

s := lim
Δt→0

∑
|p(t+ Δt)− p(t)| =

∫ 1

0

|ṗ(t)|dt,(1)

where | · | means a norm of the vector ṗ(t) ∈ Tp(t)M . Thus the crucial tool in
obtaining the arc length is the norm functional F(p, y) = |y|, p ∈ M , y ∈ TpM .
Any arc length is founded locally, and based on a norm of the tangent vectors.
Nevertheless there are some very natural requirements against the arc length. s
should be positive. So F(p, y) must be positive except for y = 0. Furthermore it
is natural to require that s be independent of any reparametrization of p(t). In a
differential geometric space it is also natural the condition that F is differentiable.
These requirements are equivalent to the following conditions

(i) F(p, y) > 0, and F ∈ C∞ except of y = 0

(ii) F(p, λy) = |λ|F(p, y), λ ∈ R.

In most cases the triangle inequality

(iii) |y1 + y2| ≤ |y1|+ |y2|, ∀ y1, y2 ∈ TpM

is also required. The necessity of (iii) will be given later. (i)–(iii) mean that F(p, y)
is a Banach norm on each TpM , and conversely. A manifold with a Banach norm
F(p, y) on each TpM , which varies with p ∈M is a Finsler space Fn = (M,F) [BCS].
They are the most general metric differential geometric spaces, which satisfy the
aforementioned very natural requirements.

If the Banach norms F(p, y) are independent of the point p ∈ M , then Fn is a
Minkowski space Mn or, in a special case a Euclidean space En. (iii) is equivalent
to the property that in these spaces the shortest path between two points are repre-
sented by straight lines. If the Banach norms are Euclidean, but they vary with the
point p, then Fn is a Riemann space V n. If the norms are Euclidean, but they do
not vary with the point, then we obtain the Euclidean space En.

z = F(p0, y) ⊂ Tp0M(2)

is a cone in Rn+1(y1, . . . , yn; z). This is not differentiable at y = 0. This is the reason
why we had to exclude y = 0 in (i). The projection of the intersection of this cone
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with the plane z = 1 is called indicatrix of the Finsler space Fn = (M,F). It is
given by

I(p0) := {y ∈ Tp0M | F(p0, y) = 1} ⊂ Tp0M.

By (iii) this is a convex hypersurface of the tangent space, and by (ii) I(p0) is
symmetric to the origin O of Tp0M . (ii) can be weakened by requiring only

F(p, λy) = λF(p, y), λ ∈ R+.(ii)∗

This assures the independence of s from orientation preserving reparametrization
only, and it allows not symmetric indicatrices too. In the first (more classical) case
Fn is called reversible, while in the last case it is called irreversible, reflecting the
fact that in an irreversible Finsler space the arc length on p(t) from p1 to p2 may
differ from the arc length from p2 to p1.

A notion more general than arc length is distance of two points. Let Γ be the
collection of the curves p(t) in a Finsler space Fn from p1 to p2. Then

�F (p1, p2) := inf
Γ

∫ 1

0

F(p(t), ṗ(t))dt(3)

gives a distance function induced by the Finsler space Fn.
A metric space Dn is a manifold M equipped with a distance function

� : M ×M → R+, (p1, p2) �→ �(p1, p2)

with the properties

(iv) �(p1, p2) > 0 except �(p, p) = 0 (positivity)

(v) �(p1, p2) = �(p2, p1) (symmetry)

(vi) �(p1, p3) ≤ �(p1, p2) + �(p2, p3) (triangle inequality).

A reversible Finsler space Fn determines by (3) a distance function �F with
properties (iv)–(vi). If Fn is irreversible, then we lose the symmetry (v). In this case
Dn is called quasi-metric [B]. In the sequel the symmetry of � will not be required, nor
excluded. The corresponding distance spaces Dn in this paper will be called metric.
Dealing with differential geometric spaces the condition of the differentiability of the
distance function

�(p1, p2) ∈ C∞ except at (p, p)

is natural, and this will be assumed.
A Finsler space Fn determines a distance function �F (p1, p2), and thus a metric

space Dn. Does this �F uniquely determine the Fn, and in a broader sense does any
� determine an Fn? Similar questions were investigated in several places, among
others in [SzT1] and [SzT2]. Our approach and results will be different from those.
First we prove
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Theorem 1. A) Any metric space Dn = (M,�) determines a Finsler space Fn =
(M,F).

B) The distance function �F (p1, p2) deduced from a Finsler space Fn = (M,F)
determines Fn.

C) There are many metric spaces Dn which determine the same Finler space
Fn.

Proof.
A) Let Dn = (M,�) be a metric space, and y0 ∈ Tp0M , y = ty0. Then the

directional derivative of the distance function �(p0, p) at a fix p0 in the direction of
y depends on p0 and y = t y0 only:

[∇ty0�(p0, p)]p0
= ϕ(p0, t y0).(4)

The left hand side of (4) equals

t [∇y0�(p0, p)]p0
= tϕ(p0, y0).

Thus ϕ(p0, ty0) is linear in t. It is defined on a line ty0 of Tp0M(y1, . . . , yn). Then
z = ϕ(ty0) is a ray in Rn+1(y1, . . . , yn; z) = Tp0M(y)×R1(z). These rays considered
in every direction y0 ∈ Tp0M form a cone z = ϕ(p0, y) like (2), which is convex
because of (vi). Then

F(p, y) := ϕ(p, y)(5)

is a Finsler metric, and Fn = (M,F) is determined by Dn = (M,�). The projection
of the intersection of this cone with the plane z = 1 yields the indicatrix Ip at every
p ∈M . In this consideration we used �(p0, p) in a small neighbourhood Np0 ⊂M of
p0 only. We call �(p0, p) on Np0 the germ of the function �(p0, p).

B) Suppose that the distance function �F (p0, p) is deduced from a Finsler space
Fn = (M,F). Let p(t) be a curve, such that p(0) = p0, ṗ(0) = y0. Then, by the
definition (3) of �F (p0, p((t)), the directional derivative of �F (p0, p(t)) at p0 is

[∇y0�
F (p0, p(t))

]
p0

=
[
d

dt

∫ t

t0

F(p(τ), ṗ(τ))dτ
]

t=0

= F(p0, y0).

Then, by the proof of part A), the Finsler space induced by �F is just the starting
Fn = (M,F).

C) In part A) of the proof it was shown that by (4) and (5) any metric space
Dn = (M,�) determines a Finsler space Fn = (M,F). However at the proof we
used only the germ of the distance function �(p0, p) of Dn. So if D∗n = (M,�∗) is
another metric space, whose distance functions �∗(p0, p) equal with �(p0, p) of Dn on
each Np0 , but they are different outside of Np0 , then Dn and D∗n induce the same
�F (p0, p), and the same Fn = (M,F). Thus every D∗n = (M,�) with the property

�∗(p0, p) = �(p0, p), p ∈ Np0
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and
�∗(p0, p) 	= �(p0, p), p /∈ Np0

yields the same Finsler space.

We discuss still some consequences.

1. If we want to accept (1) as the definition of the arc length of a curve p(t) ⊂M
in a metric space Dn = (M,�), then we have to give the meaning of the norm | · |
appearing in (1). The most natural explanation for |ṗ0| is ϕ(p0, ṗ0) of (4). However,
by (5) this equals F(p0, ṗ0), where F is the Finsler metric of the Finsler space
Fn = (M,F) induced by Dn. Thus, by this natural explanation of the norm, we
obtain for the arc length in Dn the arc length measured in the induced Finsler space.
Then the arc length of p(t) must be the same in all of those different metric spaces
D∗n which induce the same Finsler space.

2. Furthermore, as it is known, a curve p(t) is a geodesic in a metric space if

�(p0, p) + �(p, p1) = �(p0, p1)(6)

for p0 = p(t0), p1 = p(t1), and for any p = p(t), t0 < t < t1. Such curves do not exist
in a Dn in general. If such curves still exist in a Dn between any pair of points, then
Dn is an Fn. Namely dividing the curve into small parts by p(t), p(t+ Δt) etc., we
obtain

�(p, (t), p(t+ Δt)) = [∇ṗ�(p(t0), p(t))]t Δt
(4)
= ϕ(p, ṗ)Δt = F(p, ṗ)Δt.(7)

By summing of these expressions we obtain

�(p0, p1) =
∫ t1

t0

F(p(τ), ṗ(τ))dτ = �F (p0, p1),(8)

and then Dn(M,�) = Fn(M,F).

3. Finally we remark that arc length sF of a curve p(t) measured in the induced
Finsler space is never smaller than the distance �(ps, pe) between the starting point
ps and the end point pe of p(t). This follows from the triangle inequality (vi)

�(ps, p1) + �(p1, p2) + · · ·+ �(pn, pe) ≥ �(ps, pe),

from (7) and from (8) putting in this last one p0 = p(t0) = ps, p1 = p(t0 + Δt), etc.
This also means that if p(t) is a geodesic in the induced Finsler space, then its

Finsler arc length sF is not smaller than any distance �∗(ps, pe) measured in those
metric spaces D∗n, which induce Fn.

2. Affine deformation

In this part of the paper we investigate affine deformation of the Finsler metric,
extending the works [KT], [SzT1] and [SzT2]. In a Finsler space Fn = (M,F) the
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Finsler metric F(p, y) determines an indicatrix

Ip0 := {y ∈ Tp0M | F(p0, y) = 1}, p0 ∈M
in each tangent space TpM . By the homogeneity of F the indicatrix bundle I

and the metric function F determine each other. So in place of Fn = (M,F) we can
write Fn = (M, I). Indicatrices fit better to our investigations than metric function.
Indicatrices of a Euclidean space En are spheres S. Indicatrices of a Riemann space
V n are ellipsoids Qp, and those of a Minkowski space Mn are independent of p. So
En = (M,S), V n = (M,Q) and Fn = (M, I). An affine deformation a is an affine
(i.e. regular, linear) transformation of the tangent spaces:

ap : TpM → TpM or ap1,p2 : Tp1M → Tp2M

y �→ apy y1 �→ y2

So the affine deformation of En = (M,S) is a V n = (M,Q) denoted by aEn = V n,
where

Qp = apS.

Any V n is an affine deformation of En (at least locally). Two V n
1 and V n

2 over the
same base manifold M are affine deformation of each other: V n

2 = aV n
1 . The affine

deformation of an Mn is a Finsler space aMn(M, I0) = Fn(M, I) with

Īp = apI0,

but conversely this is not true. The affine deformation of a Finsler space Fn = (M, I)
is an other Finsler space aFn(M, I) = F̄n(M, Ī), where Īp = apIp. However two
Finsler spaces are no affine deformation of each other in general. It is a question,
which properties of an Fn are inherited by an affine deformation F̄n = aFn.

Given a Riemann space V n = (M,Q), among the tangent vectors ξ ∈ TM

there exist several metric linear connections with not vanishing torsion T 	= 0, and a
single one, the Levi–Civita connection with vanishing torsion T = 0. Such connection
exists also in the Minkowski spaces (the trivial connection, with identically vanishing
coefficients Γj

i
k = 0), but such connections do not exist for Finsler spaces in general.

There exist metric linear connections also in the Finsler spaces, but not among the
tangent vectors ξp ∈ TpM , but in the vertical subbundle V TM of TTM . These
vectors ξ(p, y) sit on the couple of a point p and a vector y ∈ TpM . ((p, y) sometimes
is called line element, for ξ(p, y) = ξ(p, λy), λ ∈ R). We can say that Fn is a
vector bundle Ψ endowed with a Riemann metric. The base manifold of Ψ is TM =
{(p, y)}, the typical fiber is an n-dimensional vector space Vn, each Vn(p, y) endowed
with a Riemann metric g(p, y). Finsler spaces with metric linear connections in TM
and with not necessarily vanishing torsion are called generalized Berwald spaces
denoted by Bn. If the torsion vanishes: T = 0, then such a space is called Berwald
space denoted here by Bn. Generalized Berwald spaces Bn are exactly the affine
deformation of Minkowski spaces [SzT1]:

Bn = aMn.
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They can be characterized also by the property that the indicatrices of such a space
are in affine relation relation. This means that a Finsler space Fn = (M, I) is a
generalized Berwald space if and only if for any pair p1, p2 there exists ap1,p2 , such
that

ap1,p2IP1 = Ip2 .

So it seems to be an interesting question: when are the indicatrices of an Fn in
affine relation. We want to give for this a necessary and sufficient condition. This
will be also a necessary and sufficient condition in order that the Finsler space is a
generalized Berwald space Bn.

It is known that in a vector space Vn, and then in any TpM there exists a unique
ellipsoid centered at the origin O of Vn, which ellipsoid is contained in a given
hypersutface, in our case in the indicatrix Ip, and which is of maximal volume (this
is the Löwner ellipsoid, see e.g. [L] p. 180). Thus given a Finsler space Fn = (M, I),
we have in each Ip an ellipsoid Qp centered at O and of maximal volume. These
ellipsoids determine a Riemann space V n = (M,Q).

Tp0M

O

A0

r

B0

Qp0

Ip0

Fig. 1: Löwner ellipsoid vs. relation (9).

Now let r(p0, y0) be a ray in Tp0M emanating from the origin O in the direction of
the vector y0 ∈ Tp0M . Let A0 be the intersection point of the ray and Qp0 and let
B0 the intersection point of the ray and Ip0 . Let us equip the tangent space with a
Euclidean metric, and let

λ(p0, y0) :=
|OB0|
|OA0| ,(9)

where | . | means the Euclidean norm. Let a∗p0,p be an affine transformation, such
that

a∗p0,p : Tp0M → TpM

Qp0 → Qp.

We denote the corresponding objects and quantities in TpM without the subscript 0.
Then

λ(p, y) = λ(p0, y0), where y = a∗p0,p y0,(10)

if and only if Ip is in affine relation to Ip0 .
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Namely if Fn is a Bn, then the indicatrices Ip of Bn are in affine relation: Ip2 =
ap1,p2Ip1 , and then also Qp2 = ap1,p2Qp1 , for an affine transformation takes maximal
ellipsoid into maximal ellipsoid. Thus, in this case the value of λ(p0, y0) with a∗p0,p =
ap0,p is independent of p. Conversely, if λ(p, y) = λ(p0, y0) then Ip0 and Ip are in
the same affine relation as Qp0 and Qp, which yields that (9) is independent of the
point p.

Theorem 2. Indicatrices Ip of a Finsler space Fn = (M, I) are in affine relation,
and thus Fn is a generalized Berwald space Bn if and only if the affine proportions
expressed by (9) are the same in each point p ∈M .

3. Isometries and motions

Remark 1. If a diffeomorphism ϕ : M1 → M2 is an isometry between two Finsler
spaces Fn

1 = (M1, I1) and Fn
2 = (M, I2), then dϕ must be an affine relation between

I1(p) and I2(ϕp). So then there must exist a relation similar to (10), namely

λ(p, y) = λ(ϕ(p), (dϕ)y).

This is a necessary, but not sufficient condition of the isometry between Fn
1 and Fn

2 .

The same holds if ϕ is a conformal mapping between Fn
1 and Fn

2 .
Remark 2. Affine relation between indicatrices is an equivalence relation. Then the
maximal connected subsets Mα, α ∈ A of M , where any Ip1 and Ip2 , p1, p2 ∈ Mα

are in affine relation, form equivalence classes, and M decomposes to

M =
⋃

λ∈A
Mα.(11)

Each Mα is closed (in the topology of M). Namely let pn → p0, pn ∈Mα. We know
that Ip ∈ C◦ on M , and Ipn = aq0,pnIq0 for a q0 ∈Mα. Then also aq0,p ∈ C◦ on Mα,
and

Ip0 = lim
pn→p0

Ipn = lim aq0,pnIq0 = a∗Iq0

a∗ := lim
pn→p0

aq0,pn .

Then also Ip0 is in affine relation to Iq0 , and hence p0 ∈ Mα. This has some con-
sequences. For example if an M1 is an n-dimensional closed domain, then to this
M1 can join no other n-dimensional M2, for in this case M1 ∪M2 form a unique
equivalence class.

Remark 3. Suppose that the base manifold M of the Finsler space Fn = (M, I)
decomposes according to (11). Then Fn restricted to Mα is a part of a generalized
Berwald space: Bn

α

Fn �Mα = Bn
α �Mα.
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In this sense any Finsler space Fn is put together from part of generalized Berwald
spaces:

Fn =
⋃
α

(Bn
α �Mα).

Nevertheless among the Mα may exist several ones consisting of a single point:

Mα = {pα}.

Remark 4. Since a conformal or especially an isometric mapping ϕ :M→N between
two Finsler spaces

Fn
1 = (M, I1) and Fn

2 = (N, I2)

generates an affine relation between the indicatrices I1(p) and I2(ϕ(p)), we have
Nα = ϕ(Mα). Thus the structures {Mα} and {Nα} must be diffeomorphic.

Remark 5. Suppose that Fn = (M,F) has a continuous 1-parameter group of mo-
tions. Let p(t) be an orbit of a point p ∈M . Then the indicatrices I(p(t)) are affine
equivalent. Therefore any orbit must be contained in an Mα.

From this follows

Theorem 3. If Fn admits a transitive group of motions, then any two indicatrices
are in affine relation. Consequently Fn is a generalized Berwald space Bm.

Remark 6. Suppose that {Mα} contains an M1 consisting from a single point: M1 =
{p1}. Then p1 is a fix point of any continuous group of motion.

Theorem 4. If in the decomposition M = ∪αMα of a reversible Finsler space F 2 =
(M, I) there exists exactly two M1 and M2 containing a single point: M1 = {p1} and
M2 = {p2}, F 2 admits a 1-parameter continuous group ϕ(p, t) of motions different
of the identity, and the injectivity radii ι(p1) and ι(p2) are such that ι(p1) + ι(p2) ≥
�F (p1, p2), then M is diffeomorphic to the sphere S2.

p1 p2

H2H1

C1(p1, d1) C2(p2, d2)
p4p4

p0

p3

p5 p5

γ(t)

Fig. 2: Illustration to the proof of Theorem 4.
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Proof. Let p0 be a point of a geodesic arc connecting p1 and p2, such that

�(p1, p0) < ι(p1) and �(p2, p0) < ι(p2).(12)

Such a p0 exists because of our assumption. In consequence of (12) the exponential
maps exp(p1) and exp(p2) to

H1 := {p ∈M | �(p1, p) ≤ �(p1, p0)}
and

H2 := {p ∈M | �(p2, p) ≤ �(p2, p0)}
are 1 : 1. Thus through each point of H1, resp. H2 goes a single geodesic circle
centered at p1, resp. p2. Therefore H1 ∪H2 can be mapped on a revolution surface
Ψ of E3 diffeomorphic to S2 in such a way that geodesic circles are mapped on the
parallel curves of Ψ, and the geodesics between p1 and p2 into meridians of Ψ, and
that the maps on these families of curves are isometries.

Still we must show only that H1 ∪ H2 = M . Suppose that there exists a point
p3 /∈ H1 ∪H2. We know that any geodesics emanating from p1 meet perpendicularly
the geodesic circle C(p1, d1) centered at p1 and having the radius d1 = �(p1, p0).
But C(p1, d1) = C(p2, d2), where d2 = �(p2, p0). Therefore the geodesic γ(t) from
p1 through p3 meets at p4 ∈ C(p1, d1) = C(p2, d2) perpendicularly also C(p2, d2),
and thus γ(t) goes through also the center p2 of C2(p2, d2), and goes further meeting
again C(p1, d1) = C(p2, d2), and so on. Therefore p3 ∈ γ(t) ⊂ H1 ∪H2.

We remark that if there exists a further M3 consisting of a single point q0 ∈
H1 ∪ H2, then q0 is a fixpoint, and it lies on a geodesic γ∗ connecting p1 and p2.
Since p1, p2, q0 are fix points, γ∗ is pointwise fix, and then ϕ(p, t) is an isometry. If
we have only one fix point, then M may be diffeomorphic to a rotation paraboloid,
which is not diffeomorphic to S2. So the number of the fix points in the theorem
must be exactly two.

This theorem can be extended to irreversible F 2, and to Fn (n > 2) too. We do
not know simple wording and proofs for these cases.

Remark 7. [to Theorem 4] Any geodesic γ(t) starting from p1 is closed. Namely γ(t)
meets C(p1, d1) = C(p2, d2) perpendicularly at p4, and passes through p2. After this
γ(t) meets again the geodesic circle at a point p5. However the points corresponding
to p4 and p5 in exp−1(p1) and exp−1(p2) are diametrical points. Therefore leaving
p5 γ(t) goes through p1, meets again p4, and so on.

Remark 8. [to Theorem 4] Ip1 and Ip2 must be ellipses. Namely

[d(ϕ(ta))]piIpi = Ipi , i = 1, 2

for infinitely many ta, since ϕ(t) are isometries. However if a curve (here Ipi ) of a
vector space V2 (here of TpiM) is invariant against infinite many different linear
transformations (here against dϕ(t)), then it is an ellipse (see [Th, p. 83], or [G]).
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[T2] L.Tamássy, Distance functions of Finsler spaces and distance spaces, Diff. Geom.
Appl., Proc. Conf. Olomouc 2007 Aug., 559–570

[Th] A.G. Thompson, Minkowski geometry, Cambridge Univ. Press, Cambridge 1996.

Institute of Mathematics

University of Debrecen

4010 Debrecen, P. O. Box 12

Hungary

e-mail: laszlo.kozma@science.unideb.hu

e-mail: tamassy@science.unideb.hu

Presented by Julian �Lawrynowicz at the Session of the Mathematical-Physical Com-
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O PEWNYCH ZAGADNIENIACH METRYCZNYCH
GEOMETRII RÓŻNICZKOWEJ

S t r e s z c z e n i e
Wykazujemy, że przy umiarkowanych warunkach każda ogólna przestrzeń metryczna

(z odleg�lościa̧) określa przestrzeń Finslera, istnieje jednak wiele przestrzeni metrycznych,
które określaja̧ tȩ sama̧ przestrzeń Finslera (twierdzenie 1). W drugiej czȩści pracy otrzymu-
jemy warunek konieczny i dostateczny na to, by indykatrysy danej przestrzeni Finslera by�ly
w relacji afiniczności. W tym przypadku przestrzeń Finslera jest uzgodniona̧ przestrzenia̧
Berwalda (twierdzenie 2). Dyskutujemy również pewne izometrie i przemieszczenia (ruchy)
przestrzeni Finslera, uzyskuja̧c dwa dalsze twierdzenia.





PL ISSN 0459-6854

B U L L E T I N
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HISTORICAL REMARKS ON FALK VARIATIONAL
INEQUALITIES. FINITE ELEMENT SOLUTION ERROR

Summary
We present a version of the Lax-Stampacchia theorem on the minimizations of a func-

tional on a closed convex K included in a Hilbert space H . We give an estimate of the
error with a finite element method on an approximate closed convex Kh ⊂ K ⊂ H . This
estimate has been obtained by Falk.

1. The Falk variational inequalities

We consider the Falk variational inequalities when applied to the finite element
solution error estimate. We start with the presentation of one of the inequalities,
namely,

Theorem 1. a(u, v) is a bilinear, continuous, coercive form on H ×H, H being a
real Hilbert space

∃Λ ∈ R so that |a(u, v)| ≤ Λ|u| |v|,
∃λ ∈ R so that a(u, u) ≥ λ|u|2.

| | is the norm in H as well the absolute value.
Define H ′ as the dual of H. Let f ∈ H ′.
Let K �= φ be a closed convex subset of H. For every f ∈ H ′, ∃ is a unique

solution leading to {
a(u, v − u) ≥ 〈f, v − u〉 ∀v ∈ K,
u ∈ K.(1)
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Proof. A convex set is a set in which

(u, v ∈ K)⇒ (αu+ (1− α)v ∈ K ∀α ∈ [0, 1]) ,(2)

a(u, v) = (u, v).(3)

(•, •) denotes the scalar product H .
Due to the Riesz representation theorem, there exists a unique f̃ ∈ H such that(

f̃ , v
)

= 〈f, v〉(4)

and (1) is written as

(u − f̃ , v − u) ≥ 0 ∀v ∈ K, u ∈ K(5)

and u is the projection of f̃ on K

u = PK(f̃).(6)

For u ∈ H we introduce

w = S(u),(7)

(w, v − w) ≥ (u, v − w)− ρ {a(u, v − w)− 〈f, v − w〉} , ∀v ∈ K, w ∈ K.(8)

The application

v � (u, v)− {ρa(u, v)− 〈f, v〉}(9)

is a continuous linear form on H .
The solution of (8) is unique and for some ρ > 0 u � S(u) = w admits a fixed

point; the fixed point being a solution of (1). By the Banach fixed point theorem, we
must show that S is a contraction. Consider u1, u2 ∈ H and w1 = S(u1), w2 = S(u2).
By (8) we have

w1 ∈ K(w1, v − w1) ≥ (u1, v − w1)− ρ {a(u1, v − w1)− 〈f, v − w1〉} , ∀v ∈ K,
w2 ∈ K(w2, v − w2) ≥ (u2, v − w2)− ρ {a(u2, v − w2)− 〈f, v − w2〉} , ∀v ∈ K.
Take v = w2 in the first inequality and v = w1 in the second inequality. If we

add the two inequalities we obtain

|w1 − w2|2 ≤ (u1 − u2, w1 − w2)− ρa(u1 − u2, w1 − w2).(10)

Consider the bilinear form

(u, v)− ρa(u, v).

By the Riesz representation theorem, it exists fu ∈ H so that

a(u, v) = (fu, v), ∀v ∈ H(11)

with (1) hypothesis

|fu|2 = (fu, fu) = a(u, fu) ≤ Λ|u| |fu|
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and
|fu| ≤ Λ|u|.

With (11) we have

|(u, v)− ρa(u, v)| = |(u − ρfu, v)| ≤ |u− ρfu| |v|
with (1) hypothesis

|u− ρfu|2 = |u|2 − 2ρ(fu, u) + ρ2|fu|2
≤ |u|2 − 2ρλ(u, u) + ρ2Λ2|u|2
≤ (1− 2ρλ+ ρ2Λ2)|u|2

for

ρ ∈
[
0,

2λ
Λ2

]
.

Noting this number ν ∈ (0, 1), we have

|(u, v)− ρa(u, v)| < ν|u| |v|.
By (10) we have:

|w1 − w2|2 ≤ ν|u1 − u2| |w1 − w2|,
|w1 − w2| ≤ ν|u1 − u2|.

S is a contraction since 0 < ν < 1 and we have existence of u. By (1), for the
uniqueness, we have if u1 and u2 are two solutions

a(u1, u2 − u1) ≥ 〈f, u2 − u1〉,
a(u2, u1 − u2) ≥ 〈f, u1 − u2〉.

We add
λ|u1 − u2|2 ≤ a(u1 − u2, u1 − u2) ≤ 0

and if u1 = u2 and the solution is unique.
Remark if a is symmetric a(u, v) = a(v, u), ∀u, v ∈ H we have the well known

Lax-Milgram theorem. A rich literature is devoted to variational inequalities and we
restrict the paper to the theory in

H1(Ω)

⎧⎨
⎩v/

∫
Ω

[
v2 +

−→
gradv)2

]
dΩ < +∞

⎫⎬
⎭ ,

‖v‖2H1(Ω) =
∫
Ω

[
v2 + (

−→
gradv)2

]
dΩ [1] [2] [3],

|v|2 =
∫
Ω

v2dΩ.

We give in the second section an example of variational inequality devoted to
filtration in a porous medium.
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2. Deviation of the Falk finite element errors estimate

The variational inequality in K which is an closed convex of H1(Ω)

∀v ∈ K ∩ V a(u, v − u) ≥ 〈f, v − u〉,(12)

∀vh ∈ Kh a(uh, vh − uh) ≥ 〈f, vh − uh〉.(13)

Kh is a closed convex of a space of finite element Vh included on H = H1(Ω).
Introduce A ∈ L(H ;H ′) defined by

Au(v) = a(u, v) ∀(u, v) ∈ H.
Next, we can write a model problem in the form:

a(u, v) =
∫
Ω

∂u

∂xi

∂v

∂xi
dΩ,(14)

〈f, v〉 =
∫
Ω

fvdΩ,(15)

∀v ∈ K a(u, v − u) ≥
∫
Ω

f(v − u)dΩ,(16)

H = {v ∈ H1(Ω) / v = 0 on dΩ} = H1
0 (Ω),

K = {v ∈ H1
0 (Ω), v ≥ 0 on Ω}.

We see that if Ω̄ is a convex bounded subset with a boundary of class C2 and
f ∈ L2(Ω), |u|H2(Ω) may be bounded a priori by |f |L2(Ω) and⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ≥ 0 on Ω u = 0 on Γ,

−Δu = f u ≥ 0 −Δu− f ≥ 0 on Ω,

u = 0 and
∂u

∂ν
= 0 on Γ∗ (free boundary).

(17)

Γ∗ is the interface between the sets u > 0 and u = 0.

Theorem 2. Let us introduce the relation

Kh ⊂ Vh ⊂ V
and assume that f ∈ H, Au ∈ H. ∃c > 0 independent of the subspace Vh and the
subspace Kh ⊂ Vh ⊂ V = H such that

‖u− uh‖ ≤ c
{

inf
v∈Kh

{‖u− vh‖2 + |u− vh‖
}

+ inf
v∈K
|uh − v|.

} 1
2

.(18)
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Proof. By (12) and (13), we have 〈f, v〉 = f(v) and ∀v ∈ K
a(u, u) ≤ a(u, v) + f(u− v),(19)

∀vh ∈ Kh a(uh, vh) ≤ a(uh, vh) + f(uh − vh)(20)

and (∀vh ∈ Kh, ∀v ∈ K). Hence

λ‖u− uh‖2 ≤ a(u, v − uh) + a(uh, vh − u) + f(u− v) + f(uh − vh)

= a(u, v − uh)− f(v − uh) + a(u, vh − u)(21)

−f(vh − u) + a(uh − u, vh − u)

= (f −Au, u− vh) + (f −Au, uh − v) + a(u−h, vh − u).

We have used Kh ⊂ Vh ⊂ v in the latter inequality

‖u− uh‖2 ≤ |f −Au|L2(Ω) (|u− vh|+ |uh − v|) + Λ‖u− uh‖ ‖u− vh‖
and

‖u− uh‖ ‖u− vh‖ ≤ 1
2

{
λ

Λ
‖u− uh‖2 +

Λ
λ
‖u− v‖2

}
.(22)

Moreover,

λ

2
‖u− uh‖2 ≤ |f −Au| [(u− vh) + (uh − v)] +

Λ2

2λ
‖u− vh‖2(23)

and we get (18).
If K = V ⇒ (f −Au) = 0 we get the standard estimate.
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HISTORYCZNE UWAGI O METODZIE WARIACYJNEJ FALKA.
OSZACOWANIE B�LȨDU W METODZIE ELEMENTU
SKOŃCZONEGO

S t r e s z c z e n i e
W niniejszej pracy przedstawiamy wersjȩ twierdzenia Laxa-Stampacchii dotycza̧cego

jego zastosowań w przypadku minimalizacji funkcjona�lu rozważanego na zamkniȩtym i wy-
puk�lym elemencie przestrzeni Hilberta. Oszacowanie b�lȩdu metoda̧ elementu skończonego
jest wtedy oszacowaniem zaproponowanym przez Falka w przypadku zamkniȩtych i wy-
puk�lych podprzestrzeni K w przestrzeni H spe�lniaja̧cych relacjȩ Kh ⊂ K ⊂ H .

Z fizycznego punktu widzenia interpretacja metody może być zastosowana dla opisu
penetracji kropli oliwy w warstwach przypowierzchniowych.



PL ISSN 0459-6854

B U L L E T I N
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HISTORICAL REMARKS ON THE FILTRATION PROBLEMS.
BAIOCCHI-DUVAUT SOLUTIONS

Summary
We sum up the physical problem of a dam of porous medium, separated by two reser-

voirs. The flow is governed by the Darcy law. We modelize the problem, showing that we
have a free boundary problem. We show that the solution is the solution of a variational
inequality which can be solved by a penalization method. This filtration problem is found
in surface science when a drop of oil penetrates the first layers.

1. The filtration problem

A dam of porous medium with parallel vertical walls, situated distance a apart,
separates two reservoirs of water at levels y = H and y = h. The variable y is the
height parameter and the variable x represents the distance from the wall of the
higher reservoir. The flow is stationary and we have the Darcy law

v = −k∇u;(1)

v is the velocity of the fluid and

u(x, y) = y + p(x, y);

y is the gravity force with normalized unit and p(x, y) is the inner pressure of the
fluid. We have a bidimensional dam; this modelizes a three dimensional dam whose
cross section z = c does no vary with c. The function u is the piezometric head. The
conservation law leads to

div(k∇u) = 0
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in the wet part of the dam. We assume the permeability constant

k(x, y) = 1.

We define the wet part by

W = {(x, y); 0 < x < a; 0 < y < ϕ(x)} ;

y = ϕ(x) is the free boundary, separating the wet part from the dry part. The
function u satisfies the equation

Δu = 0 in W,(2)

∂u

∂n
= 0 on Γ = y = ϕ(x), 0 < x < a,(3)

where n is the outward normal. The flow is tangent to Γ. We have

u(0, y) = H if 0 < y < H,

u(a, y) = h if 0 < y < h,(4)

u(a, y) = y if h < y < ϕ(x),

where p(x, y) = H − y in the higher reservoir is the pressure.

� �� � �x

�

��

��

�	

�


y H=

( ,0)a

y h=

(0,0)

Fig. 1:

p(x, y) = h(x, y)− y is the pressure in the lower reservoir, p(x, y) is continuous

on Γ = {y = ϕ(x)},

u(x, y) = y on Γ,(5)

uy(x, 0) = 0, 0 < x < a.(6)

The bottom of the dam is impervious.
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2. Modelization

The solution (2)–(6) exists. The function p(x, y) = u(x, y) – y is positive in W (wet
part), p is harmonic in W .

p = 0 on Γ ∪ Γ3 (Γ3 = (a, y); h < y < ϕ(x)) ,

p > 0 on Γ0 ∪ Γ2,

p cannot take the negative minimum on Γ1,

py = uy − 1 = −1 on Γ1.

Using the maximum principle we have

p > 0 in W.(7)

3. The variational inequality

We suppose ϕ(x) ∈ C1, u ∈ C1(w ∪ Γ) ∩ (w). We set⎧⎪⎪⎨
⎪⎪⎩

w(x, y) =

ϕ(x)∫
y

(u(x, t)− t)dt if 0 < y ≤ ϕ(x),

= 0 if ϕ(x) < y < H.

(8)

We calculate

wy(x, y) = −u(x, y) + y,(9)

wx(x, y) =

ϕ(x)∫
y

ux(x, t)dt;

by (5)

wxx(x, y) =

ϕ(x)∫

y

uxx(x, t)dt + ϕ′(x)ux(x, ϕ(x)).

By (3), we have
−ϕ′(x)ux + uy = 0 on y = ϕ(x)

and
ϕ(x)∫

y

uxx(x, t)dt = −
ϕ(x)∫

y

uyy(x, t)dt = −uy(x, ϕ(y)) + uy(x, y),

and we get
wxx = uy = −wyy + 1 by (9),

Δw = 1 in W,(10)
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w > 0 in W.(11)

We define
Ω = {(x, y); 0 < x < a, 0 < y < H}.

We have

w = 0 Δw = 0 < 1 in Ω/W.(12)

We check in the distributional sense D′(Ω):

Δw < 0

and we have

w = g in ∂Ω;(13)

g is defined by

g(0, y) =
1
2

(H − y)2,

g(a, y) =
1
2

(h− y)2 if 0 < y < h,

gxx(x, 0) = 0 if 0 < x < a.

g(x, 0) =
H2

2

(
1− x

a

)
+
h2

2
x

a
,(14)

g = 0 elsewhere on ∂Ω.
We define

K =
{
v ∈ H2(Ω); v = g on ∂Ω, v ≥ 0 in Ω

}
.(15)

w is a solution of the inequality
∀v ∈ K

∫

Ω

∇w ∇(v − w)dΩ ≥ −
∫

Ω

(v − w)dΩ.(16)

Conversely, if w is a solution of (16), we obtain

W = {(x, y) ∈ Ω w(x, y) > 0},
0 < y < ϕ(x), 0 < x < a, ϕ(x) < H.

The function u(x, y) = y−w(x, y), with ϕ, solving the physical problem (2)–(6) are
such that ϕ and w are sufficiently regular.
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UWAGI HISTORYCZNE O PROBLEMACH FILTRACJI.
ROZWIA̧ZANIA BAIOCCHIEGO I DUVAUTA

S t r e s z c z e n i e
Przedstawiamy problem fizyczny dla zachowań ośrodka porowatego rozdzielonego przez

dwa rezerwuary o strumieniu określonym przez prawo Darcy’ego. Modelujemy w ten sposób
problem o swobodnym charakterze brzegu.

Wskazujemy nastȩpnie na rozwia̧zania otrzymane na podstawie nierówności waria-
cyjnych znalezionych metoda̧ penalizacji. Problem filtracji może być wtedy zinterpretowany
przez zachowanie kropli oliwy, która penetruje pierwsze warstwy przypowierzchniowe.
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BINARY AND TERNARY CLIFFORD ANALYSIS
VS. NONCOMMUTATIVE GALOIS EXTENSIONS I
BASICS OF THE COMPARISON

Summary
A concept of noncommutative Galois extension is introduced and binary and ternary

extensions are chosen. The ternary Clifford algebra is introduced with its Clifford analysis
and the connection with the Galois extension is indicated. Then we can formulate the binary
and ternary Hurwitz-type conditions and obtain the Dirac operator by these conditions.
Hence the binary and ternary Dirac operators can be described in a unified manner.

In the first part of the paper we discuss binary and ternary Clifford algebras, noncom-
mutative Galois extension and Clifford algebras, and noncommutative Galois structure on
the nonion algebra.

Introduction

We can find several ternary phenomena around us. The most important phenom-
ena are: 1) configurations of neighbouring atoms in a binary alloy with vacancies
and in a ternary alloy [2, 6] (Fig. 1), 2) quark confinement [4, 5] (Fig. 2), 3) triplets
in harmony of music (Fig. 3), 4) protein production mechanism (Fig. 4). We have
enough mathematical methods for binary phenomena, for example, product of num-
bers and equivalence relation, but we have still not enough mathematics for ternary
phenomena.

Ternary composition algebras were studied by Shaw [11]. Their need is already
seen from Kikuchi’s investigations of cooperative phenomena [6]. Shaw took into ac-
count that just as real 8-dimensional composition algebras, of signatures (8, 0) and
(4, 4), can be constructed out of 4-dimansional complex spaces C(4, 0) and C(2, 2),
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Fig. 1: Basic configurations of pairs, triples and quadruples of neighbouring atoms in a
binary alloy according to R.Kikuchi.

Fig. 2: Elementary particles construction
by quarks. Fig. 3: Triplets in harmony of music.
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Fig. 4: Codon table.

complex 8-dimensional ternary composition algebras can be constructed out of a
K-module K4, where K is a certain commutative algebra of dimension 4 over R.

In [4], Kerner has introduced another concept of ternary algebra and gave trials
to the quark confinement by this new method. He has also introduced a concept of
ternary Clifford analysis and introduced ternary Dirac and Klein-Gordon operators.
In this paper, we introduce concepts of binary and ternary Galois extensions and
consider the Clifford analysis from that viewpoint. Also we introduce the concept of
binary and ternary Hurwitz conditions and we observe intimate relationship between
binary and ternary Clifford analysis. The present research is related with [9] and will
be continued in [8].

1. Binary and ternary Clifford algebras and their analysis

We define concepts of the binary and ternary Clifford algebras [4] and make their
Clifford analysis. We begin with the definition of Clifford algebras.

1.1. Definitions

Definition 1. 1) A pair {Ta, Tb} of matrix elements constitute a basic Clifford algebra
(of binary type), when it satisfies the following commutation relations:{

TaTb + TbTa = −2ηabIn,

η11 = η22 = 1, η12 = i, η21 = −i.
2) In an analogous manner, for the case of a triple of matrix elements {Ta, Tb, Tc},

we define a basic ternary Clifford algebra, when it satisfies the following conditions:
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⎧⎪⎪⎨
⎪⎪⎩

TaTbTc + TbTcTa + TcTaTb = 3ηabcIn,

ηabc = ηbca = ηcab,

η111 = η222 = η333 = 1, η123 = η231 = η321 = j2,
η321 = η213 = η132 = j,

where In is the unit n× n-matrix and j is a root of z3 − 1 = 0.
3) For a general k-plet {T1, T2, . . . , Tk} of matrix elements of with k bigger than

2 (or 3), we define general Clifford algebras choosing 2 (resp. 3) elements from the
k-plet respectively. The elements are called generators of the Clifford algebra.

Next we will make the Clifford analysis of Clifford algebras. We begin with the
introduction of a concept of linear element of {T1, T2, . . . , Tn}:
Definition 2. The following linear space of k-ple set {Ti1 , Ti2 , . . . , Tik

} is called linear
element of the system of the matrix elements {T1, T2, . . . , Tn}:
{θi1 , θI2 , . . . , θik

}T = {θi1Ti1 + θi2Ti2 + . . .+ θik
Tik
|θij ∈ K (j = 1, 2, . . . , k)}.

1.2. Quantization of a linear element

We introduce a concept of quantization: For a linear element {θ1, θ2, . . . , θM}, the
following replacement for a polynomial F (θ1, θ2, . . . , θM ) is called quantization:

F (θ1, θ2, . . . , θM )→ F (∂/∂θ1, ∂/∂θ2. . . . , ∂/∂θM ).

1.3. The binary Clifford analysis

We begin with a basic binary Clifford algebra with generators {T1, T2}. Making the
quantization of a linear element θ1T1 + θ2T2, we introduce the following operators
on the 2-dimensional Euclidean space:

D = T1
∂

∂θ1
+ T2

∂

∂θ2
, D∗ = T ∗

1

∂

∂θ1
+ T ∗

2

∂

∂θ2
.

The operators are called Dirac operator and its conjugate operator. We notice that
they satisfy the following condition:

Δ = DD = D∗D∗, Δ :=
(
∂2

∂θ21
+

∂2

∂θ22

)
⊗ 1n.

The operator Δ is called binary Laplace operator. Choosing a system of genera-
tors {T1, T2, . . . , Tn} (n = 2m) of a general Clifford algebra, we can introduce the
following operators on the n-dimensional Euclidean space:

D = T1
∂

∂θ1
+ T2

∂

∂θ2
+ . . .+ Tn

∂

∂θn
,

D∗ = T ∗
1

∂

∂θ1
+ T ∗

2

∂

∂θ2
+ . . .+ T ∗

n

∂

∂θn
.



Binary and ternary Clifford analysis vs. noncommutative Galois extensions I 37

The operators are called Dirac operator and its conjugate operator when they satisfy
the following condition:

Δ = DD = D∗D∗ Δ =
(
∂2

∂θ21
+

∂2

∂θ22
+ . . .+

∂2

∂θ2m

)
⊗ 1n.

The operator Δ is called binary Laplace operator.

1.4. The Clifford analysis of the ternary Clifford algebra

Next we proceed to the construction of Clifford analysis in the case of k = 3. We
take a set of three elements and consider the ternary linear element:

{θ1, θ2, θ3}Q = {θ1Q1 + θ2Q2 + θ3Q3|θ1, θ2, θ3 ∈ K}, Q = {Q1, Q2, Q3}.
The following two elements associated to {θ1, θ2, θ3}Q are called conjugate elements:

{θ1, jθ2, j2θ3}Q, {θ1, j2, jθ3}Q
which gives rise of an automorphism between linear elements (j is defined as in
Sect. 1.1).

Next we proceed to the derivation of field operators. Choosing generators {T1, T2,

T3} of a basic ternary Clifford algebra, we introduce the following three operators
on the 3-dimensional Euclidean space:

D= T1
∂

∂θ1
+ T2

∂

∂θ2
+ T3

∂

∂θ3
,

D∗ = T1
∂

∂θ1
+ j2T2

∂

∂θ2
+ jT3

∂

∂θ3
,

D∗∗ = T1
∂

∂θ1
+ jT2

∂

∂θ2
+ j2T3

∂

∂θ3
.

The operators are called Dirac operator and its conjugate operators when they satisfy
the following condition:

Δ = D3 = (D∗)3 = (D∗∗)3,

Δ =
(
∂3

∂θ31
+

∂3

∂θ32
+

∂3

∂θ33
− 3

∂3

∂θ1∂θ2∂θ3

)
⊗ 13.

The operator Δ is called the ternary Klein-Gordon operator.
Choosing a system of generators {T (α)

1 , T
(α)
2 , T

(α)
3 : α = 1, 2, . . . ,M}, we make

their linear elements. Then we obtain the total set of ternary Dirac operators as
follows:

D(α) = T
(α)
1

∂

∂θ1
+ T

(α)
2

∂

∂θ2
+ T

(α)
3

∂

∂θ3
,

D(α)∗ = T
(α)
1

∂

∂θ1
+ j2T (α)

2

∂

∂θ2
+ jT (α)

3

∂

∂θ3
,

D(α)∗∗ = T
(α)
1

∂

∂θ1
+ jT (α)

2

∂

∂θ2
+ j2T (α)

3

∂

∂θ3
.
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Δ(α) = (D(α))3 = (D(α)∗)3 = (D(α)∗∗)3,

Δ(α) =
(
∂3

∂θ31
+

∂3

∂θ32
+

∂3

∂θ33
− 3

∂3

∂θ1∂θ2∂θ3

)(α)

⊗ 1n.

The typical examples of ternary Clifford algebras with generators bigger than 3 can
be obtained for the nonion algebra (see Sect. 3).

2. Non commutative Galois extension and Clifford algebras

In this section we introduce concepts of noncommutative Galois extension of binary
type and ternary type, and discuss the relationship between Galois extension of
binary and ternary type, and their Clifford algebras.

2.1. Noncommutative binary Galois extension

We can introduce a binary noncommutative Galois extension. Let A be a matrix
algebra and A′ be its subalgebra.

Definition 3. We take an element τ ∈ A with the condition τk = ±1. Then the
subalgebra k

√±1n[A′] of of the following form is called a noncommutative Galois
extension of k-nary type [7, 10]:

k
√±1n[A′] =

{
k−1∑
ρ=0

θυτ
ρ|θρ ∈ A′ (ρ = 0, 1, . . . , k − 1)

}
.

The extension is called proper when τρ /∈ A′ (ρ = 1, 2, . . . , k − 1).
We notice that we can obtain binary and ternary Clifford algebras from the Galois

extensions 2
√−1[A′], 3

√
1[A′[], respectively.

2.2. Examples

We give two examples: The first one is the complex number
√−1[R] and the second

one is the cubic root number 3
√

1[R]:

√−1[R] = {θ11 + θ2
√−1|θ1, θ2 ∈ R} =

{(
θ1 θ2
−θ2 θ1

) ∣∣∣∣θ1, θ2 ∈ R
}

R[
√

1] = {θ11 + θ2j + θ3j
2|θ1, θ2, θ3 ∈ R} =

⎧⎨
⎩
⎛
⎝ θ1 θ2 θ3

θ3 θ1 θ2
θ2 θ3 θ1

⎞
⎠
∣∣∣∣θ1, θ2 ∈ R

⎫⎬
⎭ .

2.3. Clifford algebras generated by binary Galois extensions

From these extensions we can introduce the binary Clifford algebras. We state the
following well known theorem:
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Theorem 1. We can obtain any binary negative definite Clifford algebra from the
Galois extensions of binary type. Namely there exists a sequence of noncommutative
Galois extensions which generate the Clifford algebra:

A(l) = 2
√−1[A(l−1)] (l = 1, 2, 3, . . . ,m).

Proof. The proof can be given by a well known construction of Clifford algebras:

2
√−1[A(l)] =

{(
θ1 θ2
−θ2 θ1

) ∣∣∣∣θ1, θ∗2 ∈ A(l−1)

}
.

In the next section we consider the structure of Galois extensions in the nonion
algebra and make its Clifford analysis.

3. Noncommutative Galois structure on the nonion algebra

We introduce a concept of the nonion algebraN state some basic facts on the algebra,
and consider the Galois extension structures on it.

3.1. Definition and notation

Definition 4. 1) The matrix algebra which is generated by the following 3 matrices
is called nonion algebra N :

Q1 =

⎛
⎝ 0 j 0

0 0 j2

1 0 0

⎞
⎠ , Q2 =

⎛
⎝ 0 j2 0

0 0 j
1 0 0

⎞
⎠ , Q3 =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ .

with j as in ( ).
2) The matrix algebra which is generated by the following 3 matrices over R is

called basic algebra B:

T4 =

⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠ , T5 =

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ , T6 =

⎛
⎝ 1 0 0

0 0 1
0 1 0

⎞
⎠ .

3) The algebra generated by {T2, T3} is denoted by B′:

T2 =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ , T3 =

⎛
⎝ 0 0 1

1 0 0
0 1 0

⎞
⎠ .

3.2. Bases of N,B, and B′

Then we can prove the following the proposition:

Proposition 1. 1) The following 9 elements constitute linear basis of the nonion
algebra:
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Q1 =

⎛
⎝ 0 j 0

0 0 j2

1 0 0

⎞
⎠ , Q2 =

⎛
⎝ 0 j2 0

0 0 j
1 0 0

⎞
⎠ , Q3 =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ ,

Q1 =

⎛
⎝ 0 0 1

j2 0 0
0 j 0

⎞
⎠ , Q2 =

⎛
⎝ 0 0 1

j 0 0
0 j2 0

⎞
⎠ , Q3 =

⎛
⎝ 0 0 1

1 0 0
0 1 0

⎞
⎠ ,

R1 =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ , R2 =

⎛
⎝ 1 0 0

0 j 0
0 0 j2

⎞
⎠ , R3 =

⎛
⎝ 1 0 0

0 j2 0
0 0 j

⎞
⎠ .

2) The following 6 elements are linear basis of B:

T1 =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ , T2 =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ , T3 =

⎛
⎝ 0 0 1

1 0 0
0 1 0

⎞
⎠ ,

T4 =

⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠ , T5 =

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ , T6 =

⎛
⎝ 1 0 0

0 0 1
0 1 0

⎞
⎠ .

3) The following 3 elements are linear basis of B′:

T1 =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ , T2 =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ , T3 =

⎛
⎝ 0 0 1

1 0 0
0 1 0

⎞
⎠ .

4) B and B′ are subalgebras of N .

Proof. [7].

3.3. The ternary Galois extension structure of the nonion algebra

We can give the following Galois extension structure of the nonion algebra. Namely
we can prove

Theorem 2. 1) The nonion algebra N is the ternary Galois extension of the space
algebra B′: N = 3

√
13[B′].

2) The binary Galois extension

Ñ = 2
√

13[N ]

can be expressed as Ñ = 3
√

13[B].

Proof. Ad 1). We notice that B′ is the commutative Galois extension of real numbers

R : B′ = 3
√

1[R].



Binary and ternary Clifford analysis vs. noncommutative Galois extensions I 41

Choosing τ = R2, we make the Galois extension 2
√

13[B′]. Then we can see that it
is identical with N .

Ad 2). At first we notice that B is the noncommutative binary Galois extension
of B′: B = 3

√
13[B′] with respect to τ = T4. Choosing τ = R2, we make the Galois

extension 2
√

13[B]. Then we can see that it is this is identical with Ñ .
By this theorem we can introduce the Dirac operators and the Klein-Gordon

operator. Namely we can prove

Theorem 3. Let N be the nonion algebra and let

{θ1, θ2, θ3}X(X = Q,Q,R)

be a linear element. Then by use of the quantization θ1 → ∂/∂θi (i = 1, 2, 3), we
have the Dirac operator and its conjugate Dirac operators:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D = {∂/∂θ1, ∂/∂θ2, ∂/∂θ3}X ,

D∗ = {∂/∂θ1, j∂/∂θ2, j2∂/∂θ3}X (X = Q,Q,R),

D∗∗ = {∂/∂θ1, j2∂/∂θ2, j∂/∂θ3}X .
The quantization gives the Klein-Gordon operator:

ρ(∂/∂θ)⊗ I3 = det{∂/∂θ1, ∂/∂θ2, ∂/∂θ3}X ⊗ I3
=
(
∂3/∂θ31 + ∂3/∂θ32 + ∂3/∂θ33 − 3∂3/∂θ1∂θ2∂θ3

)⊗ I3
=D3(= D∗3 = D∗∗3).
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BINARNA I TERNARNA ANALIZA CLIFFORDA
A NIEPRZEMIENNE ROZSZERZENIA GALOIS I
PODSTAWY PORÓWNANIA

S t r e s z c z e n i e
Wprowadzono pomys�l nieprzemiennego rozszerzenia Galois przy wyborze rozszerzeń

binarnych i ternarnych. Wprowadzono ternarna̧ algebrȩ Clifforda oraz naszkicowano odpo-
wiednia̧ analizȩ Clifforda i zwia̧zek z rozszerzeniem Galois. W konsekwencji potrafimy
sformu�lować binarne i ternarne warunki typu Hurwitza i uzyskać z tych warunków ope-
rator Diraca. Tak wiȩc operatory Diraca, binarny i ternarny, dadza̧ siȩ jednolicie scharak-
teryzować.

W pierwszej czȩści pracy omawiamy binarne i ternarne algebry Clifforda, nieprzemien-
ne rozszerzenia Galois w kontekście algebr Clifforda i nieprzemienne struktury Galois na
algebrze nonionowej.
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Summary
We report about the recent introduction of the notion of CR quaternionic manifolds

in a general, non metrical, context and some first general results on their twistor theory
( [M-O-P], [M-P1], [M-P2].
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Introduction

Recently an increasing interest on quaternionic like structures has led to some devel-
opments on this subject concerning related notions of CR structures, see [Al-K], [Be-
Fa], [Bi]. Here we report on further new developments dealing, in a non metrical con-
text, with the introduction of a general notion of CR quaternionic structure and a
related twistor theory for CR quaternionic manifolds, together with some first basic
results and applications to submanifolds of quaternionic manifolds (research worked
out in collaboration with Radu Pantilie and Liviu Ornea ( [M-O-P], [M-P1] [M-P2]).

It is well known that the simplest situation to consider for quaternionic structures
occurs in real dimension 4, with the identification R

4 ≡ H, where H is the skew-field
of quaternions. Correspondingly, the basic case for CR quaternionic structures takes
place in real dimension 3, with the identification R3 ≡ ImH.

The idea of the definition of CR quaternionic structures bases on the fact that a
linear quaternionic structure on a real vector space E has an associated 2-sphere Z of
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admissible linear complex structures on E (the left multiplications by unit imaginary
quaternions) and for each of them there are corresponding (partially complex) CR
structures.

We show that in the lowest dimension CR quaternionic geometry is a natu-
ral framework to encode a Lebrun construction of the twistor manifold of a 3-
dimensional conformal manifold ( [L]) and also we indicate how to extend it to
the general quaternionic case ( [M-O-P]).

It is interesting to note that it is defined also a dual notion of Co-CR quaternionic
manifold, [M-P2]. The simplest example of Co-CR quaternionic manifold is provided
by a 3-dimensional Einstein-Weyl space, endowed with a twistorial structure defined
by N. Hitchin, [H].

1. CR and Co-CR structures

1.1. CR and Co-CR structures in a vector space

We recall briefly the following equivalent definitions.
A complex structure on a real vector space V 2n is:

1) an R-isomorphism ϕ : V → Cn

2) J ∈ EndV, J2 = −Id (Jv = ϕ−1(iϕv))

3) a subspace C ⊂ V C = C⊗ V, V C = C ⊕ C ∼=
{
C ∩ C̄ = 0
C + C̄ = V C(

C = (V C)0,1 = Ker(J + i)
)

Let V, V ′ be complex vector spaces and ϕ,ϕ′, J, J ′ and C,C′ be respectively the
corresponding maps, endomorphisms and subspaces following the given definitions.

An (R- linear) map t : V → V ′ is a complex (or holomorphic) map if, equiva-
lently,

ϕ′ ◦ t ◦ ϕ−1 ∈ HomC(Cn) ⇔ t ◦ J = J ′ ◦ t ⇔ t(C) ⊂ C′

(if t(C) ⊂ C′ and v ∈ C, i. e. (J + i)v = 0,=⇒ (J ′ + i)tv = 0) .

There are two ways to weaken the definition of a complex structure, giving rise
to the following corresponding definitions.

A CR (partially complex) structure C on a k-dimensional real vector
space U is:

I) a subspace C ⊂ UC, C ∩ C̄ = 0

II) an injective R-linear map ι : U → (E, J) in a complex vector space (E, J),
such that

Imι+ J(Imι) = E

[then C = ι−1
(
Ker(J + i)

)
, E ∼= UC/C].
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Let (U,C), (U ′, C′) be CR vector spaces. Then the R-linear map t : U → U ′ is a
CR map if t(C) ⊂ C′.

One has also the following dual notion.
A Co-CR (complex) structure C on a real vector space U is:

I) A subspace C ⊂ UC, C + C̄ = UC

II) A surjective map ρ : (E, J)→ U such that Kerρ ∩ J(Kerρ) = 0
[then C = ρ

(
Ker(J + i)

)
, E ∼= C̄].

(U,C) is a CR vector space if and only if (U∗, C0 = Ann(C)) is a Co-CR vector
space.

Let (U,C), (U ′, C′) be Co-CR vector spaces. Then the R-linear map t : U → U ′

is a Co-CR map if t(C) ⊂ C′.

1.2. CR and Co-CR structures on manifolds

Let’s recall also that passing from the linear situation to the case of manifolds one
has the following notions.

An almost CR (partially complex) structure (respectively, almost Co-CR
structure) on a manifold M is a differentiable field C = {Cx}x∈M of subspaces of
TCM , i.e. a complex distribution of TCM , such that (TxM,Cx) is a CR structure
(respectively, Co-CR structure) for any x ∈M .

An almost CR (partially complex) structure (respectively, almost Co-CR (com-
plex) structure) C on a manifold M is an integrable almost CR (respectively,
Co-CR) structure if the distribution C is involutive, i.e.

[C,C] ⊂ C
An integrable almost CR (respectively, Co-CR) structure is called a CR (respec-

tively, Co-CR) structure.
A typical example of almost CR manifold is given by an embedded CR mani-

fold consisting in a generic submanifoldMm+n, n < m, of an m-dimensional complex
manifold N .

Of course, almost complex and complex manifolds make part of the class of almost
CR and CR (respectively Co-CR) manifolds.

2. CR and Co-CR quaternionic structures

Quaternionic structures are geometric structures where families of complex struc-
tures are naturally defined.

2.1. Quaternionic linear structures

Quaternionic linear structures as a quaternionic vector spaces together with their
family of compatible complex structures (left multiplications by imaginary unitary
quaternions).
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n = 1

Let H be the algebra of quaternions. There exists a (normal) basis (i, j, k) verifying
the well known multiplication table

i2 = j2 = k2 = −1,
ij = −ji = k, jk = −kj = i, ki = −ik = j

such that the quaternions are written as

q = q0 + q1i+ q2j + q3k ∈ H, qi ∈ R (i = 0, 1, 2, 3).

Hence one has an identification of real vector spaces

H ≡ R
4.

It defines a quaternionic structure Q on R4 where Q ∼= ImH is the subalgebra
of (left) multiplications by imaginary quaternions, Q ⊂ End(R4).

A left (respectively, right) multiplication by an imaginary unitary quaternion is
a complex structure in R4: for example

I = i·, J = j·, K = k·,
(I ′ = ·i, J ′ = ·j, K′ = ·k).

The multiplications on the left (respectively, on the right) by imaginary unitary
quaternions

q = q1i+ q2j + q3k , (q1)2 + (q2)2 + (q3)2 = 1,

or, equivalently (to prove this statement let write q = q0 + pu where

p =
√

(q1)2 + (q2)2 + (q3)2 ∈ R

and

u =
q1i+ q2 + q3k√

(q1)2 + (q2)2 + (q3)2
;

then since q2 = (q0)2−p2 +2q0pu, easily it follows that q2 = −1⇔ q = ±u), quater-
nions q such that q2 = −1, form a sphere S2 of positive (respectively, negative)
compatible complex structures.

Let remark that the sphere S2 of (left) complex structures does not depend on
the normal basis (i, j, k). It can be seen as follows.

Let recall the quaternionic form of rotations groups in 3- and 4-dimensional
euclidean spaces.

With respect to the identification H ≡ R4 the orientation preserving isometries
of R4 coincide with transformations of the form T = Ta,q,

Ta,q : ξ′ = qξa ξ, ξ′ ∈ H ≡ R
4

where a, q ∈ Sp(1) ≡ S3 are unitary quaternions. Hence one has the isomorphism

SO(4) ∼= Sp(1) · Sp(1) ≡ Sp(1)× Sp(1)
Z2

.
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If one drops the condition for quaternions q, a to be unitary one gets the (orientation
preserving) conformal transformations of R4,

CO+(4) ∼= Sp(1) ·GL1(H) .

With respect to the identification

ImH ≡ R
3

the orientation preserving isometries of R3 are of the form T = Tq,

Tq : ξ′ = qξq̄

where q ∈ Sp(1), hence

SO(3) ∼= Sp(1)
Z2

(note that Sp(1)
Z2
∼= RP 3).

Moreover, by dropping the condition for q to be unitary one gets the (orientation
preserving) conformal transformations of R

3 and

CO+(3) ∼= GL1(H)
Z2

.

Note that a basic conformal invariant in dimension 3 is the isotropic cone

(z1)2 + (z2)2 + (z3)2 = 0

in the complexified C3 of the euclidean 3-dimensional space R3 and the isotropic
lines form a Riemann sphere CP 1.

The groups SO(3), SO(4) (resp. CO+(3), CO+(4)) are the (generic) holonomy
groups of 3-, 4-dimensional oriented Riemannian (resp. conformal) manifolds.

In the following considerations one could refer to the prototype given by the
spaces and morphisms

ι : R
3 ≡ ImH→ R

4 ≡ H ≡ R⊕ ImH .

Let U be an oriented 3-dimensional real vector space endowed with a conformal
structure c = {g} represented by an euclidean scalar product g, which extends to
the complexified UC.

A non trivial CR structure C of U is 1-dimensional.
Correspondingly, a non trivial Co-CR structure C is 2-dimensional. To see this,

let’s take into account that with respect to the identification

g : U → U∗ v → g(v) = g(v, ·)
the annihilator C0 of a subspace C ⊂ U , formed by the 1-forms θ ∈ U∗ s.t. θ|C = 0,
is identified with the orthogonal C⊥.

Let (u,v,w) be a g-orthonormal positively oriented basis of U . Then

• C(u) = SpanC{v + iw} is a CR structure or, equivalently, an isotropic line

• C(u)⊥ = SpanC{u,v+ iw} is a Co-CR structure or, equivalently, a coisotropic
plane.
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The bijective correspondences

u ∈ S2 ⊂ U ←→ C(u) ⊂ UC ←→ C(u)⊥ ⊂ UC

give identifications between the unit sphere S2, the space of (1-dimensional) CR
structures, the space of (2-dimensional) Co-CR structures of (U, g).

Passing to the conformal structure c = {g} one gets the identifications of the
spaces of non trivial CR, respectively Co-CR structures, of (U, c) with the complex
projective line CP 1.

Let notice that one has also the conformal isomorphisms between (UC, {gC}) and
(U∗C, {g−1

C
}).

Let E = R ⊕ U be the 4-dimensional euclidean space endowed with the metric
gE = g0 ⊕ g, where g0 is the canonical metric of R, and corresponding conformal
structure {gE}.

E carries a natural quaternionic structure Q, which will be identified with the
conformal structure {gE}, defined as follows.

With respect to g one has an identification isomorphism σ : E → H for any
choice of an orthonormal oriented basis (u,v,w) of U , by linearly extending the
correspondence

(e ≡ 1,u,v,w) → (1, i, j,k)

where (i, j, k) is the fixed normal base of H.
A change of the orthonormal basis or a conformal change of the metric g will

correspond to the composition of σ with an inner automorphism of H. Hence the
quaternionic structure Q is well defined by the oriented conformal structure c = {g}.

Let’s remark also that through the injection ι of U in E there is a bijection
between the CR structures C(u) of U and the admissible complex structures Ju of
(E,Q) such that Span{e + iu} ⊕ C(u) = Ker(Ju + i), which gives a basic example
of a CR quaternionic structure: in fact, for any compatible complex structure J ∈ Q
the triple (ι, E, J) is a linear CR structure, that is C(J) = ι−1(EJ ) ⊂ UC where
EJ = Ker(J + i) is the eigenspace of J corresponding to −i, is a CR structure of U .

The typical situation is just ι : U ≡ ImH→ E ≡ H.
The recalled facts are basic tools for the following construction of C. Lebrun ( [L])

in the case of a 3-manifold.
If (M3, {g}) is a conformal oriented 3-manifold LeBrun constructed a CR 5-

manifold N , called the twistor CR manifold of (M3, {g}) which naturally fibers on
M with fiber CP 1,

CP 1 ↪→ N

↓
M

.

In a first definition of Lebrun N is the manifold of null directions of the cotangent
bundle CT ∗M , then he observes that N → M may be identified with the sphere
bundle SM → M with respect to a representative g of the conformal class. In our
language N is the manifold of CR structures in the tangent spaces of M . Moreover
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LeBrun introduces an almost CR structure on N and here below we will see how his
construction fits into a general one.

Let first recall some more definitions.

n ≥ 1

An interesting generalization of an oriented, conformal 4-dimensional manifold is
obtained by considering as structural group the generalized quaternionic group
G = Sp(1) ·GLn(H), formed by the automorphisms of Hn ≡ R4n of the form

T = Tq,A : ξ′ = qξA ξ, ξ′ ∈ H
n

where q ∈ Sp(1), A ∈ GLn(H).
Note that this group of transformations leaves invariant the space Q ⊂ EndR

4n

of left multiplications by imaginary quaternions: if Lλ = λ·, λ ∈ H then

T ◦ Lλ = Lλ′ ◦ T , λ′ = qλq̄

(T (λξ) = qλξA = (qλq̄)qξA = λ′Tξ ).
In particular, G leaves invariant the sphere Z = S2(Q) of left multiplications by

unitary imaginary quaternions, that is the sphere of compatible complex struc-
tures.

An almost quaternionic manifold (M,Q) is a manifold M4n together with a
Sp(1) ·GLn(H)-structure Q ⊂ EndTM on the tangent bundle, locally spanned by a
triple of field of endomorphisms (I, J,K) verifying the Hamilton multiplicative table

I2 = J2 = K2 = −Id ;
IJ = −JI = K , JK = −KJ = I , KI = −IK = J .

defined on an open set U ⊂ M . An almost quaternionic connection ∇ on TM

is a connection compatible with Q, i.e. it leaves Q invariant.
The n-dimensional quaternionic projective space HPn with the standard

atlas of quaternionic (non homogeneous) projective coordinates carries a generalized
quaternionic structure (see [Bo], [Ma]) and it is the main example of a 4n-dimensional
”quaternionic manifold”.

A quaternionic manifold is an almost quaternionic manifold which admits a
compatible torsionless connection, i.e. a quaternionic connection ∇.

Note that in the 1-dimensional case a quaternionic manifold (M4, Q) equipped
with a quaternionic connection ∇ is the same as a Weyl space, that is a conformal
manifold (M4, c) together with a Weyl connection (i.e. a torsion free conformal
connection) D ≡ ∇.

A basic link between quaternionic geometry and complex geometry is provided
by the following twistorial construction.

Let (M4n, Q) be a quaternionic manifold and ∇ a quaternionic connection. The
twistor bundle Z →M4n of (M4n, Q) is the bundle whose fiber at a point x ∈M4n

is the sphere S2
x = S2(Qx) of compatible complex structures Jx of TxM with respect

to the quaternionic structure Qx. Due to the canonical identification CP 1 ≡ S2, the
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vertical bundle V of the twistor bundle is a complex bundle. The twistor space Z
carries a natural complex structure I which extends the complex structure of
V as follows. Let TJZ be the tangent space at a point J ∈ Z; then it decomposes
as TJZ = VJ ⊕ HJ where VJ is the vertical space of the fibration and HJ is the
horizontal space with respect to the quaternionic connection ∇. The differential
dπ(J) at J restricted to HJ is an isomorphism

dπ(J)∣∣
HJ

: HJ → TxM

and it can be used to pull-back the complex structure J to a complex structure on
HJ . Then I is the ”sum” of the complex structures of VJ and HJ .

In [A-M-P] an almost complex structure for the twistor space of any almost
quaternionic manifold was defined.

In the following we will limit ourselves to the CR structures, by omitting to
mention the dual Co-CR structures.

2.2. Linear CR quaternionic structures

Let U be a (real) vector space and (E,Q) a quaternionic vector space.
Let ι : U → E be an injective linear map. (E, ι) is a linear CR quaternionic

structure on U if (ι, J) induces a linear CR structure on U , ∀J ∈ Z.

CR quaternionic linear maps

Let (U,E, ι), (U ′, E′, ι′) be CR quaternionic vector spaces and t : U → U ′, T : Z →
Z ′ be maps. Then t : (U,E, ι) → (U ′, E′, ι′) is a CR quaternionic linear map
w.r.t. T if t is linear and there exists a quaternionic map t̃ : E → E′ w.r.t. T and
ι′ ◦ t = t̃ ◦ ι′.

Proposition 1. Let (U,E, ι), (U ′, E′, ι′) be CR quaternionic vector spaces, t : U →
U ′ a non zero linear map, T : Z → Z ′ be a map. Then the following assertions are
equivalent:

(i) t is CR quaternionic, with respect to T .
(ii) T is a holomorphic diffeomorphism and, for any J ∈ Z, we have

t(UJ ) ⊂ (U ′)T (J) .

Furthermore, if assertion (i) or (ii) holds then there exists a unique linear map
t̃ : E → E′ which is quaternionic, with respect to T and such that ι′ ◦ t = t̃ ◦ ι.

2.3. CR quaternionic manifolds

Definition. Let E → M be a quaternionic vector bundle on a manifold M4m and
ι : TM → E un injective morphism of vector bundles. (E, ι) is an almost CR
quaternionic structure on M if (Ex, ιx) is a linear CR quaternionic structure on
TxM , ∀x ∈M .



Twistor theory for CR quaternionic manifolds: a report 51

Examples

Main source of examples of almost CR quaternionic manifolds is provided by the sub-
manifolds of an almost quaternionic manifold N (including N itself of course) : an
hypersurface or, more generally, an open neighbourhood of a poinf x of a submanifold
M ⊂ N such that (TxM,Ex, ιx) is a CR quaternionic vector space, where ι is the
inclusion TM → E ≡ TN|N , is an almost CR quaternionic manifold.

Let (M,E, ι) be an almost CR quaternionic manifold. An almost quaternionic
connection of (M,E, i) is a connection ∇ on E which preserves the quaternionic
structure Q. A quaternionic connection is a torsion free, i.e. d∇ι = 0, almost
quaternionic connection.

2.4. Definition of (integrable almost) CR quaternionic structure on M

Let (M,E, ι) be an almost CR quaternionic manifold. Then for any (local) section J
of Z = Z(E) the complex distribution C = ι−1(EJ) is a (local) almost CR structure
on M , called admissible (local) almost CR structure on (M,E, i).

Almost twistorial structure of an almost CR quaternionic manifold
(M,E, ι) with respect to ∇, almost quaternionic connection on E.

For any J ∈ Z, let H0,1
J ⊂ TC

J Z be the ∇-horizontal lift of ι−1(EJ), being EJ

the −i-eigenspace of J . Define

C∇J = H0,1
J ⊕ (Kerdπ)0,1

J (J ∈ Z)

(Z, π, C) is the almost twistorial structure of (M,E, i,∇). It was proved in [M-
O-P] that the integrability conditions for such a structure are

T∇(
2∧

(T JM)) ⊂ EJ , R∇(
2∧

(T JM)) ⊂ EJ .

Proposition 2. Let M be endowed with an almost CR quaternionic structure (E, i),
rankE = 4k, dim (M) = 4k−�, (0 ≤ � ≤ 2k−1). Let ∇ be a quaternionic connection
on (M,E, ι).

If 2k − � �= 2 then the almost twistorial structure of (M,E, i,∇) is integrable.

Definitions. Let (M, C) be a CR manifold.
1) (M, C) is realizable if M is an embedded submanifold, of codimension �, of a

complex manifold N such that C = TCM ∩ (T 0,1N|M ).
2) (M, C) is locally realizable if each point of M has an open neighbourhood

U such that (U, C|U ) is realizable.

As a main result of [L], LeBrun proved that if N is the twistor CR manifold of a
smooth conformal Riemannian 3-manifold (M, c ≡ {g}), then N is embeddable iff M

admits a real-analytic atlas for which c ≡ {g} is represented by a real analytic metric.
In [M-O-P] a generalization of the LeBrun result to CR quaternionic manifolds was
given. Let’s first consider the following definition.
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Definition. Let (M, C) be a CR manifold, dimM = 2k − �, rankC = k − �. Suppose,
further, that (M, C) is endowed with a conjugation τ ; that is, τ is an involutive CR
diffeomorphism from (M, C) onto (M, C). We say that (M, C, τ) is realizable if (M, C)
is realizable and τ is the restriction of a conjugation on the corresponding complex
manifold.

The following extension of the notion of realizability holds.

Definition. Let (M,E, i,∇) be a CR quaternionic manifold and let (Z, C) be its
twistor space. Then (M,E, i,∇) is realizable if M is an embedded submanifold of
a quaternionic manifold N such that E = TN|M , as quaternionic vector bundles,
and C = TCZ ∩ (T 0,1ZN )|M , where ZN is the twistor space of N .

Proposition 3. Let (M,E, i,∇) be a CR quaternionic manifold and (Z, C, τ) be its
twistor space, endowed with the conjugation given, on the fibres of Z, by the antipodal
map.

Then the following assertions are equivalent:
(i) (M,E, i,∇) is realizable.
(ii) (Z, C, τ) is realizable.

As corollaries one has the following propositions.

Proposition 4. Any real analytic CR quaternionic manifold (M,E, i,∇) is realiz-
able. Moreover the corresponding embedding into a quaternionic manifold is germ
unique.

If (M,E, i,∇) is a real analytic CR quaternionic manifold one call the corre-
sponding quaternionic manifold the heaven space of (M,E, i,∇).

Proposition 5. Let (M,E, i,∇) be a CR quaternionic manifold and let (Z, C, τ) be
its twistor space, endowed with the conjugation given, on the fibres of Z, by the an-
tipodal map. If (Z, C, τ) is realizable then (M,E, ι) admits quaternionic connections
∇′ such that the twistor space of (M,E, i,∇′) is equal to (Z, C).
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CR-KWATERNIONOWYCH: KRYTYCZNY PRZEGLA̧D

S t r e s z c z e n i e
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STUDY AND USE OF NOISE FOR THE AFM CANTILEVER
RESPONSE IN TIME AND FREQUENCY DOMAIN

Summary
Many modern nanometrological applications that make use of the Atomic Force Micro-

scope (AFM), demand quantitative force measurements ranging from 1pN to 100 nN. The
main obstacle in the production of traceable nanoforce measurements lies in the various
difficulties that arise from the cantilever’s spring constant (or stiffness) calibration, at an
accuracy that is compatible to each application. In this paper we present a simulation study
of the performance of two very common dynamic calibration techniques, the thermal noise
method and the Sader’s method. The virtual “experimental” data are created from the nu-
merical solution of the equations that describe the AFM system and the vibrating cantilever
dynamics, under the approximation of “lumped parameters”. As regards the thermal noise
method, with the Power Spectral Density of the harmonic oscillator, the parameters (f, Q, )
are determined and the stiffness k that corresponds to the lowest frequency, is calculated.
Sader’s method uses the oscillator’s dimensions and behavior in a liquid environment with
known properties (density � and viscosity �) to calculate k. An attempt is made to compare
the performance of the above methods as well as the assumptions that regard the geometry,
uniformity and dimensions of the cantilever and the liquid properties. With this study, the
role of noise in the cantilever response is stated and carefully investigated.

1. Introduction

In a typical Atomic Force Microscope (AFM) there exist static and dynamic op-
erational modes, according to the behavior of the nanotip attached to the AFM
microcantilever. As static operational mode we refer to contact mode, where the tip
is placed at a close distance from the sample. The dynamic modes of operation are
divided to three different categories according to the distance of the nanotip from
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the sample’s surface: i) near-contact mode, ii) tapping / intermittent mode and
iii) non-contact mode (Mironov 2004). The dynamic modes are used for measure-
ments that demand larger signal to noise ratio and consequently they give better
atomical resolution. Technically, dynamic modes treat measurements at a higher
frequency level where the 1/f noise level becomes weaker (Cook et al. 2006).

Measurements of the nanoforces that are developed between the nanotip and the
sample surface, suggest a value of the cantilever elastic constant k, as accurate as
possible. Initially, the metrologists were making use of the nominal value of the can-
tilever stiffness, provided by the manufacturer’s specifications of the corresponding
commercial cantilever. Unfortunately, this methodology often led to wrong results,
as the specifications range was rather broad. Soon, a lot of methodologies have been
applied in order to better calibrate the cantilever spring constant.

The dimensional methods (Neumeister and Ducker 1994) are based on the es-
timation of the geometrical properties of the microcantilever as well as the sample
properties. These methodologies provide very good results for rectangular cantilevers
but they are not so reliable for V-cantilevers. In the latter case the results can be
combined with Finite Element Analysis for better accuracy (Choi and Gethin 2009),
but the mathematical problem becomes more complicated. Amongst the static ex-
perimental methods we mention here the method of the Reference Cantilever, the
method of the Inverted Loaded Cantilever and the Pendulum Method. Detailed
studies present the most popular static methods that are used in today’s calibration
procedures (Palacio and Bhushan 2010, Kim et al 2010). As regards the dynamic
methods the most popular ones are: Cleveland method (Cleveland et al 1992), Sader
method (Sader 1998) and thermal noise method (Hutter and Bechhoefer 1993).

In this paper we study and compare Sader’s method and thermal noise method
on virtual mathematical data that we have produced by solving a nonlinear dynamic
model. These methods are chosen for inter-comparison because: 1) they both rep-
resent non-destructive techniques, 2) they can be applied to all kinds of cantilevers
independent of material or coating, 3) they demand minimum infrastructure and
4) they are easy to implement for the user of the Atomic Force Microscope as they
do not demand any special training. We also examine how does thermal noise affect
the cantilever response.

2. Mathematical methods

2.1. Cantilever’s equation

In order to create a time-series of virtual experimental data we must solve the
equation of the forced harmonic oscillator with dumping (Sarid 2007)

ẍ(t) +
ωc

Q
ẋ(t) + ω2

cx(t) =
Fth

meff
(1)

where ωc is the oscillation frequency of the cantilever, Q is the quality factor of
the oscillation, Fth is the force induced by the thermal oscillations of the cantilever
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(thermal noise) and meff is the cantilever’s effective mass. It should be noted here
that Fth is a parameter that we introduce to the AFM system and we choose it
according to the thermal noise strength that we wish to impose to the system. Some
Fth values are presented in the Results Section of this paper and their effect on the
AFM system is analyzed. By applying a Fourier Transform on the time-series x(t)
we get the Power Spectral Density (PSD). In this theoretical spectrum we will try
to fit the mathematical model of the thermal noise and calculate the free parameters
ωc and Q. The final goal is to calculate the spring constant k and compare this value
with that estimated from Sader’s method.

2.2. Thermal noise

The thermal noise method (Hutter and Bechhoefer 1993), is based on the equipar-
tition energy theorem. According to this theorem, for each general coordinate X
which stores energy according to the relation Ex ∼ X2, we have that Êx = 1

2kBT .
In our case as X we have the cantilever displacement x under the thermal force,
which stores energy 1

2k
〈
x2
〉
, where

〈
x2
〉

represents the mean value of the cantilever
displacement in the time interval that we study the system’s motion. Consequently
we have for the elastic constant k

k = kBT/
〈
x2
〉
.(2)

The thermal noise theory is based on three assumptions: (1) The dimension l

of the cantilever’s nanotip is much smaller than the dimension L of the cantilever,
(2) the cantilever is treated as a homogeneous medium, (3) the cantilever’s motion
is examined in vacuum or air. In order to formulate a mathematical model for the
calculation of the cantilever’s displacement as a function of frequency we follow a
certain procedure: Initially we consider the displacement as a time-series x(t) and
we apply a Fourier transform to equation (1) in order to reformulate the problem to
the frequency domain:

|x(ω)|2 =
|Fth(ω)|2

m2
eff((ω2

c − ω2)2 + (ωc

Q )2ω2)
.(3)

Then we calculate the Power Spectral Density PSD(x,w) and by combining the
result with equation (2) we conclude to a mathematical model that relates the re-
sponse of the system in time with the response in frequency domain

PSD(x,�) =
2kBT

πmeff

ωc/Q
(ω2

c − ω2)2 + (ωc

Q )2ω2
(4)

PSD(x, f) =
2kBT

πmeff

2πfc

16Qπ4

(f2
c − f2)2 + (fc

Q )2f2
(5)

Our final expression is simplified to the following form

PSD(x, f) = norm
Afactor

(B2
factor − f2)2 +A2

factorf
2

(6)
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with Afactor, Bfactor, norm the free parameters for the fitting of the model to the
virtual data created in section 2.1 by solving cantilever’s equation.

2.3. Sader’s method

The Sader method (Sader 1995, 1998) is based on the general theory of a cantilever
that is immersed to a viscous fluid and is excited by an external driving force. In
order to formulate a mathematical model that describes the dynamical behavior
of the cantilever we make the following assumptions: (1) The cross section of the
cantilever is uniform, (2) the length L of the cantilever is much larger than its
width b, (3) the cantilever is an isotropic elastic medium thus the phenomena of the
internal viscosity are neglected, (4) the oscillation amplitude is much smaller than
any geometrical dimension (length L, width b, thickness h).

Considering our system as a continuous medium we can observe two different
forces that act on the cantilever: the hydrodynamic force Fhydro arising from the
motion of the fluid around the cantilever (in our case the fluid is the air) and the
driving force Fdrive which excites the cantilever. For the estimation of Fhydro, Sader
introduced the hydrodynamic function �(�) which he later used as a correction fac-
tor for the estimation of the elastic constant k. We must therefore find analytical
expressions for the hydrodynamic functions of cantilevers with circular and rectan-
gular cross sections. For a cylindrical cantilever the function �(�) is well defined in
literature and is given by the following equations

Γcirc(ω) = 1 +
4iK1(−i√iRe)√
iReK0(−i√iRe)

(7)

where Re is Reynolds number, � the fluid density, � the fluid viscosity and the
functions K0,K1 represent modified Bessel functions of third kind.

As regards the rectangular cantilever, Sader suggested a correction function �(�)
(Sader 1995, 1998), such as Γrect(ω) = Ω(ω)Γcirc(ω). The function �(�) is complex
and the real as well as the imaginary part is a sum of polynomial terms in the power
of �, where �=logRe. Analytical expressions are given by Sader (Sadder 1998). Having
now estimated the hydrodynamic function Γrect(ω), we must come to an expression
for the elastic constant, which will include the corrections for the calibration, due to
the transition of the cantilever properties from vacuum to air.

More specifically the relation of the cantilever oscillation in vacuum with the
oscillation in air is given by the following equations

ωvacuum = ωair(1 +
πρairb

4ρcanth
)Real[Γ(ωair)],(8)

ρcanth =
πρairb

4
(Qair�[Γ(ωair)].−Real[Γ(ωair)]).(9)

Combining equations (9) and (10) with the general equation

k = meffρcanthbLω
2
vacuum
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we have the final equation for the calibration of the constant k

k = 0.1906ρairb
2LQairω

2
airIm[Γ(ωair)].(10)

3. Results

The cantilever that is about to be calibrated is a RTESPA-CP model with serial code
MPP-11123-10. It is made of silicon with n-type doping of antimony. It also has a
coating of 50 nm thickness. The cantilever’s dimensions are: length L = 125�m,
width b = 35�m and thickness h = 3.75�m. The Bruker company gives nomi-
nal value ranges for the oscillation frequency as well as the elastic constant of the
cantilever which are f0 = 305 − 349 KHz and k = 20 − 80 N/m respectively. The
parameters used in the simulation are presented in Table I.

Table I. All the parameters used in the numerical procedure.

Cantilever parameters Air parameters Secondary parameters

L = 125 �m η = 1.8610−5kg/ms I = bh3/12
b = 35 �m ρair = 1.18 kg/m3

k = 3EI/L3

h = 3.75 �m meff = 0.2427Lbh�
ρcant = 2330 kg/m3 f0 =

√
(k/meff)

E = 169.5·109 Pa ω0 = 2πf0
Re = ρairωb

2/4η

The steps of the algorithmic procedure that we use in order to estimate the elastic
constant k are presented in Fig. 1:

STEP 1: Create virtual data using nominal
values

STEP 2: Calculate hydrodynamic function
and Q according to Sader

STEP 3: Solve cantilever equation & create
PSD

STEP 4: Create calibration model with
thermal noise

STEP 5: Model fitting to PSD using steps
1,2

STEP 6: Produce results for f
c

and Q

STEP 7: Calibrate k using thermal noise
model

STEP 8: Use Q from step 6 to calibrate k
with Sader method

STEP 9: Compare results from steps 7,8

Fig. 1: Steps of the calibration procedure.



60 D. Georgakaki and H. M. Polatoglou

The theoretical value for k is calculated from the relation k = 3EI
L3 and for the

given parameters from Table I we have k = 40.04 N/m. The theoretical value for the
oscillation frequency is given from

f0 =
√

k

meff

and thus f0 = 330 KHz. It is observed from the above that the values of elastic
constant and oscillation frequency are between the nominal ranges provided by the
specifications. As regards the quality factor Q we can use the equation provided by
Sader and find that Q = Qair = 143.494:

Q =
(4meff/πρairb

2) +Real[Γ(ω0)]
�[Γ(ω0)]

.(11)

For the numerical solution of the cantilever equation of motion we must be very
careful about the initial conditions that we will choose because of the nonlinearity
of the problem. According to Hutter (Hutter 1993) the thermal fluctuations of the
cantilever are some Angstroms at room temperature so for that reason we expect
changes at that order of magnitude at the graphs of displacement vs time.

In the following figures we can observe various cases of time series of displacement
and power spectral densities for different levels of thermal noise at a logarithmic rate.
The noise levels are chosen such as kx(t) � Fth from Eq. 1:
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Fig. 2: Time series with
Fth = 10−8N .
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Fig. 4: Time series with
Fth = 10−7N .
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Fig. 6: Time series with
Fth = 510−7N .
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Fig. 7: Power spectrum with
Fth = 510−7N .
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Fig. 8: Time series with
Fth = 10−6N .
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Fig. 9: Power spectrum with
Fth = 10−6N .
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��������������������������������������������������������������������
���
�

�

�

�

�

�
����������������������������������������������������������������������������������������������������������������������������

250 300 350 400 450
0.0

0.1

0.2

0.3

0.4

f �KHz�

P�
f�

no
rm

Fig. 13: Fitting with Fth = 10−6N .



62 D. Georgakaki and H. M. Polatoglou

We observe that for even strong noise levels the peak that corresponds to the
natural cantilever frequency can easily be distinguished. For every noise level we
well proceed similarly and try to fit the models produced form equations 5, 6 to the
PSDs that we have created earlier. The results of these fittings are presented in the
following figures and the results for the fitting parameters are shown in Table II:

Table II. Parameters estimation with the thermal noise method
and comparison with theory.

Fth ftheor Qtheor ktheor f0 Q kthermal

10−8 330 143.494 40.04 331.229 134.511 31.9
10−7 330 143.494 40.04 331.13 136.556 31.6565
510−7 330 143.494 40.04 330.748 159.973 30.7272
10−6 330 143.494 40.04 330.435 202.989 28.209

It is worth mentioning that for strong noise levels more points appear to the
spectrum and that results to an overestimation of the quality factor Q and a si-
multaneous underestimation of the elastic constant k. Having estimated with this
nonlinear fittings presented in figures 10−13 the parameters Q and ω0 and knowing
the dimensions of the cantilever, we apply equations 8 − 10 and calculate kSader.
The results from both methods are summarized in Table III and are compared
with the theoretical ones. We observe that when we calculate the elastic constant
using the parameters directly from thermal noise method we must also be very care-
ful with the noise level as we may be led to an overestimation of k with Sader
method. The difference% between these methodologies is given from (Cook 2006) as
δ% = 100(kth − kSader)/0.5(kth + kSader). It should be noted that in the final case
of Table III, the noise level causes a difference of about 50% between kSader and kth

and therefore the calibration results are not to be trusted in that region.

Table III. Stiffness estimation with Sader method, comparison
with thermal noise and theory.

Fth kth kSader kSader ktheor δ%
(before th. noise fit) (after th. noise fit)

10−8 31.9 31.6437 29.8679 40.04 6.58
10−7 31.6565 31.6437 30.3052 40.04 4.36
510−7 30.7272 31.6437 35.4261 40.04 -14.2
10−6 28.209 31.6437 44.8733 40.04 -45.6

4. Conclusions

The main purpose of this work is the presentation and comparative study of two
very popular methods that we encounter in mechanical metrology of a calibration
of an Atomic Force Cantilever. With the thermal noise method we have produced
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a mathematical model with the aid of which we can obtain the lowest oscillation
frequency and the oscillation quality factor. Then these parameters were used for
the calculation of kth and kSader. The results were compared with each other as well
as with the results provided by literature for this specific type of cantilever. It has
been shown that if we do not choose the noise level properly we can be driven to
an underestimation or overestimation of the k constant. In a real AFM experiment
this noise level is determined from the vertical position of the cantilever tip above
the sample surface. In every other case with a proper noise level these two methods
give corresponding results.
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STUDIUM I OPIS ZASTOSOWANIA SZMERÓW W REAKCJACH
WSPORNIKÓW MIKROSKOPU SI�L ATOMOWYCH (AFM)
W OBSZARZE CZASU I CZȨSTOŚCI

S t r e s z c z e n i e
Szereg nowoczesnych zastosowań nanometrologicznych zwia̧zanych z użyciem mikro-

skopu si�l atomowych wymaga pomiarów ilościowych si�ly w zakresie od 1 pN do 100 nN.
G�lówna̧ trudnościa̧ w prowadzeniu pomiarów nanosi�l sa̧ problemy powstaja̧ce
w zwia̧zku z kalibracja̧ sta�lej wygiȩcia wspornika (tj. sztywności) z dok�ladnościa̧ zada-
walaja̧ca̧ w danym zastosowaniu. W pracy przedstawiamy symulacje dwóch powszech-
nie używanych technik kalibracji: metody termicznego szmeru i metody Sadera. Zbiór
danych “eksperymentalnych” utworzony jest z rozwia̧zań numerycznych uk�ladów równań
opisuja̧cych uk�lad mikroskopu si�l atomowych i dynamikȩ drgań wspornika w przybliżeniu
“parametrów scalonych”. W modelu termicznego szmeru z gȩstościa̧ mocy widmowej oscy-
latora harmonicznego, wyznaczone sa̧ parametry (f, Q) i obliczona sztywność k odpowiada-
ja̧ca najniższej czȩstości. Metoda Sadera uwzglȩdnia wymiary oscylatora i jego zachowanie
siȩ w otoczeniu cieczy o znanych w�lasnościach (gȩstości ρ i lepkości η) do obliczenia sztyw-
ności k. Przedstawiono próbȩ porównania wydajności powyższych metod oraz za�lożeń doty-
cza̧cych geometrii, jednorodności i wymiarów wspornika jak i w�lasności cieczy. Na podstawie
przedstawionych badań sformu�lowano i starnnie zbadano rolȩ szumu w reakcji wspornika
mikroskopu.
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NEW CONSTRUCTIONS OF MAGNETOHYDRODYNAMIC
DRIVES WITH INTERNAL POWER SOURCES

Summary
This article refers to magnetohydrodynamic drives which create electric current neces-

sary for their operation on themselves. It happens thanks to transformation of the electrodes
chemical energy and the electrolyte into electric energy. There are two models of rotational
drives of such a type described. In one of them the electrolyte rotates and, besides, in the
second one there are also electrodes rotating in a reverse direction. There are three models
of linear induction motors presented with moving electrolyte. These are engines compris-
ing: electrodes that are permanently joined with magnets, changeable sets of electrodes and
a series of bars instead of magnets. There are technical clues presented that refer to the
construction of those engines and a detailed explanation of their operation. Every engine
described in this article is an original solution of the author. At the end, there is a short
discussion about possibilities of practical application of such engines.

1. Introduction

In literature, regarding experiments with physics, there is a following experiment
described. Round glass vessel with a flat bottom and low walls, so called crystallizer,
is placed on a graphic display unit. There are two copper electrodes placed in the
vessel, which are coaxial towards each other and towards themselves. Electrolyte-
water solution of copper sulfate – was poured into the vessel filling the space between
the electrodes. There was also a flat ring winding that surrounded the vessel placed
on the graphical display unit. The electrodes and coil tips were attached to the
sources of direct current. In the presented scheme, the electric current flows through
the electrolyte in a radial direction, and this electrolyte is in magnetic field created
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by a coil. Electric displacement of this field is vertical, i.e. perpendicular towards
the direction of the current flow. In the presented situation, electrodynamics force,
directed horizontally and contacting the electrodes, influences the electrolyte. This
force gives a moment regarding the vessel’s axis, which triggers a rotary movement
of the electrolyte. If we increase the current intensity, flowing through the coil or the
electrolyte, there will be an increase in the rotary movement speed [1, 2].

The described system is a demo model of magnetohydrodynamic drive. (Mag-
netohydrodynamics is a branch of physics researching influence of magnetic fields
on liquids or gases placed inside them, which conduct electric current). It is a rota-
tional engine because the liquid rotates. This engine is supplied from the external
power sources. In the well-known American physics magazine, there are descriptions
of magnetohydrodynamic drives prepared by the author of this article. Those drives
do not demand electric power supply from the external sources [3]. Electrodes cre-
ated from two different metals, with different positions within electrochemical series,
immersed in the electrolyte with a chemical composition adequately adjusted to the
electrodes’ material, were used in case of those engines. As a result there is a electro-
motor force created between those electrodes, which causes a flow of electric current
necessary for operation of these engines. Power source is in this case placed inside
the drive, which is why they are called drives with the external power source. Aim
of this presentation is to present a construction and operation of several models of
magnetohydrodynamic drives, using the mentioned idea.

2. Rotational drive with immovable electrodes

A set of coaxial, cylindrical electrodes was put into a glass, cylindrical, opened from
the top vessel 1, with a diameter of 10 cm an a height of 5 cm, Fig. 1. This set
comprises an external electrode 2, created from a 1 mm copper sheet and an internal
galvanized electrode 3. The galvanized electrode should be prepared from a 2–3 mm
galvanized sheet or from a galvanized bar. Diameter of the copper electrode is slightly
smaller from the vessel’s diameter, and the galvanized electrode’s diameter should
be 4 times smaller than that of the copper electrode. Both electrodes are connected
with a ring cut out from a 2 mm copper or brazen sheet which provides their good
electric contact.

The upper part of the ring, between the electrodes, and the external surface of the
copper electrode, as well as the lower and side surface of the ring are covered with an
electro insulating coating, resistant to caustics, e.g. covered with a previously melted
paraffin. This coating prevents from stray currents flowing. The space between the
electrodes is filled with water solution 5 of sulfurous acid of 10 % concentration or
with saturated solution of domestic salt in water. The described vessel was placed on
the upper part of a cylindrical neodymium magnet 6 with a diameter similar to that
of the vessel’s diameter and height of 6 cm. Induction value of the field generated by
this magnet in half of the electrolyte column in the vessel should be around 0.15 T or
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more. A system of several, radially located thick bars, made from non-ferromagnetic
metal, favorably from copper, can be used instead the ring to join the electrodes.
Such a drive is presented in Photo 1.

Fig. 1: Structure of a rotary drive with
immovable electrodes; 1 – glass vessel,

2 – external electrode, 3 – internal
electrode, 4 – a ring comprising the

electrodes, 5 – electrolyte, 6 – neodymium
magnet.

Photo 1: Plan of the rotary drive,
where electrodes are joined

with magnets.

The system of electrodes together with acid or salt solution creates a galvanic
cell. In case of sulfurous acid solution it is a Volta cell giving an electromotor force of
about 1 V. This cell was connected from the bottom with a metal ring, and under the
influence of electromotor power, current flows through that ring, and through the
electrolyte in a radial direction, Fig. 2. Copper electrode has a higher potential than
the galvanized one which is why the conventional direction of current flow through
the electrolyte is from zinc to copper, i.e. reversed than in the case of the ring com-
prising the electrodes, which creates an external circuit of the cell. The electrolyte is
in the electromagnetic field, whose electric displacement is approximately vertical.
As a result, an electrodynamics power influences the electrolyte. It contacts with
electrodes’ surface causing a rotary movement of the electrolyte.

If the density of the current intensity in the electrolyte is j, and value of the
component of the vertical electric displacement of the magnetic field equals B, den-
sity of the electrodynamics force f (i.e. a force influencing the element of electrolyte
volume) is expressed by the following formula

f = jB.(1)

Reversing the magnet, causing its poles to swap, results in reversing the rota-
tion direction of the electrolyte. With the given parameters of the system, sped of
the rotation is so big that the surface of the electrolyte becomes a paraboloid and
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Fig. 2: Explanation of the cause of a rotary movement of the electrolyte in the rotary
drive; j – current density in electrolyte, B – vertical component of magnetic displacement,

f – density of electrodynamics force, j1 – current density In a ring comprising the
electrodes.

movement is greatly visible. Rotation speed becomes higher when water solution of
sulfate acid is used as electrolyte. With a smaller value of field induction, e.g. when
we use a ferrite magnet, rotation speed will be lower, and in order to enhance its
visibility, the electrolyte surface can be sprinkled with cork filling or ground pepper.

It is also possible to use an external galvanized electrode and an internal copper
electrode which causes reversal of current direction within electrolyte. However, it
need to be remembered that the electrode should be made of thicker sheet, as it
is melted during the drive operation. Good results were also obtained with other
materials of electrodes and electrolyte. Among others. The internal electrode was
made from a carbon bar, coming from a battery or from an electrode coming from
an arc lamp, and the external electrode from a galvanized sheet and water solution of
ammonium chloride (salt ammoniac) was used as electrolyte. In the electrodes system
copper-zinc, 5 % water solution of acetic acid, i.e. vinegar, was used as electrolyte.

It is also possible to place the magnet in a different position. Instead of a thick,
cylindrical magnet laying under the vessel, relatively thin cylindrical magnet was
used. It was put into the internal electrode, which was shaped cylindrically with an
adequate diameter. Engine of such a construction is presented in Photo 2. Another
construction of a drive where electrolyte rotates in reverse directions in different
spaces between the electrodes, is shown in the Photo 3. In this drive, a flat, glass
vessel was used, so called Petri dish, filled with electrolyte. Two low, coaxial elec-
trodes were immersed in the electrolyte – a zinc and a copper one, connected along
the diameter with an insulated copper belt. The vessel was placed on a ring mag-
net, with diameters allowing to divide the electrolyte into three sections. First is
the middle area above the magnet. There are also two side sections – one between
the external surface of the magnet and the external electrode, and the second one
between the internal surface of the magnet and the internal electrode.
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Photo 2: Look of the
magnetohydrodynamic drive with a

magnet placed in an external electrode.

Photo 3: General view of the
magnetohydrodynamic drive with

electrolyte rotating in opposite directions.

Electrodynamics force, driving the electrolyte, is created in this engine, similarly
to the previous case. However, as a result of the fact that a sense of magnetic induc-
tion in side areas is reversed towards the middle area, the electrolyte in the middle
area rotates in the reversed direction towards the remaining sections. Operation of
this engine allows to make a conclusion about a space distribution of magnetic field’s
lines, around the ring magnet.

3. A drive with rotating electrodes

On the bottom of a glass vessel 1, similar to that of the previous experiment, but
with the height of 10 cm, there is a stand 2, made from non-ferromagnetic and electro
insulating material, Fig. 3. In the middle of the stand there is a vertical axle 3, tipped
with a blade. A conical bearing mounting 4 in a shape of a flat cylinder is placed
on the blade. This bearing was placed coaxially in a hub 5, with a shape of a disk.
Axle, bearing and the hub are made from non-ferromagnetic materials, where the
hub is also an electric insulator. In the created model, the axle and the bearing are
made from brass, and the hub is made from textolite. The axle was 9 cm long, and
the hub’s diameter was 1.8 cm.

Two pairs of electrodes 6, 7 are fixed to the hub on the opposite sides, in the
shape of belts that are 1.5 cm wide, bent at 90 degrees, made from zinc and copper.
The galvanized electrodes 6 are placed on the axle’s side, and copper electrodes 7
are placed on the external side. Vertical sections of the electrodes are 8 cm long, and
horizontal ones’ length is 4 cm. The exact length of the horizontal sections needs to
be adjusted to the internal diameter of the vessel. Thickness of the copper electrodes
is 1 mm, and thickness of the copper ones should be higher. The vertical sections of
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the electrodes were cleaned to metallic gloss, pressed together, fixed to the hub with
small screws made from non-ferromagnetic material.

Both pairs of electrodes consisting of the zinc and copper belt are insulated
from each other by the hub’s material. Surfaces of the electrodes, turned externally,
are covered with electro insulating coating, resistant to caustics, e.g. covered with
earlier melted paraffin. Similarly with the previous experiment, the vessel is filled
with electrolyte 8, favorably 10 % water solution of sulfurous acid. The described
vessel was placed on a flat surface of the cylindrical neodymium magnet 9, creating,
in the half of the electrolyte column height, field with induction of about 0.15 T or
higher.

Electrode pairs made from different metals immersed in electrolyte are galvanic
cells. Because of the electromotor forces created by them, the current flows in radial
direction, Fig. 4. In the space between the electrodes, this flow takes place from
zinc to copper, and in vertical electrodes sections connected with each other this
flow is reversed. Both electrolyte between the electrodes and vertical sections of
the electrodes are placed within a magnetic field, whose electric displacement is
approximately turned vertically, i.e. perpendicularly towards the direction of the
current flow. As a result, the electrolyte and the vertical sections of the electrodes are
influenced by electrodynamics forces, turned in the opposite directions and creating
pairs of forces. Moment of these forces influencing the electrodes causes their rotation
in one direction, and forces influencing the electrolyte turn it in the opposite side.

Similarly to the previously described drive, swapping the magnet poles changes
the directions of electrodes and electrolyte movements into the opposite ones. It is
also possible to place zinc electrodes on the external side, and the copper ones on

Fig. 3: Structure of a drive with rotating
electrodes; 1 – glass vessel, 2 – stand,

3 – axle, 4 – bearing, 5 – hub, 6 – internal
electrode, 7 – external electrode,

8 – electrolyte, 9 – neodymium magnet.

Fig. 4: Explanation of a principle of the drive
with rotating electrodes operation;

I – current density, B – vertical component
of induction of a magnetic field;

F– electrodynamics force.
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the internal side. The same remarks as previously are connected with using different
materials for electrodes, and different electrolytes. Photo 4 shows an example of the
constructed magnetohydrodynamic drive with rotating electrodes.

In this case the electrodes are joined in the upper part. Photo 5 presents a rotor
of this engine. It is also possible to construct a similar drive whose electrodes are
joined in its lower part. Photo 6 presents a general structure of this drive, and Photo 7
shows a structure of a rotor used in this engine.

Photo 4: View from the
magnetohydrodynamic drive with rotating

electrodes, joined in the upper part.

Photo 5: Rotor of the
magnetohydrodynamic drive with

electrodes joined in the upper part.

Photo 6: View from the
magnetohydrodynamic drive with rotating

electrodes, joined in the lower part.

Photo 7: Rotor of the
magnetohydrodynamic drive with
electrodes joined in the lower part.
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4. Linear drive with magnets

Dimensions of the two rectangular electrodes 1 and 2 are 8 × 5 cm. They are placed
perpendicularly towards each other in vertical planes, Fig. 5. The distance between
them is 2 cm. electrode 1 is made from 2 mm zinc sheet, and electrode 2 from 1 mm
copper sheet. At bottom edges, the electrodes are soldered with armature in the
shape of a 2 mm copper belt 3 placed between them, which provides good electric
contact. At their top edges, there is an insulating spacing board 4 with the same
dimensions as those of the armature placed between them. A thin insulating sep-
arator 5 is glued to this board, slightly wider than it, thanks to which the board
covers the upper edges of the electrodes. Two cuboidal neodymium magnets 6, 7 are
glued to the armature and the board, facing each other with opposite poles. Their
magnetization direction is vertical, and value of the induction of the field created in
the half of height of the area between the electrodes is 0.15 T.

Cyanoacrylate glue was used for all glued connections of the drive elements.
Except the internal surfaces of electrodes facing each other, all other surfaces of
the drive were covered with electro insulating coating, resistant to caustics. The
described system of electrodes was put into a glass, cylindrical vessel with 20 cm in
diameter and 8 cm of height – so called crystallizer. Distances of the electrodes from
the vessel’s wall should be approximately the same. The same electrolyte as in the
case of the previously presented drives was poured to the vessel. The upper surface
of the electrolyte is placed several mm below the upper edge of the electrodes.

Similarly to the previously described drives, electromotor force is created between
the electrodes. It causes the electric current to flow through the armature and the
electrolyte placed between the electrodes, Fig. 6. Direction of the current flow in the
electrolyte is perpendicular towards the surface of the electrodes, and the current
flows from the zinc to the copper electrode. The electrolyte is placed in almost ho-
mogenous magnetic fields, generated by a system of magnets. Magnetic displacement
of this field has a vertical direction. As a result, an electrodynamics force influences
the electrolyte, directed horizontally, along the electrodes. This force cause the flow
of the electrolyte from one side of the area between the electrodes. In order to make
the electrolyte movement more visible, its surface may be sprinkled with cork filling
or ground pepper.

Together with electrodynamics force, there is a reaction force influencing the sys-
tem of electrodes and magnets. If those elements were fixed to a water craft, the
engine would serve as a drive, under the condition that the reaction force was able
to fight the resistance to motion. Regarding the fact that the magnets are glued per-
manently to the system of electrodes, the electrolyte flow will always happen from
the same side. In case of this engine there is also no possibility to exchange the zinc
plate which melts with the flow of time. The speed of the electrolyte flow can be
enhanced by putting additional magnets on the previously glued ones. It needs to
be remembered about keeping the same orientation of the added magnets’ poles. In-
creasing the electrodes’ surface and decreasing the distance between them also cause
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a faster movement of electrolyte. Linear magnetohydrodynamic drive constructed
according to the described concept, placed vertically in a vessel is presented in the
Photo 8.

Fig. 5: Structure of a linear drive with
magnets; 1 – zinc electrode, 2 – copper

electrode, 3 – armature, 4 – spacing
board, 5 – insulating separator, 6,

7 – neodymium magnets, 8 – glass vessel,
9 – electrolyte.

Fig. 6: Explanation of a principle
of operation of the linear

drive with magnets; I – current intensity,
B – magnetic field induction, F – electro

dynamic force,
F – reaction force.

Photo 8: An example of structure of a magnetohydrodynamic linear drive.

5. Linear drive with exchangeable electrodes

Removal of the limitations present in the previously described model is enabled by
the a drive with exchangeable electrodes, whose construction, from the electrolyte
flow angle is shown in the Fig. 7. Zinc 1 and copper 2 electrodes have the same
dimensions as in the case of linear drive, and the distance between them is also
the same. There are two identical sets of electrodes, turned with the electrodes
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Fig. 7: Structure of a linear drive with exchangeable electrodes; 1 – zinc electrode,
2 – copper electrode, 3 – armature, 4 – spacing board, 5 – electro insulating layer of the

electrodes, 6 – neodymium magnet, 7 – plates covering the magnets, 8 – plates joining the
magnets, 9 – electro insulating layer of the magnetic core.

of the same material in the same direction which causes an increase in this drive
power. It is also a possibility to use a bigger number of identically turned sets
of electrodes. Electrodes in each set are joined by armatures 3 soldered from the
bottom, mad from copper sheet. From the upper part, the electrodes are separated
with spacing boards 4 with electro insulating properties, glued with cyanoacrylate
glue. The external surfaces of each set are covered with an electro insulating layer
5, resistant to caustics, and made from heat-shrinkable film. External dimensions of
both sets of the electrodes makes it able to tightly put it into the magnetic core.

Sources of the magnetic field in the above mentioned magnetic core are cuboidal
neodymium magnets 6. They are magnetized along the shorter side, i.e. along their
thickness, and turned in the same direction with the same poles. For an increase
in the value of the magnetic field induction, two magnets on the upper side and
two magnets on the lower side were used, and turned with their poles in the above
mentioned way. There is also a possibility to use a higher number of magnets but
an increase of the field induction will not be proportional to the magnets number.
Length and width of the magnets equal the length and width of the electrode sets
put together.

In order to limit the dispersion of the magnetic stream outside the drive, and
additionally increase the induction of the magnetic field between the electrodes,
a magnetic coat was used. It consisted of rectangular steel plates, made from the
magnetically soft ferromagnetic with a high level of magnetic permeability. The coat
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comprises two plates 7, coating the magnets from the upper part and from the
bottom part, and two plates 8, joining the magnets from the sides. The connections
of the plates with magnets were done with a cyanoacrylate glue. External surfaces of
the magnetic core are covered with an electro insulating layer 9, resistant to caustics
in the form of earlier melted paraffin or heat-shrinkable film.

Assets of the described model comprise a possibility to exchange a set of elec-
trodes after a zinc electrode is melted, and change of the electrodes orientation
towards magnetic poles, which allows to show a reversal of electrolyte flow direction
and a sense of the drive force. It can be easily achieved through removing a set
of electrodes from the magnetic core and putting a new, or previously used one,
after rotating it for 180 degrees towards its lengthwise axis. Using a magnetic core
prevents the dispersion of the magnetic stream outside the drive and enhances the
value of the magnetic field induction in a space between the electrodes. It causes
an increase in the speed of electrolyte flow and in the engine power. Even bigger
increase in power can be achieved through using a bigger number of electrodes sets,
e.g. placed in a smaller distance towards each other, in a way that allows to put
them in the same hole of the magnetic core. Photo 9 shows a linear magnetohydro-
dynamic drive, with a one exchangeable set of electrodes in a magnetic core, placed
vertically in a vessel with electrolyte. Photo 10 present an engine of that type with
two exchangeable sets of electrodes, in a common magnetic core, placed vertically
in a vessel with electrolyte.

Photo 9: Linear magnetohydrodynamic
drive with one exchangeable sets of

electrodes.

Photo 10: Linear magnetohydrodynamic
drive with two exchangeable sets

of electrodes.

6. Linear drive without magnets

This model has a simple construction, presented in Fig. 8. In a glass vessel 1 with
a diameter of 20 cm and height of 25 cm, e.g. in a big beaker, there is a set of two
vertical, perpendicular electrodes. Their distances from a wall of the vessel should be
approximately the same. One of these electrodes 2 is made from 2 mm or more zinc
sheet, and the second electrode 3 is made from 1 mm copper sheet. The electrodes
are 12 cm long and 20 cm high, and a distance between them is 3.5 cm. nearby one
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of the vertical edges of each electrode, there is a series of holes with tips of the
copper bars 4 with 3 cm in diameter, short-circuiting the electrodes. What is more,
the connections of the electrodes with plates have been soldered. Distance between
the neighboring bars axes is 12 mm. external surfaces of the electrodes and surfaces
of the bars have been covered with an electro insulating layer, resistant to caustics.
Electrolyte 5–10 % water solution of sulfurous acid – was poured into the vessel, in
the amount allowing to completely cover the electrodes set.

In the described drive, we can observe a slow flow of the electrolyte among the
electrodes, from the bars towards the open end of the electrodes. This effect is ex-
plained in the following manner. Electrodes made from copper and zinc, and covered
by water solution of sulfurous acid become Volta cells, Fig. 9. Electromotor power
generated by them cause the current flow through the electrolyte comprised within
the space between the electrodes, from the zinc to copper plate, and further through
bars, short-circuiting the electrodes in the opposite direction. These currents flow
vertically. Electro insulating layer secures against the stray currents outside the
electrodes and bars, and enhances the intensity of the current flowing among the
electrodes. Currents flowing through the bars generate a magnetic field, which in
the area among the electrodes has an approximately vertical direction. Because of
that, electrodynamics power influences the electrolyte comprised within this area.
This power is turned vertically towards the open end of the electrodes. At the same
time, the electrodes set is influenced by the opposite reaction force, which could be
a driving force in a case of attaching the described engine to a water craft.

Fig. 8: Structure of a linear drive
without magnets; 1 – glass vessel, 2 – zinc

electrode, 3 – copper electrode,
4 – short-circuiting
bars, 5 – electrolyte.

Fig. 9: Explanation of a principle of operation
of the linear drive without magnets;
I – current intensity in electrolyte,

I1 – current intensity in a bar, B – magnetic
field induction, F – electrodynamics force,

F – reaction force.



New constructions of magnetohydrodynamic drives with internal power sources 77

Reversing the location of electrodes around the lengthwise horizontal axis does
not change the direction of electrolyte flow, which always happens towards the open
end of the electrodes. It happens because their current flow direction between the
electrodes is simultaneously reversed as well as the direction of magnetic field induc-
tion generated by the bars. This fact proves also that a decisive role in the engine
operation is played by a magnetic field generated by the bars, and not the magnetic
field of the Earth. If the magnetic field of Earth was decisive, then the sense of
their induction vector would be permanent and the direction of the electrolyte flow
would be changed into the reversed one after reversing the electrodes. The fastest
electrolyte movement in this engine was observed while using 10 % water solution of
sulfurous acid. In order to make the electrolyte movement more visible, we can put
several little crystals of potassium tetraoxomanganate nearby the electrodes’ tips.
They will slowly drop in the electrolyte and dissolve leaving a colorful, vertical trail,
which will be then moved as a result of electrolyte movement.

7. Summary

The described models of magnetohydrodynamic drives with external power sources
transform internal energy, comprised within the electrodes and the electrolyte into
electric power necessary for their operation. It happens as a result of external-
energetic electrochemical reactions. It is obvious that resources of energy that can
be processed is limited and after a while such drives stop working. If we use the
electrodes made from copper and zinc, and electrolyte in a form of water solution
of sulfurous acid, the zinc electrode will melt, which makes the engine stop working.
The concept of using the energy comprised within materials of elements of the mag-
netohydrodynamic engine for the power feed is very interesting. When those drives
are used for experiments, they allow to create an interesting problematic situation,
regarding explanation of the principles of their operation by pupils or students, which
bring obvious educational advantages.

Magnetohydrodynamic drives can be also used in the field of technology, among
others as a drive for water crafts, especially submarines. Advantages of such a drive
comprise a simple structure and reliability, and first of all a very quiet operation,
during which there are no disturbances of water or sound effects. Thanks to that,
crafts with such drives cannot be detected with known methods of echolocation. It
is significant for military units – especially submarines. There is one more advan-
tage of using magnetohydrodynamic engines with internal power supply in case of
submarines, as such drives are capable of using the energy comprised within the
salty water, filing seas and oceans. Because of the fact that volume of this water is
enormous (1017 m3), there would be enough energy for a very long time, and units
using this free energy would be totally independent from any kinds of fuels. Prob-
lems connected with realization of this concept comprise small power of draught
generated by those engines and changes in the sea ecosystem caused by the products
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of electrochemical reactions taking place during the drives’ operation. The time will
show whether this kind of drive triggers interest and the mentioned problems are
defeated.
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NOWE KONSTRUKCJE SILNIKÓW
MAGNETOHYDRODYNAMICZNYCH Z WEWNȨTRZNYM
ZASILANIEM

S t r e s z c z e n i e
Artyku�l dotyczy siników magnetohydrodynamicznych, które same wytwarzaja̧ przep�lyw

pra̧du elektrycznego, niezbȩdny do ich dzia�lania. Odbywa siȩ to dziȩki przemianie energii
chemicznej elektrod i zawartego miȩdzy nimi elektrolitu na energiȩ elektryczna̧. Opisane
zosta�ly dwa modele rotacyjnych silników tego typu. W jednym z nich wiruje elektrolit,
a w drugim poruszaja̧ siȩ również elektrody w kierunku przeciwnym do elektrolitu. Przed-
stawiono też trzy modele silników liniowych, w których porusza siȩ elektrolit. Sa̧ to silniki
maja̧ce elektrody po�la̧czone na sta�le z magnesami, wymienne zespo�ly elektrod oraz szereg
prȩtów zamiast magnesów. Podane zosta�ly wskazówki techniczne, dotycza̧ce budowy tych
silników oraz szczegó�lowe wyjaśnienie zasady ich dzia�lania. Wszystkie opisane silniki sa̧
oryginalnymi rozwia̧zaniami autora artyku�lu. Na zakończenie zamieszczono krótka̧ dyskusjȩ
możliwości praktycznego zastosowania tych silników.
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SURFACE SEGREGATION IN BINARY ALLOYS THIN FILMS
IN VALENTA-SUKIENNICKI MODEL
VS. THE EXPERIMENTAL DATA IN CuxNi1−x ALLOYS

Summary
The study of thin films has been very intense during the last decades. It is observed,

both theoretically and experimentally that in thin alloy films the concentrations of atoms
differ between inner and outer layers in broad range of temperature. This effect, called
surface segregation is chosen and discussed in the article. Other classical surface phenomena:
relaxation, adsorption and reconstruction are also mentioned.

We apply, one of many, the so called Valenta-Sukiennicki model, originally used only
for stoichiometric alloys [13], considering the pairwise interactions between atoms. Based
on our previous considerations [40,41] we decide to use the extended version of this model,
which describes binary alloys of arbitrary concentrations of atoms. In the study we shall
consider CuxNi1−x fcc alloys. We present the calculations concerning the segregation effect
in ultra thin film, containing merely between 6 and 10 layers. We also discuss the sample
size-effect influencing the segregation and compare the calculations with those obtained by
other authors [67].

1. Introduction

It is observed, both theoretically and experimentally that in thin alloy films the
concentrations of atoms differ between inner and outer layers in broad range of
temperatures. This effect, called surface segregation is considered to be one of the
classical surface phenomena. The other often considered phenomena are: relaxation
– meaning the change of interlayers’ distances between the outer layers, meaning
usually their contraction, adsorption of other atoms to the surface, and reconstruc-
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tion – meaning the change of ordering pattern in the surface layer(s) compared to
the internal ones.

It is easy, within the Valenta-Sukiennicki model to include the effect of relaxation,
but the contraction between layers distance is about a couple of percent for most
atoms [21], therefore it seems that the effect is relatively weak and it might be
neglected. The investigation of the reconstruction and adsorption effects within the
model are still an awaiting challenge.

Cu-Ni alloys are, for various reasons, under special interest of researchers. Not
only because of their wide practical applications, due to the catalytic properties,
good seawater corrosion resistance, fabricability, etc.; Cu and Ni have very similar
atom sizes, which makes them interesting from the point of view of many theoretical
models including the Valenta-Sukiennicki model.

2. Description of the Valenta-Sukiennicki model

Let ApBq denote a binary alloy containing
A an B atoms with concentrations p/(p+ q)
and q/(p + q) in the sample, respectively.
In particular, in this paper we shall con-
sider a binary AxB1−x alloy of fcc lattice
and (111) surface orientation. We divide the
system into n monoatomic layers parallel to
the surface. Each layer consists of N atoms
and the number N is big enough to assume
the surface of the layer is infinite. The lattice
of the alloy consists of two sublattices, α and
β. The relative number of α sites (β sites)
is equal to Fα (Fβ). We have Fα + Fβ = 1.
Let us assume the alloy is stoichiometric and
thus

Fig. 1: AB3 alloy with fcc lattice
and (111) orientation of the surface

x = Fα and 1− x = Fβ .(1)

Denote by pσ
X(i) the probability that the site σ in i-th layer is occupied by atom

X , σ ∈ {α, β}, X ∈ {A,B}, i = 1, 2, . . . , n. In a completely disordered state we
have:

pα
A(i) = pβ

A(i), pα
B(i) = pβ

B(i), ; i = 1, 2, . . . , n.

We always have

pα
A(i) + pα

B(i) = 1 and pβ
A(i) + pβ

B(i) = 1.(2)

The concentration of A atoms (B atoms) in i-th layer is given by:

zA(i) = Fαp
α
A(i) + Fβp

β
A(i)

(
zB(i) = Fαp

α
B(i) + Fβp

β
B(i)

)
.
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Obviously,
n∑

i=1

zA(i) = nFα and
n∑

i=1

zB(i) = nFβ .(3)

and

zA(i) = 1− zB(i), i = 1, 2, . . . , n.

We define a long-range order parameter t(i) as

ti =
pα

A(i)− zA(i)
1− Fα

, i = 1, 2, . . . , n.(4)

In a completely disordered state t(i) = 0, while in a completely ordered state t(i) = 1
for i = 1, 2, . . . , n.

The free energy of the system is given by:

F = U − TS,(5)

where U denotes the internal energy of the system, T absolute temperature, S en-
tropy. The equilibrium of the system is attained when the free energy of the system
is minimized.

Internal energy. In Bragg-Williams approximation the internal energy is given as
an average over the energies corresponding to given long-range order.

Let R1 (R2) denote the smallest (the second smallest, respectively) distance be-
tween atoms in the lattice. The atoms situated in the lattice sites at the distance of
R1 (or R2) from the given atom will be called its first neighbours (second neighbours,
respectively). The number of pairs of first neighbours X and Y , and such that X is
in i-th layer, Y is in j-th layer (j = i, i± 1, i± 2) equals [39, 62, 65]

〈XY 〉ijR1
=

1
2
N
(
Fα

(
pα

X(i)rR1
ααp

α
Y (j) + pα

X(i)rR1
αβp

β
Y (j)

)

+Fβ

(
pβ

X(i)rR1
βαp

α
Y (j) + pβ

X(i)rR1
ββp

β
Y (j)

))
,(6)

for X,Y ∈ {A,B}, i = 1, 2, . . . , n, where rR1
στ denotes coefficients characteristic for

the lattice of the alloy, namely the number of neighbours of an atom occupying a σ
site in i-th layer which are situated in τ site in i + j-th layer if X and Y are first
neighbours R1. (Similar formula holds for the second neighbours, including the R2

sub- and superscripts). We have shown that in case of binary fcc alloys including
only the first neighbours gives a good enough approximation of the internal energy
of the system [39, 43]. We shall, however also include second neighbours because of
small sizes of the samples considered.

Denoting the interaction energies between atoms X and Y situated at the dis-
tance Rk, k = 1, 2, as −vXY (Rk), the internal energy coming from first and second
neighbours interactions in the film consisting of n layers is given by
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U = −
∑

i, j = 1, 2, . . . , n
X, Y ∈ {A, B}

〈XY 〉ijR1
vXY (R1)−

∑
i, j = 1, 2, . . . , n
X, Y ∈ {A, B}

〈XY 〉ijR2
vXY (R2).(7)

Entropy. Entropy of binary alloy film is calculated according to the formula

SB = kB ln g,(8)

where kB denotes Boltzmann constant, and g denotes the number of configurations
of a given state for atoms concentrations in layers and long-range order parameters
[13, 39]. Thus we have

SB = kB ln
n∏

i=1

g(i) == kB ln
n∏

i=1

(
NFα

NFαp
α
A

)(
NFβ

NFβp
β
B

)

= kB ln
n∏

i=1

(NFα)!(NFβ)!

(NFαpα
A)!(NFαpα

B)!(NFβp
β
A)!NFβp

β
B)!

.(9)

where
(
n

k

)
denotes Newton symbol.

2.1. Non-stoichiometric alloys

For practical reasons non-stoichiometric alloys are more interesting than the stoi-
chiometric ones [49].

Non-stoichiometric alloys cannot be described by Valenta-Sukiennicki automat-
ically, because we no longer have equality between the number of atoms and the
number of the corresponding lattice sites, which makes formula (6) invalid. In order
to overcome this problem we assume that some kind of order exists in the alloy [24],
although we do not know it. Therefore, we may accept the equalities (1) if we define
the α sites (β sites, respectively) as those occupied by A atoms (atoms B, respec-
tively) in the ordered state. This allows us to calculate the mean approximate value
of the coefficients rRs

στ in (6) as in [42] and the formula for entropy (9) remains valid.

3. Problems with experimental data

As our aim is to obtain numerical results which could be compared with the exper-
imental data a couple of remarks should be made before.

Conjecture on local minima. Many models, including the Valenta-Sukiennicki
model assume that the system stabilizes at the lowest level of free energy. Some
experimental data show, however, that in case of alloys of gold there are problems
in obtaining the state of minimal energy despite annealing [46]. It has also been ex-
perimentally observed that surface segregation might also depend on annealing tem-
perature: in Pt-Rh alloys the enrichment of Pt at the top surface layer on annealing



Surface segregation in binary alloys thin films in Valenta-Sukiennicki model 83

at 700◦C (1000 K) was observed, while on annealing below 600◦C Rh enrichment at
the first surface has been observed [55]. This leads us to formulate a conjecture that
in the experiment the system may attain not the lowest state of free energy but one
of the states which constitute local minima of the free energy function.

There is strong consensus that in Cu-Ni alloys Cu has tendency to segregate to
the surface in broad range of temperatures and at all concentrations of Cu in the
bulk. There are, however, reports about Ni atoms gathered in the several top layers
of the film when the Ni concentration in the alloy is less than 16 % [56]. This might
perhaps be explained by the local minima conjecture stated above.

Segregation profile. Another interesting question is the shape of the profile of
the segregation – it might be oscillatory or monotonic, say, exponential [61]. Some
authors claim that the segregation might occur only on the first one or two layers of
the alloys [54]. It is also observed that the clean equilibrated surfaces of the Cu-rich
polycrystalline alloys consist almost entirely of Cu atoms [11].

There are controversies and uncertainties concerning the reliability of the exper-
imental data themselves [53,56]. One of the reasons is difficulty in obtaining reliable
experimental data, the other is the possibility of applying simplifying assumptions
which in effect lead to unreliable results. For example, some researchers even assume
the monotonic segregation profile in order to interpret the results of their experi-
ments [63].

Non-stoichiometry. Another problem is stoichiometry and its connection with sur-
face segregation. It has been observed that even tiny deviations from stoichiometry
in the bulk composition of the NiPt-L1(0) ordered alloy have a great impact on the
atomic configuration of the (111) surface [4, 47].

Size effect. There is a possibility, that ultra thin layers, namely consisting of less
than 20 layers, have different segregation profile than the so called thin layers, which
although have never been strictly defined, are to consist of between 20 and 200 layers
[64]. The problem has recently been investigated by Yan and Wang [67] who have
shown based on Darken model that it is expected that in the samples of thickness
1 nm–10 nm a special size effect is observed. The justification of this fact comes from
observation that an exteremely thin film can simply not possess enough atoms of
a particular kind to fill the external layers. We are going to investigate segregation
profiles between samples consisting of different, and very small numbers of layers.

4. Theoretical and experimental data for CuxNi1−x alloys

CuxNi1−x alloys have fcc lattice. We assume the interactions between Cu and Ni
atoms can be modelled by Lennard-Jones potential:

V (r) = 4ε
((σ

r

)12

−
(σ
r

)6
)
,(10)
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where r denotes the distance between the molecules, σ denotes the distance at which
the potential equals zero, ε denotes the potential well depth. Based on available
Lennard-Jones potential coefficients for Cu and Ni atoms we may assume

εCu = 0.4092eV, σCu = 0.2338nm, εNi = 0.5195eV, σNi = 0.2282nm,(11)

and according to the Lorentz-Berthelot mixing rules commonly used in molecular
dynamics numerical programms [1] we have

εCu−Ni =
√
εCu · εNi ≈ 0.461eV and σCu−Ni =

σCu + σNi

2
≈ 0.231nm.(12)

In the course of calculations it occured we obtain best results for Cu-Ni alloys as-
suming that the distance between first neighbours is equal to 0.257nm. Hence we
also assume that the lattice constant equals about a = 0.363 nm, and the layer thick-
ness equals 0.157 nm. The 6-layer, 8-layer and 10-layer films have thickness of about
0.94 nm, 1.26 nm and 1.57 nm, respectively.

As both in the case of stoichiometric and non-stoichiometric case we define α
sites as those occupied by Cu atoms and β sites as those occupied by Ni atoms and
so the relative number of sites is equal to the relative number of corresponding atoms
we can assume the classical long-range order parametres (4).

The results of the calculations of concentrations of Cu atoms in layers in a sample
containing 6 layers of Cu0.2Ni0.8 alloy and also the long range order parametres
are given in the Fig. 4. The horizontal axis in each case represents temperature in
Kelvin degrees. It occurs that numerically there exist two possible schemes for the
concentrations of atoms in the layers and the two constitute states of the same value
of the free energy of the system – compare Figs. 4(a) and 4(b). At the temperature
of 0 K a very strong segregation effect can be seen in the alloy. In the first scheme
(Fig. 4(a)) at 0 K Cu atoms occupy fully one of the outer layers and partially the
other outer layer while being absent in the interior of the sample. This effect is the
strongest at very low temperatures. At about 200 K the concentrations of Cu atoms
in the outer layers become nearly equal and continue being so at higher temperatures.
The rise of the temperature makes the segregation effect weaker, though always
visible. The second possible scheme (cf. Fig. 4(b)) is the symmetrical segregation
through the whole range of temperatures – meaning that the concentrations of Cu
atoms satisfy

z1 = zn, z2 = zn−1, etc.

throughout the whole range of temperatures.
As we have obtained in the calculations that the internal energy can be minimised

in (at least) two different equivalent states, we may say it is confirmed by the various
segregation schemes observed in the experiments [56].

As many researchers observed experimentally, copper segregates to the surface
in the whole range of temperatures. In the first scheme, at low temperatures one of
the external surfaces consist of Cu atoms exclusively, which is concordant with some
results [11].
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(a)

(b)

(c)

Fig. 2: (a) and (b): Concentrations of Cu atoms in layers 1–6 in a 6 layers sample of
Cu0.2Ni0.8 alloy of orientation (111) in dependence of temperature. Graph (a) refers to non-
symmetrical layers scheme, graph (b) refers to symmetrical layers scheme. Graph (c) shows
the long range order parameters values for the sample in symmetrical layers scheme.
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(a)

(b)

(c)

Fig. 3: Concentrations of Cu atoms in layers in a thin films of CuxNi1−x alloy of orientation
(111) in dependence of temperature, x = 0.05, 0.1, 0.15 and (a) the sample contains 6
layers, (b) the sample contains 8 layers, (c) the sample contains 10 layers. Symmetrical
layers scheme is assumed.
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(a)

(b)

(c)

Fig. 4: Concentrations of Cu atoms in layers in a thin films of CuxNi1−x alloy of orientation
(111) temperature 650 K, x = 0.05, 0.15, 0.25, 0.35, 0.45, 0.55 and such that (a) the sample
contains 6 layers, (b) the sample contains 8 layers, (c) the sample contains 10 layers.
Symmetrical layers scheme is assumed.
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The long range order parameters are practically zero throughout the whole range
of temperatures and in all samples investigated, even in the stoichiometric ones. The
graph in Fig. (c) makes a very good representation of all the long range order param-
eters in the sample, showing that the alloy is disordering for all Cu concentrations
in the sample and so their graphs will not be presented further.

Let us consider thicker samples, namely of 8 and 10 layers and assume one of the
two possible, the symmetrical segregation scheme.

As it can be seen in Fig. 3 throughout the whole range of temperatures the
segregation profiles of the 8 and 10 layers’ samples are similar to the one of 6 layers’
sample (Fig. 4(b)). The difference, however is quatitative: the bigger the number
of layers in the sample, the higher concentrations of Cu atoms are observed in the
external layers. As before, in the cases of 8 and 10 layers’ samples we also have two
possible schemes of segregation: the non-symmetrical and symmetrical ones. This
confirms the size effect obtained in the calculations of Yan et al. [67]. Obtaining the
relevant experimental data for the samples of 6-10 layers is still an awaiting challenge.
On the other hand, the large body of experimental data concerning the Cu-Ni alloys
shall differ significantly from the data concerning very thin films, including up to
several monoatomic layers.

Let us observe the Cu concentrations in layers for different Cu concentrations in
the alloy and different number of layers in the sample but at a constant temperature
of 650 K. The relevant graphs are shown in Fig. 4. It seems that for the segregation
profiles vary: for the 6 and 10 layers’ samples we might call them exponential while
for the 8 layers’ sample it is oscillatory.

References

[1] A.K.Al-Matar and D.A.Rockstraw, A generating equation for mixing rules and two
new mixing rules for interatomic potential energy parameters, J. Comp. Chem. 25,
no. 5 (2004), 660–668.

[2] A. I. Anselm, Osnovy Statisticheskoi Fiziki i Termodinamiki, Nauka, Moscow 1973.

[3] T.Balcerzak, Wyk�lady z Termodynamiki i Fizyki Statystycznej, Wydawnictwo Uniw-
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SEGREGACJA POWIERZCHNIOWA W CIENKICH WARSTWACH
STOPÓW W MODELU VALENTY-SUKIENNICKIEGO
A DANE EKSPERYMENTALNE DLA STOPÓW CuxNi1−x

S t r e s z c z e n i e
Cienkie warstwy stopu Cu-Ni o orientacji (111) i koncentracji atomów Cu 5 %–55 %

sa̧ opisane w modelu Valenty-Sukiennickiego. Przedstawiamy wyniki obliczeń dla warstw
sk�ladaja̧cych siȩ z 6-, 8- i 10-ciu warstw monoatomowych o różnych koncentracjch Cu
w próbce. Odnosimy siȩ do istnieja̧cego zbioru badań nad cienkimi warstwami stopu i wy-
kazujemy, badaja̧c efekt rozmiaru, że dostȩpne dane eksperymentalne dla tzw. cienkich
warstw moga̧ nie przystawać do obliczeń dla bardzo cienkich warstw.
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IN ZWANZIG-TYPE CHAIN. PHONON APPROACH

Summary
This article is concerned with the review of the model of coupled harmonic oscillator

in the theory of thin films. The theory of oscillators is a base for description of numerous
phenomena because of its mathematical simplicity. In this paper we consider a model of
coupled harmonic oscillator in a simple linear chain of atoms in ferromagnetic thin films
under assumptions proposed in [5], but with respect to the conditions corresponding to the
thin films theory, as well. The aim of our work is to study properties of Zwanzig’s chain
in context of theory of coupled harmonic oscillator. Finally, we examine numerically our
results for a simple example of 5-atoms Zwanzig-type chain.

1. Preliminaries

Theory of harmonic oscillator plays a crucial role in many areas of physics. There
are many physical problems which are described in the terms of coupled harmonic
oscillators, e.g. the Lee model in quantum theory [1], the Bogolyubov transformation
in superconductivity [2], the covariant oscillator model [3], and oscillator model
formulated by Harris [4]. The problem of oscillations in a chain of coupled oscillators
has been dealt many researches authors. One of the most illustrative example can
be given in the paper [5], where the author study the interactions between an atom
and a surface represented as a semi-infinite linear chain of oscillators, each of them
coupled to its neighbours through harmonic forces.

Motivated by the mentioned references above and in particular [5, 6], in this pa-
per, we undertake to develop a new approach to the theoretical study of interactions
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between atoms in one-dimensional chains of coupled harmonic oscillators and pro-
cesses occur during an initial impulse imparted to any one of the atoms of the chain.
The literature contains many theoretical descriptions of accompanying processes
occur in this model. A model of the collision of a gas atom with the surface of the
crystal has been studied already many years ago e.g. by Jackson [16]. He considered
the surface impurity as an independent oscillator, which exchanges energy with the
gas atom. The computer simulations of this problem has been considered by Mc-
Carroll [17, 18]. The problem has been solved numerically [17, 18] for some different
masses of the collision atom and for different force constants for the interaction of
this with surface.

The first we formulate our problem by establishing the necessary materials to
deal our task, it means we provide some preliminaries of Zwanzig’s procedure and
present the coupled harmonic oscillator model in thin films. In the second step we
analyze the Zwanzig’s method in the system of coupled harmonic oscillators. Finally,
we examine numerical results for an example of 5-atoms Zwanzig-type chain.

2. Overview of classical coupled oscillators

Let us first consider the system of particles in the form of linear harmonic chain of
atoms, where each of the oscillator is situated in a harmonic potential with frequency
ω and each oscillator is coupled with its neighbour by a force Kνν′ (Fig. 1).

Fig. 1: Chain of coupled oscillators.

The equations of motion take the following form [7, 8]

mν
d2

dt2
xν + 2γνmν

d

dt
xν +

∑
ν′∈ν

Kνν′ (xν′ − xν) = fν ,(1)

where fν denote an external force, the mass mν stands for the mass of atom situated
at the lattice side. Coefficients γν localized at the point ν of the crystallographic
lattice refers to the damping forces. Now, using the easy mathematical modification,
we rewrite the equations (1) in the form

d2

dt2
xν + 2γν

d

dt
xν +

∑
ν′∈ν

Kνν′√
mνmν′

xν′ −
∑
ν′∈ν

Kνν′

mν
xν =

fν√
mν

.(2)
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Let us introduce the following reduced notation for variables and forces, namely

uν =
√
mνxν ,(3)

κνν′ =
Kνν′√
mνmν′

.(4)

With regard to the new notation, we can rewrite the equation (1) in the form a set
of linear equations coupled by the interactions between the nearest neighbours

d2

dt2
uν + 2γν

d

dt
uν +

∑
ν′∈ν

κνν′uν −
(∑

ν′∈ν

Kνν′

mν

)
uν = Fν ,(5)

where Fν =
fν√
mν

. The solution of the considered equations ca be obtained by

replace the variables (3) and (4) via linear transformation

uν =
∑

q

TqνQq

with the orthogonality conditions∑
q

TqνTqν = δνν′ ,
∑

ν

TqνTq′ν = δqq′ .

Using these transformation, we now write eq. (5) as

ω2
0νTqν −

∑
ν′∈ν

κνν′Tqν′ = ω2
qTqν , with ω2

0ν =
∑
ν′∈ν

Kνν′

mν
,(6)

and further
d2

dt2
Qq + 2

∑
q′

Λqq′
d

dt
Qq + ω2

qQq = Fq(7)

where Λqq′ =
∑

ν TqνγνTq′ν and Fq =
∑

ν TqνFν . The equations (7) represent the
behavior of the harmonic oscillator which is under the action of the external force.

3. Model of Zwanzig chain. Example for 5 atoms

Let us consider now the simple model of one-dimensional chain of atoms in the
crystal lattice (Fig. 2).

The atoms of the model are identical and have mass M . We apply the Zwanzig’s
procedure [5] to the chain of coupled harmonic oscillations considered in the direction
perpendicular to the chain axis [9]. In this case the Hamiltonian of the system takes
the form [10]

H =
1
2

∑
ν

px
ν

M
+

1
2

∑
(ν,ν′ )

Kν

(
xν′ − xν

)2
,(8)

where Kν denote the harmonic forces. We suppose that the chain of atoms is cutted
from the sample of ferromagnetic thin films in the direction perpendicular to the
sample plane. The sample is divided into N monoatomic, two-dimensional layers
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Fig. 2: The one-dimensional chain of atoms as a coupled oscillators in the meaning of
Zwanzig, cutted from the sample of ferromagnetic thin films.

parallel to the surface planes labelled by ν = 1, ..., N. In our approach we assume
that N = 5. The equations of motions

ṗx
ν = − ∂

∂xν
H, ẋx

ν = − ∂

∂px
ν

H(9)

read

ṗx
ν = Kν

∑
ν′

(
xν′ − xν

)
, ẋν =

1
M
ṗx

ν(10)

and, consequently

ẍν =
Kν

M

∑
ν′∈ν

(
xν′ − xν

)
.(11)

Now, we can extended the Hamiltonian (8) by allowing the introduce boundary con-
ditions and the effective external force κν . The Hamiltonian (8) takes his generalized
form, as follows [9]

H =
1
2

∑
ν

px
ν

M
+

1
2

∑
(ν,ν′ )

Kν

(
xν′ − xν

)2
+
∑

ν

κνxν .(12)

and the equations of motions

ẍ1 = (K/M)(x2 − x1) + κ1,(13)

ẍν = (K/M)(xν+1 − 2xν + xν−1) + κν , for ν = 2, 3, 4,(14)

ẍN = −(K/M)(x5 − x4) + κ5.(15)

Here equations (13) and (15) form the boundary conditions. The system of equations
(13)–(15) can be consider in more general case than it was presented in paper [5].
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3.1. The role of third layer

The discussion given in earlier papers [9–14] motivates us to show the specific role
of third layer in the considered model. We will study the model of the thin sample
consist 5 monoatomic, two-dimensional layers parallel to the surface. Let us take into
account the chain of atoms cutted from considered sample. According to the papers
[12–14], we can write the system of differential – difference equations as (16)–(20)

x1 = K
(
ω2

1ũ3 + ω2
2ũ5 + ω2

3ũ7 + ω2
4ũ9 + ω2

5ũ11

)
and

d

dt
x1 =

1
2
ω2

1Kũ2,(16)

x2 = K
(
ω2

2ũ5 + ω2
3ũ7 + ω2

4ũ9 + ω2
5ũ11

)
and

d

dt
x2 =

1
2
ω2

2Kũ4,(17)

x3 = K
(
ω2

3ũ7 + ω2
4ũ9 + ω2

5ũ11

)
and

d

dt
x3 =

1
2
ω2

3Kũ6,(18)

x4 = K
(
ω2

4ũ9 + ω2
5ũ11

)
and

d

dt
x4 =

1
2
ω2

4Kũ9,(19)

x5 = ω2
5Kũ11.(20)

We introduce the dimensionless functions [8]

xν =
∑

q

Tqνxq , ν = 1, ..., 5,(21)

with conditions given by the following system

Tq2 − (1 + κ)Tq1 = Ω Tq1,

Tq,ν − 2Tq,ν+1 + Tq,ν+2 = Ω Tq,ν+1, for ν = 2, 3, 4,

Tq,4 − (1 + κ)Tq,5 = Ω Tq,5,

(22)

where Ω =
(
ωq/ω0

)2

.

An easy calculation shows that the substitutions (16)-(20) into (13)-(15) give the
system

d

dt
ũ2 = −1

2

(
ũ3 − ε1

)
,(23)

d

dt
ũν =

1
2

(
ũν−1 − ũν+1 + ε 1

2 ν

)
, for ν = 4, 6, 8,(24)

d

dt
ũ10 =

1
2

(
ũ9 − ε10

)
,(25)

and
d

dt
ũν =

1
2

(
ũν−1 − ũν+1

)
for ν = 1, 3, ..., 7,(26)
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where
d

dt
ũ2N−1 =

1
2
ũ2N for ω2

νK �= 0, and εν =
1
ων
K
μBS

�
hx

ν(t),

along with

ω2
νK

d

dt
ũν =

d

dt

[
x 1

2 (ν−1) − x 1
2 (ν+1)

]
=

1
2
ω2

νK
(
ũν−1 − ũν+1

)
.

Now, we can rewrite the above system of equations to a more convenient form
by replacing uν = ũν+2 for ν = 0, 1, ..., 9:

d

dt
u0 =

1
2

(
u1 − ε1

)
,(27)

d

dt
uν =

1
2

(
uν−1 − uν+1 + ε 1

2 ν+1

)
for ν = 2, 3, ..., 6,(28)

d

dt
u2N−2 =

1
2

(
u2N−3 + εN

)
,(29)

d

dt
uν =

1
2

(
uν−1 − uν+1

)
for ν = 1, 3, ..., 7,(30)

d

dt
u2N−1 =

1
2
u2N−2 for ω2

νK �= 0.(31)

As we can see, u1 = ũ3 and u3 = ũ5 plays a specific role, analogous to that of u3

in [6, 9]. We can find the second order equation for u1(t) as a linear function u3 by
(25) for r = 1, namely

d2

dt2
u1 =

1
2

(
d

dt
u0 − d

dt
u2

)
=

1
4

(u1 − ε1)− 1
4

(u1 − u3 + ε2) =
1
4

(u3 − ε1 − ε2).

3.2. Formulae for the first relative distances in the Zwanzig’s chain.
Example for 5 atoms

With respect the procedure applied by Zwanzig, described in [3] and its application
presented in the papers [6, 12] we introduce the generating function in the form

Θ(z, t) =
8∑

ν=0,
ν even

uν(t)zν +
9∑

ν=1,
ν odd

uν(t)zν , for z ∈ C, and t ∈ [0, t∗].(32)

If we notice that

Θ = Θ0 exp
[

1
2

(
z − 1

z

)
t

]
,

we can write the differential equation for the generating function

∂

∂t
Θ0 =

1
2

⎛
⎜⎝−u1 +

8∑
ν=0,

ν even

ε 1
2 ν+1z

ν

⎞
⎟⎠ exp

[
−1

2

(
z − 1

z

)
t

]
,



A model of coupled harmonic oscillator in Zwanzig-type chain. Phonon approach 99

and taking into account

exp
[

1
2

(
z − 1

z

)
τ

]
=

+∞∑
m=−∞

Jm(τ)zm for z ∈ C\{0}, τ ∈ R or C,

where Jm(τ) are the Bessel functions, next we obtain
9∑

k=0

uk(t)zk =
+∞∑

m=−∞
Jm(t)zm

9∑
ν=0

uν(0)zν

+
1
2

+∞∑
m=−∞

∫ t

0

Jm(t− s)zm

⎡
⎢⎣−u1(s) +

8∑
ν=0,

ν even

ε 1
2 ν+1(s)zν

⎤
⎥⎦ ds.

Further, follow in [6] and taking into account the recurrence relation for Bessel
functions of the first kind Jn+1(t) = 2n

t Jn(t) − Jn−1(t) for n ∈ Z, we receive the
explicite formulae for the first relative displacement in the case of chain structured
from 5 atoms (Fig. 3).

u1(t) = −
8∑

ν=0,
ν even

∫ t

0

ν

t− sJν(t− s)ε 1
2 ν+1ds+ 2

9∑
ν=0

(−1)ν ν

t
Jν(t)uν(0).(33)

Fig. 3: Relative displacement between gas atom and surface atom u1(t) for ε1(s) = ε5(s) =
sin(t), ε2(s) = ... = ε4(s) = cos(t), and u0(0) = u9(0) = 10−2, u2(0) = u3(0) = ... =
u8(0) = 10−1.

4. Conclusions

In our theoretical study of surface ferromagnetic excitations in thin films we develop
theory of Zwanzig [5]. The solution of (27)–(31) is found as a sum of group of
a series involving Bessel functions for given relative displacements, each of which
is the mathematical image of the collision wave which has been reflected by the
corresponding time distance from the film surface. Figure 3 shows the shape of
curve of corresponding relative distances in the case when the initial conditions are
the same at the end of the sample (u1(0) = u10(0), ε1(t) = ε5(t)), but different from
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the conditions inside the sample (u2(0) = ... = u9(0), ε2(t) = ε3(t) = ε4(t)). The
character of the shape of u1(t) evince a tendency to be periodic (up to t � 50).

In many researches on the behaviour of atom condensation or processes (e.g.
energy transfer or trapping) occurring during the external (constant) force colliding
with a linear lattice, the problem and its solution is formulated in terms of the
relative displacement u1(t). The oscillations of the first connection disperse after the
collision. The disperse of the impulse initiated by a collision with the lattice can be
observed for relative displacements of atom pairs down the chain [10, 12].
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Sér. Rech. Déform. 58 (2009) 111–115.

[16] J. Jackson, A quantum mechanical theory of energy exchange between inert gas atoms
and a solid surface, Proc. Cambridge philos. Soc. 28 (1932), 136–164.



A model of coupled harmonic oscillator in Zwanzig-type chain. Phonon approach 101

[17] B.McCarroll and G. Ehrlich Trapping and energy transfer in atomic collisions with
a crystal surface, J. Chem. Phys. 38 (1963), 523–532.

[18] B.McCarroll, Trapping and energy transfer in atomic collisions with a crystal surface,
II, Impurities, J. Chem. Phys. 39, no. 5 (1963), 1317–1326.

Department of Relativity Physics

University of Warmia and Mazury in Olsztyn

S�loneczna 54, PL-10-710 Olsztyn,

Poland

Presented by Julian �Lawrynowicz at the Session of the Mathematical-Physical Com-
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MODEL OSCYLATORA HARMONICZNEGO W �LAŃCUCHU
ATOMÓW TYPU ZWANZIGA. PODEJŚCIE FONONOWE

S t r e s z c z e n i e
Artyku�l jest wprowadzeniem do rozważań nad modelem oscylatora harmonicznego

w �lańcuchu atomów typu Zwanziga. Rozważany jest prosty model oscylatora harmonicz-
nego z uwzglȩdnieniem za�lożeń zaproponowanych w pracach [5, 6]. Otrzymane rozwia̧zanie
zależności relatywnej odleg�lości pomiȩdzy atomem koliduja̧cym a atomem �lańcucha (1) jest
pierwszym krokiem do analizy ruchów oscylacyjnych i w�laściwości badanego modelu.





PL ISSN 0459-6854

B U L L E T I N
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TRANSPORT PROPERTIES OF A MULTI-PENDULUM SYSTEM

Summary
We present numerical solutions of simple multi-pendulum system that is preliminary for

modeling human or robotic movement in 2 dimensions. The model also takes into account
friction. Various possible applications of the solutions presented are given.

1. Motivation

We develop universal 2-dimensional multi-pendulum model which shows the trans-
port properties in one dimension. The model can be extended in a natural way to
account more complex cases than given in [1–6] by means of the scheme depicted
in Fig. 9. Applications can be found in medicine, robotics, sport, intelligent system
design, biology including zoology, and many other areas.

2. Coupled pendulum system as a preliminary example

We analyze the system as depicted in Fig. 1 (2), which describes the system of 4
masses connected by 3 massless rods interconnected by 2 massless springs |EF | and
|GF |. All coordinates describing the position of the system (x5, y5), (x4, y4), (x3, y3),
(x2, y2) can be parameterized by rods lengths L1, L2, L3, x5, y5 and angles α5, α4,
α3 in the following way: {

x4(t) = x5(t) − L4 sin(α1(t))
y4(t) = y5(t) − L4 cos(α1(t))
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Fig. 1: Geometrical parametrization of reduced 2-dimensional model of humanoid robot as
coupled 2-pendulum system driven by 2 active massless springs |EF | and |GF |.4 masses
are connected by stiff massless rods that can move without friction in combined effective
gravitation-ground potential.

{
x3(t) = x4(t) − L3 sin(α2(t))
y3(t) = y4(t) − L3 cos(α2(t))

{
x2(t) = x3(t) − L2 sin(α3(t))
y2(t) = y3(t) − L2 cos(α3(t))

{
x1(t) = x2(t) + L1 sin(α4(t))
y1(t) = y2(t) − L1 cos(α4(t))

We consider the Lagrangian of the system in the following form

L =
[

1
2

(m2v
2
2 +m3v

2
3 +m4v

2
4 +m5v

2
5) − 1

2
ks1(t)(Ls1(t) − Ls10)2

−1
2
ks2(t)(Ls2(t) − Ls20)2 − U(y5,m5) − U(y4,m4) − U(y3,m3) − U(y2,m2)

]
(1)

where U(x) > −gx, e.g. U(x, y) = U0 exp(l0x) with U0 = const > 0 and l0 =
const1 > 0 as in the case of flat and very soft ground. The ground stiffness can be
regulated by coefficients l0 and U0. Here k(t) uses the fact that the spring constant
is time dependent. In such case the active force(s) acting on the spring(s) is(are)
introduced. Equations of motions are derived basing on the Lagrange equations as
given by

∂αiL(t, αj, α̇j , ...) =
d

dt
∂α̇iL(t, αj , α̇1, ...)(2)

where αi are general coordinates with i = 5, 4, 3, 2, 1 and with α2 = x5, α1 = y5.
Providing that we have given initial values of x5(t0), y5(t0), x′5(t0), y′5(t0), α1(t0),
α2(t0), α3(t0), α4(t0), α5(t0), α′

1(t0), α′
2(t0), α′

3(t0), α′
4(t0), α′

5(t0), and parameters
m2, m3, m4, m5, g, L1, L2, L3 we can compute numerically or in the limited case
analytically time evolution of all 4 masses coordinates for t > t0 and thus determine
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the time-dependent dynamics of the whole system. It should be underline that ob-
serving such system from outside as by camera by means of image processing we
can derive all initial values except the masses and spring constants. They can be
hidden variables that can be guessed (determined with certain accuracy) once the
trajectories of all 4 masses are available. This is already another problem that will
not be discussed in this work, but it is the subject of the future interest.

3. Accounting the passive and active spring presence

In the conduced computations for the system depicted in Fig. 2. we assume validity of
the Hooke law. Spring 1 and 2 lengths can be obtained from preliminary geometrical
analysis.

Ls1(t) =

√
1
4

(L2
1 + L2

2) − 1
2
L1L2 sin(α5(t) + α4(t))(3)

Ls2(t) =

√
1
4

(L2
2 + L2

3) − 1
2
L2L3 sin(α3(t) + α4(t))(4)

We define Ls1, Ls2 the springs lengths when the spring tension is zero in the form

Ls1 =

√
1
4

(L2
1 + L2

2) − 1
2

(L1L2) sin(αs1)(5)

Ls2 =

√
1
4

(L2
2 + L2

3) − 1
2

(L2L3) sin(αs2).(6)

In the passive case the αs1 and αs2 are time independent. In the case of active cases
they are time dependent and they should be parameterized to account description
of artificial or real muscle as given by Hill [9]. Another way of accounting for the
presence of the active force in the spring is by assuming that spring 1 and 2 constants
are time-dependent. Also one can consider that both spring constants and Ls1, Ls2

are time dependent.

Fig. 2: Reduced two-dimensional model of humanoid robot as coupled two-pendulum system
driven by two active springs. Such system shows the transport property in the x direction.
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4. Inclusion of cognitive capabilities in studied case

It is possible to add eye (miniature camera) to the pendulum system to the mass m5.
If springs are active then the robot can avoid obstacles or jump over obstacles. The
robot decision to jump can be made by signal coming out of neural network. 3 input
signals of this network can provide the obstacle distance, its height and width. Two
neural network output signals can be values of active forces that are needed to be
applied to 2 springs. Before being operational and optimal the neural network has to
be trained. It can be learned to be optimal by means of the genetic algorithm work-
ing in certain environment with mechanism rejecting bad performance and accepting
good performance that is encoded in neural network weight coefficients. When ge-
netic algorithm operates then neural network weights can evolve and finally be set
to the most optimal values.

5. Accounting the realistic muscle presence in the agent model

The most common used model of human muscle was given by Hill [9]. It is depicted in
Fig. 3. In the Hill model of human muscle the contractile element (CE) represents the
active properties of the muscle fibers. A serial-elastic (T) element is representing the
elasticity of the tendon. A parallel-elastic element (PE) models the passive stiffness
of the muscle fibers. Muscles are viscoelastic and hence have a viscous damper. It
is included in the model, when the dynamics of the second-order critically damped
twitch is regarded. One common model for muscular viscosity is an exponential form
damper, where the damping force Fd present in the muscle is of the form

Fd = k

(
d

dt
Ld

)β

,

where β, k are the constants.

Fig. 3: Hill model of human muscle. We denote FT -Force,T-tendon, CE-Contractile Ele-
ment, SE-Series Element, PE-Parallel Element, Lt-tendon length, Lm-muscle length, Lmt-
muscle-tendon length,Lce-contractile-element length. Also γ and d coefficients parameterize
the muscle properties.
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6. Simulation results

Mathematica environment was used to conduct the numerical computations. Exam-
ple of quasi knee movement (m4 mass) in (x, y) plane with no friction and no active
force is given in Fig. 10. The SI units were used. The ground impact was modeled
by potential of the form U(y) = exp(−ay). The parameters used in the simulation
are the following:

a = 10 (measure of floor stiffness), m1 = 2 = m2, m3 = 1, m4 = 1,

g = 10 (gravitational constant), l1 = 2 = l2 = l3,

t0 = 0, tmax = 15, k1s = 100 = k2s.

As it is seen in Fig. 9. the constant propagation of multi-pendulum system (consisting
2 springs and 4 masses as depicted in Fig. 2.) in x direction is achieved.

It is possible to include the presence of friction in the studied model as in [10].
For the simplicity we can assume that friction forces are proportional to velocity (in
cartesian coordinate system) or angular velocity. To obtain the equations of motion
we first assume no presence of friction and get equations from Lagrange formalism.
Having derived the equations of motion we can modify them by including friction
force, which is always in the direction opposite to the direction of motion. The
friction coefficients are assumed to be constants. However in more general case they
can be functions of velocity and position of spring(s) in the space as it is in the case of
human muscles or robotic artificial muscle. The presence of friction can cause robotic
object to fall down and stop movement with certain frozen geometrical configuration
as it is depicted in Fig. 12.

7. Future perspectives

The presented results can give some insight to biomechanics methodology. To con-
sider the more realistic picture the special properties of human, animal or insect mus-
cle have to be incorporated to the model. One of the important feature of muscles is
given by Fig. 5 and 6. One should take into account that realistic muscles or springs
can sustain certain maximum value of tension as given by Fig. 5. Also the speed of
muscle contraction or expansion is dependent on the muscle tension. This means
that in our reduced model ks1 and ks2 cannot longer be considered as constants, but
to be the functions of the form ks1(t, α5 − α4, α̇5 − α̇4) and ks2(t, α4 − α3, α̇4 − α̇3).
Also we should consider αs10 and αs20 to be the functions αs10(t, α5 − α4, α̇5 − α̇4)
and αs10(t, α4 − α3, α̇4 − α̇3).

It should be underlined that the observation of human body by camera is deduc-
tive method. On another hand the building humanoid robots is inductive method
that allows to reject certain class of hypothesis obtained by deductive observation.
In the current work we have pointed certain very intuitive model and check its pre-
dictions. Such model can be relatively simple tested experimentally also with use of
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external camera as the observator and it is the subject of current and future work.
Then the results can be used in robotics or humanoid science and are combination
of inductive and deductive view of the world.

Particularly interesting are the studies of the given structure in the presence of
static non-uniform potential that is the superposition of the ground potential and
gravitational potential. In such case the effective potential would be the function of
x and y so U(x, y). The translation symmetry of potential in x direction is broken.
Nevertheless if non-uniformities of the ground are small than the pendulum system
can still propagate with certain average velocity in x direction.

Another issue is the introduction of the small wind which is time dependent
and uniform in x direction. This can be achieved by adding potential term to the
Lagrangian of the form U(x, t) for the case of uniform wind. The wind should last
not too long and be small and vanish after certain short time. The wind can also to
be considered non-uniform in y direction and to be in the form U(x, y, t) form.

Another worth mentioning issue is the inclusion of the x dependent, but periodic
potential modeling the periodic shape ground. For certain parameters the reduced
4 mass robotic object should exhibit the chaotic behavior. Even for the case of x
translational invariant potential the quasi knee shows complex behavior in certain
parameter regimes as it is depicted in Fig. 10. In future work in all pointed cases the
harmonic analysis should be conducted.

Very particular example of the application of the studied system is the possibility
to transport the rectangular shape mass of given dimensions over certain distance.
The example of mass transport, which can be conducted by simple robotic agents
on the hypothetical planet X , is given by Fig. 13. It is the simple generalization of
the studied model. It is the subject of the future studies.

Fig. 4: The presence of the light and small camera on the top can allow for preparation
to avoid or overcome obstacles. In such case the active springs have to be activated e.g.
electrically as by signal coming from camera that has certain built-in pattern recognition
and certain range area of obstacles. In order to succeed the distance to the obstacle and
obstacle height has to be determined by camera.



Transport properties of a multi-pendulum system 109

Fig. 5: Neural network can be used to make decisions about jump strategy over the obstacle.
3 inputs correspond to position of obstacle, height and width. 2 outputs correspond to the
active force value that has to be applied to 2 springs. In order to make the recurrent
neural network effective in give ensemble of obstacles it has to be trained by some genetic
algorithm. The unit symbolizes non-linear or linear continuous function.

Fig. 6: Typical dynamics of human muscle operation.
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Fig. 7: Typical regimes of human muscle operation.

Fig. 8: The flow of information through the pendulum system with camera, on-line image
recognition and neural network. Observation model is the on-line image processing system
extracting the information on the object position and dimension. Estimation is the output
of neural network and can incorporate certain level of intelligence.
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Fig. 9: Simulation scheme reproducing the movement of human body as used in [1, 2].

Fig. 10: Examples of vertical quasi knee movement (m4 mass).Upper picture gives the case
of movement in (x(t), y(t)) plane. Lower pictures describes different cases of movement of
quasi knee with time in vertical direction. No friction and no active force occurs in the
system.
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Fig. 11: 4 stages in times t, t + Δt, t + 2Δt, t + 3Δt of reduced 4-mass robot-like object
movement obtained by Mathematica simulations. No friction and no active force occurs in
the system.

Fig. 12: 4 stages in times t0, t0+Δt′, t0+2Δt′, t0+3Δt′ of reduced 4-mass robot-like object
movement obtained by numerical computations conducted in Mathematica environment.
Friction and no active force occurs in the system. The robotic object falls down and after
certain time stops to move and mimics the dead creature.

Fig. 13: Possible cargo transport implemented by 2 4-pendulum systems with active springs.
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8. Conclusions

We have conducted the study of 4 mass system connected by 3 massless rods that
can move with and without friction. The main formalism which was used is La-
grange formalism. We have proved the transport possibility of pendulum system
representing reduced 4-mass robotic like object.

The same type of calculations can be done by usage of Hamiltonian formalism.
Most obtained results are numerical. In the limited case some results can be obtained
in analytical way. This is the case when angles α5, α4 are very small and value of α3

is very close to 90 degrees. Then sine and cosine terms simplifies very much what
makes possible analytical solution of equations in analogy to the 2 pendulum case
with one mass fixed in space.

If rods have small but uniform mass distribution the obtained results should be
similar to those presented in this work. Also in such case the analytic results are
possible to be obtained for the limited range of angles as previously mentioned.

We hope that given work brings some insight to the development of simple robotic
agents and studies of human motion. In order to obtain deeper analysis the presented
model needs to be extended to the multi-pendulum system consisting N pendu-
lums in 2-dimensions and 3-dimensions as the generalization of the system given in
Fig. 1 (2).

It should be underlined that the studied system can also describe the molecule(s)
colliding with certain surface. In certain cases such molecule can show transport
properties along the surface as well. In some cases the dissipation can be pre-assumed
to exist. Certain reference to real molecules and surfaces still need to be established
in greater detail. Nevertheless by means of the usage of the quasi-classical approxi-
mation the quantum behavior of molecule can be simplified to the classical picture.

Fig. 14: The studied 4-masses robotic like object with no presence of friction and active
forces is analogical to the case of 4 charged masses connected by massless rods in effective
external electrostatic potential.
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Hence given analogy is valid in certain regimes of molecule shapes, internal structure
and type of the surfaces.

It is also worth mentioning that the studied 4-masses robotic like object with no
presence of friction and active forces is analogical to the case of 4 charged masses con-
nected by massless rods in effective external electrostatic potential what is depicted
in Fig. 14.
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Presented by Julian �Lawrynowicz at the Session of the Mathematical-Physical Com-
mission of the �Lódź Society of Sciences and Arts on July 5, 2012

W�LASNOŚCI TRANSPORTOWE UK�LADU WAHADE�L
SPRZȨŻONYCH

S t r e s z c z e n i e
W pracy zaprezentowano transport uk�ladu 4 punktów materialnych reprezentuja̧cych

uk�lad 2 sprzȩżonych nieliniowych wahade�l o 5 stopniach swobody, które moga̧ poruszać
siȩ w przestrzeni w potencjale efektywnym modeluja̧cym zachowanie pola grawitacyjnego
i miȩkkiego pod�loża. Uzyskane wyniki wskazuja̧ na możliwość prymitywnego naśladowania
ludzkiego i robotycznego chodu przez uklad 4 punktow materialnych.
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