
B U L L E T I N

SÉRIE:

RECHERCHES SUR LES DÉFORMATIONS

Comité de Rédaction de la Série

P. DOLBEAULT (Paris), H. GRAUERT (Göttingen),
O. MARTIO (Helsinki), W.A. RODRIGUES, Jr. (Campinas, SP), B. SENDOV (Sofia),

C. SURRY (Font Romeu), P.M. TAMRAZOV (Kyiv), E. VESENTINI (Torino),
L. WOJTCZAK (£ódŸ), Ilona ZASADA (£ódŸ)

Volume LXI, no. 2

£ÓD� 2011

JULIAN £AWRYNOWICZRédacteur en chef et de la Série:

N

DE LA SOCIÉTÉ DES SCIENCES

ET DES LETTRES DE £ÓD�

Secrétaire de la Série:
JERZY RUTKOWSKI
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INSTRUCTION AUX AUTEURS
1. La présente Série du Bulletin de la Société des Sciences et des Lettres de �Lódź
comprend des communications du domaine des mathématiques, de la physique
ainsi que de leurs applications liées aux déformations au sense large.

2. Toute communications est présentée à la séance d’une Commission de la Société
par un des membres (avec deux opinions de spécialistes designés par la Ré-
daction). Elle doit lui être adressée directement par l’auteur.

3. L’article doit être écrit en anglais, français, allemand ou russe et débuté par
un résumé en anglais ou en langue de la communication présentée. Dans tous
les travaux écrits par des auteurs étrangers le titre et le résumé en polonais
seront préparés par la rédaction. Il faut fournir le texte original qui ne peut
contenir plus de 15 pages (plus 2 copies).

4. Comme des articles seront reproduits par un procédé photographique, les au-
teurs sont priés de les préparer avec soin. Le texte tapé sur un ordinateur de
la classe IBM PC avec l’utilisation d’une imprimante de laser, est absolument
indispensable. Il doit être tapé préférablement en AMS-TEX ou, exception-
nellement, en Plain-TEX ou LATEX. Après l’acceptation de texte les auteurs
sont priés d’envoyer les disquettes (PC). Quelle que soient les dimensions des
feuilles de papier utilisées, le texte ne doit pas dépasser un cadre de frappe de
12.3 × 18.7 cm (0.9 cm pour la page courante y compris). Les deux marges
doivent être de la même largeur.

5. Le nom de l’auteur (avec de prénom complet), écrit en italique sera placé à la
1ère page, 5.6 cm au dessous du bord supérieur du cadre de frappe; le titre de
l’acticle, en majuscules d’orateur 14 points, 7.1 cm au dessous de même bord.

6. Le texte doit être tapé avec les caractères Times 10 points typographiques et
l’interligne de 14 points hors de formules longues. Les résumés, les rénvois,
la bibliographie et l’adresse de l’auteurs doivent être tapés avec les petites
caractères 8 points typographiques et l’interligne de 12 points. Ne laissez pas
de ”blancs” inutiles pour respecter la densité du texte. En commençant le
texte ou une formule par l’alinéa il faut taper 6 mm ou 2 cm de la marge
gauche, respectivement.

7. Les texte des théorèmes, propositions, lemmes et corollaires doivent être écrits
en italique.

8. Les articles cités seront rangés dans l’ordre alphabétique et précédés de leurs
numéros placés entre crochets. Après les références, l’auteur indiquera son
adress complète.

9. Envoi par la poste: protégez le manuscript à l’aide de cartons.
10. Les auteurs recevront 20 tirés à part à titre gratuit.
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Département d’Analyse complexe et Géométrie différentielle

de l’Institut de Mathématiques de l’Académie polonaise des Sciences
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Fig. 1: The figure caption is located below the figure itself; it is automatically centered and
should be typeset in small letters.

2.2. Example of a table

Tab. 1: The table caption is located above the table itself; it is automatically centered and
should be typeset in small letters.

Description 1 Description 2 Description 3 Description 4

Row 1, Col 1 Row 1, Col 2 Row 1, Col 3 Row 1, Col 4
Row 2, Col 1 Row 2, Col 2 Row 2, Col 3 Row 2, Col 4

Name and surname of the authors

TITLE – INSTRUCTION FOR AUTHORS
SUBMITTING THE PAPERS FOR BULLETIN

Summary

Abstract should be written in clear and concise way, and should present all the main

points of the paper. In particular, new results obtained, new approaches or methods applied,

scientific significance of the paper and conclusions should be emphasized.

1. General information

The paper for BULLETIN DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES
DE �LÓDŹ should be written in LaTeX, preferably in LaTeX 2e, using the style (the
file bull.cls).

2. How to prepare a manuscript

To prepare the LaTeX 2e source file of your paper, copy the template file in-
str.tex with Fig1.eps, give the title of the paper, the authors with their affilia-
tions/addresses, and go on with the body of the paper using all other means and
commands of the standard class/style ‘bull.cls’.

2.1. Example of a figure

Figures (including graphs and images) should be carefully prepared and submitted
in electronic form (as separate files) in Encapsulated PostScript (EPS) format.



3. How to submit a manuscript

Manuscripts have to be submitted in electronic form, preferably via e-mail as at-
tachment files sent to the address zofija@mvii.uni.lodz.pl. If a whole manuscript
exceeds 2 MB composed of more than one file, all parts of the manuscript, i.e.
the text (including equations, tables, acknowledgements and references) and figures,
should be ZIP-compressed to one file prior to transfer. If authors are unable to send
their manuscript electronically, it should be provided on a disk (DOS format floppy
or CD-ROM), containing the text and all electronic figures, and may be sent by
regular mail to the address: Department of Solid State Physics, University of
Lodz, Bulletin de la Société des Sciences et des Lettres de �Lódź, Pomorska
149/153, 90-236 Lodz, Poland.
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OBITUARY: ROMAN STANIS�LAW INGARDEN (1920–2011)

Summary
Professor Roman Stans�law Ingarden (* October 1, 1920), the outstanding scientist and

our good friend has passed away on July 12, 2011. We remember him as the founder of the
Toruń school of quantum information theory and of two worldwide known journals, who
invented several important ideas and results in stochastical thermodynamics, its geometrical
characterization including the electromagnetism, quantum information theory, and theory
of open (dissipative) systems. Roman contributed with 19 papers to our journal; it makes
us great honour.

Meeting Professor Ingarden

We have known Professor Roman Stans�law Ingarden (* 1920, Zakopane, † 2011,
Kraków) for several decades. He often visited Debrecen and �Lódź, and also we had
the opportunity to meet him several times in Toruń. We were fortunate enough to
cooperate with him. Every meeting was not only fruitful, but also a pleasant event.
We admired his wide knowledge and interest both in physics, language, and in any
kind of culture. Roman was the founder of two worldwide known journals: Report on
Mathematical Physics and Open Systems and Information Dynamics. He published
19 papers in our journal. He will be sadly missed for his extraordinarily inspiring
intellect. His passing away is a considerable loss.

The concept of Ingarden space

Roman had discovered [2, 10] that a Finsler space (in the most physical cases it is
enough to consider a Randers space) can serve as a very precise mathematical model
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for the electromagnetic field – the Ingarden electromagnetic space, if we consider the
triple (space, metric, connection), where we take into account the Cartan or Lorentz
nonlinear connection. In fact, the E. Cartan’s approach is rather complicated, but
using the variational problem for the arc length in a Finsler space:

�(γ) =

1∫
0

F

(
x,

d

dt
x

)
dt,

where F stands for the Finsler metric, and taking the parametrization of the curve
Γ by the natural parameter:

s =

1∫
0

α

(
x,

d

dτ
dx

)
dτ,

we obtain, for the extremal curves the Lorentz equations
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)
d
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and, consequently, we determine a Lorentz nonlinear connection N [12–15]:

N j
k = γj

k�y
k − αF j

k .

Another specification leads to the Ingarden thermodynamic space, where all thermo-
dynamical processes appear to be automatically irreversible.

Some electromagnetical applications including open systems

As far as electromagnetical applications are concerned, including those to open sys-
tems, we mention the following [1, 5, 9]: additional interactions between gravita-
tional and electromagnetic forces, properties of electromagnetic “lenses” including
the torsion of electron trajectories, generalizations of the Helmholtz-Lagrange law
for an electric “lens”, importance of combining the focal length calculation with
a non-Riemannian geometry, immersion electromagnetic “lenses” in practice and
in the constructed Randers-type Ingarden electromagnetic space, torsion-depending
deformations within the electromagnetic spaces, electromagnetic space of an electro-
magnetic microscope, deformations of potentials in an electromagnetic space with
the help of generating functions, “lens”-thickness depending deformations in relation
with the scanning microscope, explicit formula for the focal length depending on the
electromagnetic “lens” thickness, and potentials generating functions dependence vs.
immersion electromagnetic “lenses” dependence.

Some thermodynamical applications including open systems

As far as thermodynamical application are concerned, including those to open sys-
tems, we mention the following [1, 3, 5, 9, 16]: thermodynamical interpretation of the
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Matsumoto spaces and generalized Matsumoto spaces, principles of thermodynamics
including the electromagnetic effects, Randers and Ingarden spaces vs. openness and
dissipativity of the system; hyperbolicity, Minkowskian spaces, and parabolicity in
thermodynamic geometry, thermodynamic parameters and geometry in presence of
the electromagnetic field, and advantages of a statistical and a stochastical thermo-
dynamics.

Relationship with noncommutative associative
and commutative nonassociative Finsler geometries

In this direction, following [1, 3, 5, 6, 8, 9], we mention the following areas of interest
and results of Roman: solitons in the Randersian-Ingarden physics, complex Rander-
sian physics vs. isospectral deformations, complex gauge connections of interacting
fields, self-duality equations for gauge theories, homogeneity vs. gauge theories of
the second order, forward and backward metrics in general relativity, coincidence
of the manifold topology with that generated by forward metric balls, the clocks
synchronization, the inertia tensor vs. non-inertial frames; SU(2)-based non-abelian
physical models, generalizations of the Lagrangian and its embedding in the elec-
troweak model, a concept of the five-dimensional model of nonlinear electrodynam-
ics, ferroelectric crystals in a Finsler geometry, the Finsler-geometrical counterpart
of the sine-Gordon equation for the surface, and simplifying the external field in
terms of the metric and connection.

We summarize the latter three sections with the following remark by Roman,
published in [6], p. 9:

The Lorentz connection has been defined in such a way that in a conse-
quence a generalization of the Maxwell equations of the electromagnetic
field followed, as was the primary aim of Ingarden in his doctor thesis.
Such was the surprising and amazing result of the Miron’s paper. The
most interesting is, however, that prof. Miron also obtained a special
form of interaction between the gravitational field and the electromag-
netic field. Up to now no such interaction was known in physics. It would
be interesting to study the physical consequences of such interaction. We
shall try to do it in our book, joint with J. �Lawrynowicz, L. Kozma, and
L. Tamássy.

At the moment the book is nearly finished. It contains a realization of the physical
programme described in the three latter sections and a necessary exposition of some
mathematical foundations. The tentative title reads: Finsler Geometry and Physics.
From Algebraic Foundations to Applications. It is written in cooperation with Mihai
Anastasiei and Radu Miron (Iaşi), Hideo Shimada and Sorin Vasile Sabau (Sapporo).
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Quantum information theory and foundation
of the Toruń School of that theory

In 1976 Roman started to use the generalized quantum mechanics of open systems
and the generalized concept of observable to construct a quantum information theory
being a straightforward generalization of Shanon’s theory (1948) [4]. Before he had
observed that in the usual quantum mechanics of closed systems there is no place
for a general concept of joint and conditional probability. Together with his younger
Toruń colleagues A. Kossakowski and A. Jamio�lkowski he introduced the concept of
quantum dynamical semigroups, superoperators which preserve semipositivity, and
entanglement, understood as the manifestation of quantum correlations between the
constituent parts in the system as opposed to much weaker classical correlations
which can well be encoded in a product or, in alternative terminology, a separate
state [11].

An important method for the detection of entangled states is based on the so-
called etanglement witnesses. Let H be a Hilbert space of a composite quantum
system: H = H1 ×H2. An Hermitian operator W ∈ L(H1 ×H2) is an entanglement
withness whenever

((x ⊗ y,Wx⊗ y)) ≥ 0 for any x ∈ H1 and y ∈ H2,

and
((η,Wη)) < 0 for some η ∈ H1 ⊗H2.

An entanglement witness has a negative eigenvalue, but it is positive on separable
pure states, i.e. it is block positive. From an experimentalist’s point of view, entan-
glement witness is a nonlocal observable whose expectation value, when measured
at a state ρ, i.e. the quantity Tr(ρW ), can serve as a direct indicator of the entan-
glement present in ρ [7]. Entanglement proves to be particularly useful in quantum
cryptography, communication and information processing. Roman initiated the fa-
mous Toruń group of researchers dealing with quantum information theory, known
as the Toruń School in this subject.
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At Bȩdlewo (2004), during Quaternionic-Finslerian Seminar
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With our distinguished guests, Professors Ralitza K. Kovacheva (Sofia), Bogdan
Bojarski (Warszawa), Paulius Mǐskinis (Vilnius), and Claude Surry (Font Romeu)
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WSPOMNIENIE O ROMANIE STANIS�LAWIE INGARDENIE
(1920–2011)

S t r e s z c z e n i e
Profesor Roman Stanis�law Ingarden (* 1. października 1920 r.), znakomity naukowiec

i nasz serdeczny przyjaciel, odszed�l do wieczności 12. lipca 2011 roku. Pamiȩtamy o Nim
jako o twórcy Toruńskiej Szko�ly Kwantowej Teorii Informacji i dwóch znanych na ca�lym
świecie czasopism naukowych, który wniós�l do nauki szereg ważnych idei i wyników w zakre-
sie termodynamiki stochastycznej, jej geometrycznej charakteryzacji z w�la̧czeniem elektro-
magnetyzmu, kwantowej teorii informacji oraz teorii uk�ladów otwartych (dysypatywnych).
Roman opublikowa�l w naszym czasopísmie 19 prac, co stanowi dla nas wielki honor.





PL ISSN 0459-6854

B U L L E T I N
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Massimo Vaccaro

BASICS OF LINEAR PARA-QUATERNIONIC GEOMETRY II
DECOMPOSITION OF A GENERIC SUBSPACE OF A PARA-QUATERNIONIC
HERMITIAN VECTOR SPACE

Summary
In the present Part II of the paper we investigate relevant classes of subspaces of a para-

quaternionic Hermitian vector space, in particular the decomposition of a generic subspace.
After showing in [8] some fundamental results concerning (Hermitian) para-type structures
on a real vector space, we consider here the tensorial presentation (H2 ⊗E2n, sl(H), ωH ⊗
ωE) of a para-quaternionic Hermitian vector space (V, Q̃, g) and characterize some classes of
special subspaces defined in terms of their behaviour with respect to the endomorphisms of
the para-quaternionic structure Q̃ = sl(H) and in some cases also in terms of the Hermitian
metric g = ωH⊗ωE. We will prove that a generic subspace of a para-quaternionic Hermitian
vector space is the direct sum of such fundamental bricks (see Proposition 2.9).

The tensorial presentation

(V, Q̃, g) � (H2 ⊗ E2n, sl(H), ωH ⊗ ωE)

turns out to be quite convenient to characterize such special subspaces. After proving that
the para-quaternionic subspaces coincide with the products H ⊗ E′, E′ ⊆ E (Proposition
1.4), the basic tool consists in restricting to pure subspaces, containing no nontrivial para-
quaternionic subspaces, and by showing that pure special subspaces are UF,T subspaces
defined by means of tensor product and depending on a given subspace F ⊂ E and a linear
operator T : F → E (see Definition 1.1). Viceversa we also give the precise conditions for
a UF,T subspace to be a special subspace of any given type.

This presentation is also useful from the metrical point of view to determine, for each
subspace, the signature of the induced metric. We give then the conditions for the above
special subspaces to be g-nondegenerate. In this article we report and develop some results
of [7] providing, in many cases, additional details and proofs.



18 M. Vaccaro

1. Relevant classes of subspaces of a para-quaternionic Hermi-
tian vector space

In the following, V will be the standard para-quaternionic Hermitian vector space
(H2 ⊗ E2n, sl(H), ωH ⊗ ωE) that has been defined in [8]. There it has been shown
that any para-hypercomplex admissible basis (I, J,K) of Q̃ = sl(H) is a standard
para-hypercomplex Hermitian structure which corresponds to a symplectic basis
(h1, h2) of H such that ωH = h∗1∧h∗2 and with respect to which it is I = I ⊗ Id, J =
J ⊗ Id, K = K ⊗ Id where

I =
(

0 −1
1 0

)
, J =

(
0 1
1 0

)
, K =

( −1 0
0 1

)
.(1)

We recall that, as an H̃-module, where by H̃ we denote the algebra of para-
quaternions, on a para-hypercomplex Hermitian vector space (V 4n, {I, J,K}, g) we
define the (H̃-valued)-Hermitian product (·) = (·){I,J,K} by

(·) : V × V → H̃,

(X,Y ) �→ X · Y = g(X,Y ) + ig(X, IY ) − jg(X, JY ) − kg(X,KY ).
(2)

When considering a para-quaternionic Hermitian vector space we observe that two
Hermitian products ( · ){I,J,K}, ( · ){I′,J′,K′}, referred to different admissible bases,
are related by an inner automorphism of H̃.

In the next subsection we consider some classes of subspaces defined only in terms
of the tensor product structure of V . Their role will be clear when, in the following
subsections, we shall introduce some special classes of subspaces which is natural to
consider in a para-quaternionic Hermitian vector space.

1.1. Special subspaces of H2 ⊗ En

Fixed a symplectic basis (h1, h2) of H , any X ∈ H ⊗ E can be written in a unique
way

X = h1 ⊗ e+ h2 ⊗ e′, e, e′ ∈ E.(3)

Let denote by pi : H ⊗ E → E, i = 1, 2, the natural linear projections defined by

p1(X) = e; p2(X) = e′.(4)

If U is a subspace then p1(U) = E1, p2(U) = E2 are subspaces of E, depending
on the chosen symplectic basis (h1, h2) in H . Notice that the sum p1(U) + p2(U) is
invariant.

With respect to the tensor product structure, the following subspaces of V can
be defined. First of all there are the product subspaces H ′ ⊗ E′, with H ′ ⊆ H and
E′ ⊆ E any given subspaces. Referring to the dimension of the non trivial factor in
H , only two classes of such subspaces are to be considered.
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A nonzero product subspace U = h ⊗ E′ ⊂ H ⊗ E where h is a fixed element
in H and E′ ⊂ E a subspace, will be called a decomposable subspace (meaning that
all elements in U are decomposable vectors; subspaces H ⊗ e′, e′ ∈ E will not be
considered under such terminology). With respect to the metric g, any decomposable
subspace is totally isotropic.

We introduce another important family of subspaces that we denote by UF,T .

Definition 1.1. Let (h1, h2) be a symplectic basis of H , F ⊆ E a subspace, and let
T : F → E be a linear map. We define the following subspace of H ⊗ E:

UF,T := {h1 ⊗ f + h2 ⊗ Tf, f ∈ F}.(5)

Note that the map

φ : F → UF,T ,

f �→ h1 ⊗ f + h2 ⊗ Tf
(6)

is an isomorphism of real vector spaces. By saying that a subspace U ⊂ H ⊗ E is
a UF,T subspace, we will mean that it admits the form (5) with respect to some
symplectic basis (h1, h2) of H .

As a first example of subspaces admitting the UF,T form we have the decompo-
sable subspaces U = h⊗ E′, h ∈ H, E′ ⊆ E: in any basis (h1 = h, h2) let F = E′

and T ≡ 0. Also, in a basis (h1, h2) with h1, h2 
= h, one has

F = p1(U) = p2(U) = E′ and T = λId, where λ =
β

α
for h = αh1 + βh2.

On the other hand, U does not admit the form (1.1) with respect to any basis
(h1, h2 ≡ αh), α ∈ R.

It is immediate to prove the following

Proposition 1.1.
a) A subspace U is a UF,T subspace iff there exists h 
= 0 in H such that (h ⊗

E) ∩ U = {0}.
b) With respect to the symplectic basis (h1, h2), the map T for the subspace U =

UF,T is injective iff (hi ⊗ E) ∩ U = {0}, i = 1, 2.

Observe that if U = UF,T with respect to h1, h2 and also U = UF ′,T ′
with respect

to h′1, h
′
2, where

h1 = αh′1 + βh′2, and h2 = γh′1 + δh′2,

then

F ′ = (αId + γT )F and T ′ = (αId + γT )−1(βId + δT ).

Proposition 1.2. A UF,T subspace can always be written as UF ′,T ′
with T ′ injective

by performing a suitable change of basis in H.
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Proof. The proof follows from the fact that a subspace

U = UF,T = {h1 ⊗ f + h2 ⊗ Tf, f ∈ F}
of dimension m contains at most m distinct nonzero decomposable vectors ki ⊗ fi,

i = 1, . . . , t, if the ki ∈ H are pairwise independent.

Remark that, from the isomorphism (6), the decomposable subspaces contained
in a U = UF.T subspace are direct addends in U .

In general, a subspace U ⊂ V does not admit the form UF,T : an example is given
by any product subspace H ⊗ E′, E′ ⊂ E. On the other hand, any subspace can
be written as direct sum of some UF,T subspaces. In fact, we have the following
proposition whose proof can be found in [7]:

Proposition 1.3. Any subspace U can be written in the forms
1) (h ⊗ F ′) ⊕ UF ′′,T ′′

for some h ∈ H and UF ′′,T ′′
of maximal dimension with

respect to all subspaces of the form UF,T contained in U .
2) k1⊗F1⊕. . .⊕ks⊗Fs⊕U F̃ ,T̃ with the ki ∈ H, i = 1, . . . , s, pairwise independent

and U F̃ ,T̃ of maximal dimension with respect to all subspaces of the form UF,T

containing no decomposable subspace.

Concerning the unicity of the presentation of the form UF,T we state the following
lemma whose proof is straightforward (see proof of Proposition 1.2):

Lemma 1.1. Given a subspace U ⊂ H ⊗ E the following conditions are equivalent:
1) U contains no nonzero decomposable vectors;
2) U = UF,T with respect to any symplectic basis B = (h1, h2), F = F (B) ⊂ E

and T = T (B) injective;
3) there exists a basis (h1, h2) such that U = UF,T for some subspace F ⊂ E and

some linear injective map T with no invariant line (i. e. if Tf = λf, λ ∈ R, f ∈ F

then f = 0).
A necessary condition for 1), 2), 3) to hold is that dimU ≤ dimE.

From the metrical point of view we have easily the following

Lemma 1.2. Let U = UF,T be a subspace and φ the isomorphism (6). Let
gF = φ∗gU be the pullback of the (possibly degenerate) restriction of g to U . Then

gF (f, f ′) = −2(ωE ◦ T )sym(f, f ′) = −[ωE(Tf, f ′) + ωE(Tf ′, f)].(7)

1.2. Para-quaternionic subspaces

Definition 1.2. A subspace U ⊂ V is called para-quaternionic if it is Q̃-invariant or,
equivalently, for one and hence for any para-hypercomplex basis (I, J,K) of Q̃ one
has IU ⊂ U, JU ⊂ U, KU ⊂ U .

The sum and the intersection of para-quaternionic subspaces is para-quaternionic.
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Proposition 1.4. Let (E′)k ⊂ E be any subspace. Then

U2k = H ⊗ E′(8)

is a para-quaternionic subspace of dimension 2k. Viceversa any para-quaternionic
subspace of V has this form. Moreover U is para-quaternionic Hermitian (with neu-
tral metric) iff E′ is ωE-symplectic.

Proof. The subspace U2k = H2⊗ (E′)k ⊂ H ⊗E is clearly Q̃-invariant. Viceversa, it
is immediate to verify that, for any basis (h1, h2) in H , the subspaces E′ = p1(U) and
p2(U) coincide. Moreover, using the invariance with respect to a para-hypercomplex
basis, we deduce that the decomposable vectors h⊗ e′ are in U for any e ∈ E′ and
h ∈ H . Therefore U = H ⊗ E′.

From the metrical point of view, the subspaces h1 ⊗ E′ and h2 ⊗ E′ are totally
isotropic and the metric on U , with respect to the decomposition U = h1 ⊗ E′ ⊕
h2 ⊗ E′, is given by

g|U =
(

0 ωE |E′

(ωE |E′)t 0

)
(9)

and has neutral signature (r, 2(k − r), r) with r = rk(ωE |E′) or equivalently (k −
s, 2s, k − s) with s = dim ker(ωE |E′) (see Lemma (2.4) in [8]). Then U is Her-
mitian para-quaternionic if and only if E′ is ωE|E′ -symplectic, which implies that
any Hermitian para-quaternionic subspace has necessarily dimension 4m and neutral
signature (2m, 2m).

Remark 1.1. Referring to the decompositions 1), 2) given in Proposition (1.3), notice
that a para-quaternionic subspace U = H ⊗ E′ decomposes respectively as

1) U = h1 ⊗ E′ ⊕ h2 ⊗ E′,

2) U = h1 ⊗ E′ ⊕ {h1 ⊗ e′ + h2 ⊗ Te′, e′ ∈ E′}
with respect to any basis (h1, h2), with T any automorphism of E′ with no real
eigenvalues. In this case then, the dimensions of the maximal UF,T subspaces in
U = H ⊗ E′ in the decompositions 1) and 2) coincide and equal the dimension of
E′.

Any subspace U of V contains a (possibly zero) maximal para-quaternionic sub-
space

U0 = U ∩
A∈Q̃

A(U).

Equivalently, U0 = U ∩ IU ∩ JU ∩KU for any admissible basis (I, J,K) of Q̃.

Definition 1.3. A subspace U ⊂ V is called pure if U0 = {0}, i.e. it contains no
nonzero para-quaternionic subspaces.

Clearly, from Proposition (1.1a), any UF,T subspace is pure.
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The viceversa is not true. For example, let consider the 3-dimensional subspace

U =< h1 ⊗ e1, h2 ⊗ e2, h3 ⊗ e3 >

where < h1, h2, h3 >= H and e3 ∈< e1, e2 >. It is straightforward to verify that
U is pure and, for any h ∈ H , the decomposable subspace h ⊗ Re ⊂ U for some
e ∈< e1, e2 >. By Proposition (1.1), the pure subspace U is not a UF,T subspace.

1.3. Complex subspaces

Definition 1.4. A subspace U ⊂ V is called complex if there exists a compatible
complex structure I ∈ Q̃ such that U is I-invariant, i.e. IU ⊂ U . We denote it by
(U, I).

We shall include I into an admissible basis (I, J,K) of Q̃. Such a basis will be
called adapted to the subspace (U, I). Adapted bases are defined up to a rotation in
the real plane spanned by J and K.

The following statements have been proved in [7].

Lemma 1.3.
(1) The complex structure I is unique up to its sign unless U is para-quaternionic.
(2) A complex subspace (U, I) ⊂ (V, Q̃) is pure if and only if there exists a para-

complex structure J ∈ Q̃ such that IJ = −JI, JU ∩ U = {0}.

Lemma 1.4. If (U, I) is pure complex, then, for any A ∈ Q̃, A 
= ±aI, a ∈ R, one
has AU ∩ U = {0}.

Proof. In fact, let (I, J,K) be an adapted basis such that JU ∩ U = {0}. Let A =
aI+ bJ+ cK and suppose there exists a nonzero X ∈ U such that AX ∈ U . AX 
= 0
would imply that Y = bJX + cKX ∈ U and JY ∈ U ; hence a contradiction if
(b, c) 
= (0, 0).

Adapted bases of a pure complex subspace are then defined up to a rotation in
the plane < J,K >.

Considering now also the metric structure of V we have the following special
class of pure complex subspaces.

Definition 1.5. An Hermitian complex subspace (U, I) of V is called totally complex
if there exists an adapted hypercomplex basis (I, J,K) such that JU ⊥ U (⇔ KU ⊥
U) with respect to the (nondegenerate) induced metric g or equivalently iff, with
respect to the adapted basis (I, J,K), the restriction to U of the Hermitian product
(2) has complex values. In fact, following the terminology of [3], a totally complex
subspace could be called a subspace with complex Hermitian product.

Note that the hypothesis of being Hermitian is necessary to ensure that any
totally complex subspace is pure.
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Let (U, I) be a totally complex subspace and (I, J,K) an adapted basis such that
JU ⊥ U . Any A = aI + bJ + cK ∈ Q̃, satisfies AU ⊥ U if and only if a = 0. Then
again, adapted bases are defined up to a rotation in the plane < J,K >.

Proposition 1.5. Any complex subspace (U, I) is a direct sum of the maximal para-
quaternionic subspace U0 and a pure I-complex subspace (U ′, I), i.e. U = U0 ⊕ U ′.
If (U ′′, I) is another pure I-complex subspace complementary to U0, then U ′ and U ′′

are isomorphic as I-complex spaces.

Proof. Let (U, I) be a complex subspace and U0 its maximal para-quaternionic
subspace. We prove the existence of a pure complex supplementary to U0 in U .
Let X1 /∈ U0. Clearly the vector IX1 /∈ U0. Moreover for the I-complex 2-plane
U1 =< X1, IX1 > we have U0 ∩ U1 = {0}. Consider now X2 /∈ U0 ⊕ U1. Then
U2 =< X2, IX2 > has trivial intersection with U0 ⊕ U1. By carrying on this proce-
dure we build up an I-invariant supplement

U ′ = U1 ⊕ . . .⊕ Um−s =< X1, IX1, . . . , Xm−s, IXm−s >

to U0 in U . Moreover suppose there exists X ∈ U ′ such that JX ∈ U ′ where J is a
compatible para-complex structure anticommuting with I. Then

< X, IX, JX, IJX = KX >

is a para-quaternionic subspace in U ′. Contradiction.
If U ′′ is another pure I-complex complementary to U0, then U ′, U ′′ are isomorphic

as I-complex subspaces. In fact, let φ : U ′ → U ′′ be the isomorphism that, for
any U � X = X0 + X1 = X̃0 + X2 maps X1 to X2. Then φ : IX1 �→ IX2, i.e.
φ(IX1) = Iφ(X1).

Hence the description of complex subspaces reduces to the description of pure
complex subspaces.

Let I be a compatible complex structure and (h1, h2) a symplectic basis of H
with respect to which I = I ⊗ Id with I as in (1).

Theorem 1.1. With respect to (h1, h2), a subspace U ⊆ V is pure I-complex iff
U = UF,T with T a complex structure on F = p1(U). Then the map

φ : (F, T−1) → (UF,T , I),
f �→ h1 ⊗ f + h2 ⊗ Tf

is an isomorphism of complex vector spaces. The signature of the metric on U is
of type (2p, 2s, 2q), 2s = dim ker g|U , and U is Hermitian if and only if F is gF -
nondegenerate. In this case φ : (F, T−1, gF ) → (U, I, g|U ) is an isomorphism of
Hermitian spaces. In particular T−1 is gF -skew symmetric. The Kaehler form of
(U, I) is given by

φ∗(g|U ◦ I) = gF ◦ T−1 = −(ωE|F + ωE |F (T ·, T ·)).
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The subspace (U, I) is totally complex if and only if F is ωE-symplectic and T is
ωE |F -skew-symmetric (⇐⇒ if T preserves the form ωE|F , i.e.

ωE|F (f, f ′) = ωE|F (Tf, T f ′) ∀f, f ′ ∈ F )(10)

or, equivalently, gF = −2ωE|F ◦ T .

Proof. Since (U, I) is pure, no decomposable vector is in U . From Lemma (1.1), U =
UF,T with respect to the symplectic basis (h1, h2 = Ih1); it is then straightforward
to verify that T 2 = −Id. Viceversa, it is immediate to verify that the pure subspace

U = UF,T = {h1 ⊗ f + h2 ⊗ Tf, T 2 = −Id}
is I-invariant. The statements about the isomorphism φ are straightforward to verify.
The expression of the Kaehler form follows from a direct calculation. The signature
of the metric on U is (2p, 2s, 2q), 2s = dim ker g|U (see Proposition (2.12) in [8]) and
clearly equals the signature of gF on F . Consequently U is Hermitian pure complex
if and only if F is gF -nondegenerate.

It is easy to verify that U ⊥ JU if and only if, for any f, f ′ ∈ F ,

0 = g(h1 ⊗ f + h2 ⊗ Tf, h1 ⊗ f ′ − h2 ⊗ Tf ′) = −ωE(f, T f ′) − ωE(Tf, f ′),

that is ωE(f, T f ′) = −ωE(Tf, f ′) which is equivalent to (10). The metric on U

verifies

g(h1 ⊗ f + h2 ⊗ Tf, h1 ⊗ f ′ + h2 ⊗ Tf ′) = gF (f, f ′) = 2ωE(f, T f ′).

Therefore, the nondegeneracy of U implies that F is ωE-symplectic.

Observe that by a change of symplectic basis in H , the subspace F remains the
same whereas the complex structure T changes into a diagonalizable automorphism
of F with only a pair of complex (conjugated) eigenvalues. Only if the change of the
basis in H is represented by an orthogonal (besides symplectic) matrix then T is
(the same) complex structure.

This theorem reduces classification of pure complex subspaces to the classification
of pairs (F, T ) with F ⊂ E and T being a complex structure on F . In particular, in
the classification of totally complex subspaces, F is, in addition, ωE |F -symplectic
and T preserves ωE|F .

1.4. Para-complex subspaces

Definition 1.6. A subspace U ⊂ V is called weakly para-complex (or product) if there
exists a para-complex structure K ∈ Q̃ such that U is K-invariant, i.e. KU ⊂ U .
We denote such subspace by (U,K). A para-complex subspace (U,K) is a weakly
para-complex subspace such that dim U+

K = dim U−
K .

The eigenspaces V +
K , V −

K of a given para-complex structure K ∈ Q̃ are decom-
posable subspaces (then totally isotropic) of V , i.e.

V +
K = h′ ⊗ E′, V −

K = h′′ ⊗ E′′ and E′ ⊕ E′′ = E.
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As a first consequence any weakly para-complex subspace which is not para-complex
is degenerate. The presence of decomposable vectors produces a difference when
passing from the complex to weakly para-complex case but, as we shall see, a common
treatment of both cases is still possible.

The following statements have been proved in [7].

Lemma 1.5. (1) A weakly para-complex subspace (U,K) of V is pure iff there exists
a complex structure I ∈ Q̃ anti-commuting with K such that IU ∩ U = {0}.

(2) If (U,K) is pure weakly para-complex, then for any compatible complex struc-
ture Ĩ, one has ĨU ∩U = {0}. Then the admissible bases are defined up to a pseudo-
rotation in the plane < I, J >R.

(3) Any weakly para-complex subspace (U,K) is a direct sum U = U0 ⊕ Ũ of the
maximal para-quaternionic subspace and of a pure weakly K para-complex subspace
Ũ . If Ũ ′ is another K pure weakly para-complex complementary subspace, then Ũ

and Ũ ′ are isomorphic as weakly K-para-complex spaces.
Assume Ũ 
= {0}. If Ũ � U±

K , then the para-complex structure K ∈ Q̃ is unique
up to its sign. Otherwise the family of para-complex structures

K̃a = aI + aJ ±K if Ũ ⊂ UK
+ (K̃a = aI − aJ ±K, if Ũ ⊂ UK

−)

preserves U for any adapted basis (I, J,K).

Proof. We prove only the existence of a K-invariant supplementary to U0 in (U,K)
(first part of point 3) since the presence of eigenvectors of K leads to some differences
with respect to the analogous proof of Proposition (1.5). Let U = U+

K ⊕ U−
K be

the decomposition of U into the eigenspaces of K. Let U0 be the maximal para-
quaternionic subspace in U and U0 = U+

0 ⊕ U−
0 , the decomposition of U0 into the

eigenspaces of K. Then, for any pair of complementary U1 and U2 to U+
0 and U−

0

in U+
K and U−

K , the subspace U1 ⊕ U2 is clearly K-invariant. Moreover it is pure for
the maximality of U0.

Hence also the description of weakly para-complex subspaces reduces to that one
of pure subspaces. In this case nevertheless there exists a difference regarding the
uniqueness of the para-complex structure. The reason for such a difference is a
consequence of the results in the next subsection.

Definition 1.7. Let (U,K) be a K-Hermitian para-complex subspace. Then U is called
totally para-complex if there exists a complex structure I ∈ Q̃ anticommuting with
K such that IU ⊥ U with respect to the induced metric g|U or equivalently iff, with
respect to the adapted basis (I, J,K), the restriction to U of the Hermitian product
(2) has para-complex values.

Note that, as in the complex case, the hypothesis of being Hermitian is necessary
to ensure that any totally para-complex subspace is pure. It is straightforward to
verify that adapted bases are defined up to a rotation in the plane < I, J >.



26 M. Vaccaro

Let J be a compatible para-complex structure and (h1, h2) a symplectic basis of
H such that J = J ⊗ Id with J as in (1).

Theorem 1.2. With respect to (h1, h2), a subspace U ⊆ V is pure weakly J-para-
complex iff U = UF,T with T a product structure on F = p1(U). Then the map

φ : (F, T ) → (UF,T , J),
f �→ h1 ⊗ f + h2 ⊗ Tf

is an isomorphism of weakly para-complex vector spaces. The subspace U is J-
Hermitian if and only if F is gF -nondegenerate and hence necessarily para-complex.
In this case, the signature of g|U is always neutral and φ : (F, T, gF ) → (U, J, g|U)
is an isomorphism of Hermitian para-complex spaces. In particular T is gF -skew
symmetric. The para-Kaehler form is given by

φ∗(g|U ◦ J) = gF ◦ T = −(ω|F − ω|F (T ·, T ·)).
The para-complex subspace (U, J) is totally para-complex if and only if T is ωE |F -

skew-symmetric ⇐⇒ the form ωE|F is skew-invariant with respect to T , i.e.

ωE |F (f, f ′) = −ωE |F (Tf, T f ′) ∀f, f ′ ∈ F

or, equivalently, gF = −2ωE|F ◦ T , and F is ωE |F -symplectic.

Proof. Let (Uk, J) be a pure weakly para-complex subspace in H⊗E, (h1,J h1 = h2)
be a symplectic basis and (I, J,K) an adapted basis. Clearly hi ⊗E ∩U = {0}, i =
1, 2 since U is pure. Then, from Proposition (1.1), U = UF,T . In particular, with
respect to a symplectic basis (h1,J h1 = h2), it is straightforward to verify that
T 2 = Id. Viceversa the pure subspace U = UF,T = {h1 ⊗ f + h2 ⊗ Tf, T 2 = Id} is
clearly J-invariant.

The eigenspaces V +
J and V +

J are decomposable subspaces and consequently they
are totally isotropic. Then, (see Lemma (2.4) in [8]), the signature of the induced
metric on U (which equals the signature of gF on F ) is (m, k − 2m,m), where
m = rk g(V +

J × V −
J ). By (7), U if J-Hermitian with neutral signature iff F is gF

nondegenerate.
Consider now a J-Hermitian para-complex subspace U = {h1 ⊗ f + h2 ⊗ Tf, f ∈

F}. Then
IU = {h1 ⊗−Tf + h2 ⊗ f, f ∈ F}.

Imposing U ⊥ IU it follows that the condition for (U, J) to be totally para-complex
is given by

ω|F (f, f ′) = −ω|F (Tf, T f ′)(11)

(⇔ T is ωE |F -skew-symmetric). The Hermitianity hypothesis on F implies that F
if ωE-symplectic. Then the decomposition F = E1 ⊕E2 into into ±1-eigenspaces of
T is a Lagrangian decomposition (i.e. ωE |E1 ≡ 0, ωE|E2 ≡ 0) of the symplectic
space F .
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By an admissible change of symplectic basis in H such that the correspondence
p1(U) �→ p2(U) is still injective, F remains the same whereas the para-complex
structure T turns into a diagonalizable automorphism of F with only a pair of
real eigenvalues of opposite sign. Only through a change of basis represented by an
orthogonal matrix, T remains the same para-complex structure on F .

The latter theorem reduces classification of weakly pure para-complex subspaces
to that one of pairs (F, T ) with F ⊆ E and T a product structure on F .

Differently from the pure complex case, where (U, I) admits the form UF,T with
respect to all symplectic bases of H , in the pure weakly para-complex case, the
presence of decomposable vectors in (U, J) and Lemma (1.1) allow for some spe-
cial presentations of (U, J) different from the UF,T form. In particular, using the
decomposition of (U, J) into the ±1 eigenspaces of J on U , we have the following

Proposition 1.6. Let (U, J) be a pure weakly para-complex subspace with (h1, h2 =
J h1) a symplectic basis. Let moreover (I, J,K) be an adapted basis. The pure weakly
para-complex subspace decomposes as

(U, J) = (h′1 ⊗ E1) ⊕ (h′2 ⊗ E2),

where E1 ⊕ E2 = F is the T ±1-eigenspaces decomposition of F ,

h′1 = − 1√
2

(h1 + h2), h′2 =
1√
2

(h1 − h2)

is the symplectic basis of eigenvectors of J , and

h′1 ⊗ E1 = U+
J and h′2 ⊗ E2 = U−

J

are the eigenspaces of J |U .

1.5. Nilpotent subspaces

Definition 1.8. A subspace U 
= {0} ⊂ H ⊗ E is called nilpotent if there exists a
nonzero nilpotent endomorphism A ∈ Q̃ such that AU ⊂ U .

The nilpotent subspace U will be called also A-nilpotent even if, as we will see
later, such a nilpotent endomorphism is never unique.

If U is nilpotent we call degree of nilpotency of U the minimum integer n such
that AnU = {0}, A ∈ Q̃. Clearly, since A2 = 0, the degree of nilpotency of U is at
most 2, and equal to 1 if U ⊂ kerA.

Proposition 1.7. A subspace U is nilpotent of degree 1 iff it is a decomposable sub-
space h⊗F, h ∈ H, F ⊂ E. More generally, let A ∈ Q̃ be a nilpotent endomorphism
and kerA = h⊗ E. A subspace U is A-nilpotent iff one has

h⊗ p2(U) ⊂ U.
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Proof. We first observe that the subspace p2(U) is invariant under any change of
symplectic basis (h1, h2) �→ (h1, h

′
2). The first statement is straightforward. Let U

be a A-nilpotent subspace where A ∈ Q̃ with kerA = h ⊗ E. Let (h1 ≡ h, h2) be a
symplectic basis of H (then A(h2⊗E) = h1⊗E). For any X = h1⊗e1 +h2⊗e2 with
e2 
= 0 in U the vector AX ∈ U implies that h1⊗e2 ∈ U . So, being E1 = p1(U), E2 =
p2(U), the A-invariance of U implies that h1 ⊗E2 ⊂ U (⇒ E2 ⊆ E1). Viceversa, let
U be a subspace. If the subspace h1 ⊗ p2(U) ⊆ U , then, for any A ∈ Q̃, ‖A‖2 = 0
with kerA = h1 ⊗ E, the subspace U is clearly A-nilpotent.

Obviously, all para-quaternionic subspaces are nilpotent of degree 2 with respect
to any nilpotent structure in Q̃.

Proposition 1.8. Any nilpotent subspace (U,A) is a direct sum of the maximal
para-quaternionic subspace U0 and a pure A-invariant subspace (U ′, A), i.e. U =
U0⊕U ′. If (U ′′, A) is another pure A-invariant subspace complementary to U0, then
U ′ and U ′′ are isomorphic as A-nilpotent spaces.

Proof. Let (U,A) be a nilpotent subspace and U0 ⊂ U be the maximal para-
quaternionic subspace. Let kerA|U = kerA|U0 ⊕ U1 with U1 any complementary.

For every decomposition U = U0 ⊕ U1 ⊕ U2 the complementary

U2 = {h1 ⊗ f + h2 ⊗ f ′, f ∈ F, f ′ ∈ F ′}
contains no decomposable vectors. In fact, if

X = h⊗ f̄ = h1 ⊗ αf̄ + h2 ⊗ βf̄ ∈ U2,

then by the A-invariance AX = h1 ⊗ βf̄ ∈ KerA|U . Thus the vector h2 ⊗ βf̄ ∈ U

which implies that X ∈ U0. Contradiction.
By Proposition (1.1) we have

U2 = UF,T = {h1 ⊗ f + h2 ⊗ Tf, f ∈ F}
with T injective and TF = F ′.

Moreover (h1⊗F )∩kerA|U = {0} or, equivalently, F ∩E′
1 = {0}. In fact, suppose

f ∈ F ∩E′
1. Then h1⊗f ∈ kerA|U and h2⊗Tf ∈ U0 which leads to the contradiction

with h1 ⊗ f + h2 ⊗ Tf ∈ U0 ⊕ U1.
Finally, AU2 ⊂ U1. In fact, let X = h1 ⊗ f + h2 ⊗ Tf ∈ U2 and suppose

AX = h1 ⊗ Tf = h1 ⊗ eo + h1 ⊗ e1 ∈ U0 ⊕ U1.

Then, since h2 ⊗ e0 ∈ U0, we get h1 ⊗ f + h2 ⊗ e1 ∈ U . Since F ∩ E′
1 = {0}, then

h1 ⊗ f + h2 ⊗ e1 ∈ U2 which, by the injectivity of T leads to a contradiction again.
The subspace U ′ = U1⊕U2 is then an A-invariant complement of U0 in U . If (U ′′, A)
is another A-invariant complement of U0 in U , let us define the bijection

φ : U ′ → U ′′,
X ′ �→ Y ′′
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for each

U � Z = X0 +X ′ = Y0 + Y ′′ with X0, Y0 ∈ U0, X ′ ∈ U ′, Y ′′ ∈ U ′′.

Then φAX ′ = AY ′′ = AφX ′, i.e. φ is an isomorphism of pure A-nilpotent subspaces.

Remark that any pure A-nilpotent subspace U contains one and only one decom-
posable subspace that is kerA|U . In fact, if h ⊗ e′ ∈ U , then, by the A-invariance,
we have H ⊗ e′ ⊂ U .

From the previous proposition, we get the following characterization of nilpotent
subspaces with respect to Proposition (1.3):

Theorem 1.3. Let A ∈ Q̃ be a nilpotent endomorphism such that kerA = h1 ⊗ E

and let (h1, h2) be a symplectic basis. The subspace

U = (h1 ⊗ E′) ⊕ {h1 ⊗ f + h2 ⊗ Tf, f ∈ F}(12)

with F ∩ E′ = {0}, TF ⊂ E′ and T injective is pure A-nilpotent of the form U =
UF ′,T ′

with F ′ = E′ ⊕ F and T ′ = 0 ⊕ T : E′ ⊕ F → E′. Viceversa, any pure A
nilpotent subspace can be written in the form (12).

Moreover, a sufficient condition for U to be nondegenerate is that p2(U) is ωE-
symplectic.

Proof. The subspace U in (12) is clearly A-nilpotent with respect to all A ∈ Q̃ such
that kerA = h1 ⊗ E. Moreover it is pure since it is a UF,T subspace. Viceversa, let
U be a pure A-nilpotent subspace with kerA|U = h1 ⊗ E′. Fix a symplectic basis
(h1, h2). Then U = (h1 ⊗ E′) ⊕ U ′ with

U ′ = {h1 ⊗ f + h2 ⊗ f̃ , f ∈ F, f̃ ∈ F̃}
being any complementary. Since U is nilpotent, from Proposition (1.7) we get F̃ ⊂
E′. Moreover, since U is pure, no decomposable vectors exist in U ′ which implies
F ∩ E′ = {0}. Then

U ′ = UF,T = {h1 ⊗ f + h2 ⊗ Tf, f ∈ F} with T : F → F̃ injective.

The sufficient condition for U to be nondegenerate is straightforward.

In the next section the subspace U ′ = {h1⊗f+h2⊗Tf, f ∈ F} with F∩TF = {0}
and T : F → TF an isomorphism given in (12), will be called real. Therefore any
pure A-nilpotent subspace is the direct sum of a degree 1 A-nilpotent subspace and a
(possibly trivial) real subspace.

We have seen that a non trivial decomposable subspace is a degree 1 nilpotent
subspace and a pure weakly para-complex subspace not para-complex. From (12)
we have then that every nontrivial pure nilpotent subspace contains a nontrivial
pure weakly para-complex subspace not para-complex. Moreover, any nontrivial pure
weakly para-complex subspace is the direct sum of a pure para-complex subspace
and a degree 1 nilpotent subspace.
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1.6. Real subspaces

Definition 1.9. A subspace U ⊂ V is called real if AU ∩U = {0}, ∀A ∈ Q̃. Equiva-
lently, U contains neither a nontrivial complex nor weakly para-complex subspace.

Let us prove the above equivalence. If AU ∩ U = {0}, ∀A ∈ Q̃, clearly no
nontrivial complex or weakly para-complex subspaces are in U . Viceversa, let U
contain no nontrivial complex or weakly para-complex subspaces. Then, as remarked
in the previous section, it contains no nontrivial nilpotent subspaces as well.

A real subspace U is pure. Also, dimU ≤ 1
2 dimV .

Definition 1.10. A non degenerate real subspace U ⊂ V is called totally real if for
one and hence for any para-hypercomplex basis (I, J,K) of Q̃,

IU ⊥ U, JU ⊥ U, KU ⊥ U

or, equivalently, if the Hermitian product (2) has real values for any admissible basis
(I, J,K) of Q̃. In fact, in [3] such subspace is called a subspace with real Hermitian
product.

The implication in the first statement is straightforward to verify. In this case
dimU ≤ 1

4 dim V .

Theorem 1.4. A subspace U ⊆ V is real iff U = UF,T with respect to a symplectic
basis (h1, h2), where the linear map

T : F = E1 = p1(U) → p2(U)

is an isomorphism such that, for any non trivial subspace W ⊂ F ∩ TF , we have
TW � W .

The subspace U is nondegenerate if and only F is gF -nondegenerate.
Let E2 = TE1. The real subspace U is totally real iff

ωE |E1 = ωE |E2 ≡ 0 and T |E1 is ωE |F − skew-symmetric,(13)

which implies E1 ∩E2 = {0}.

Proof. Let U be a real subspace. As in the case of pure complex subspaces, also
the real subspace U contains no decomposable vectors (since it contains no non
trivial weakly para-complex subspace). From Lemma (1.1), fixed any symplectic
basis (h1, h2) of H , we can write

U = UF,T = {h1 ⊗ e+ h2 ⊗ Te, e ∈ F = E1 = p1(U)}.
Suppose T F̃ ⊂ F̃ for some subspace F̃ ⊂ W = E1 ∩ E2. Then F̃ has to be an
even-dimensional subspace direct sum of 2-dimensional T -invariant real subspaces
F̃i. We show that necessarily F̃ = {0}.

Let then F̃ ⊇ F̃i =< e, T e >R be a T -invariant plane with T (Te) = λe + μTe.
It is easy to verify that neither μ nor λ can be zero. Moreover, let us consider the
non-null vector X = h1 ⊗ e+h2⊗Te ∈ U . For any map A ∈ Q̃, A = αI +βJ + γK,



Basics of linear para-quaternionic geometry II 31

where (I, J,K) is the para-hypercomplex basis associated to the chosen basis (h1, h2)
of H and with

α(γ) =
γ

μ
(λ− 1), β(γ) =

γ

μ
(1 + λ),

the vector AX ∈ U and this gives a contradiction.
Viceversa, let U = UF,T with respect to the symplectic basis (h1, h2); denote

E1 = F, E2 = TF , and assume that T : E1 → T (E1) = E2 is an isomorphism such
that for any non trivial subspace W ⊂ E1 ∩E2 we have TW � W . Let

A = αI + βJ + γK, ∈ Q̃.

Suppose there exists a non null vector X = h1 ⊗ e + h2 ⊗ Te ∈ U , such that

AX = h1 ⊗ (−γe+ (β − α)Te) + h2 ⊗ ((α+ β)e + γTe) 
= 0 in U.

This implies that T 2e ∈< e, T e >⊂ (E1 ∩ E2), which gives a contradiction.
By (7), the subspace U is nondegenerate if and only F is gF -nondegenerate.
Let U = {X = h1 ⊗ e+ h2 ⊗ Te, e ∈ E1} be a totally real subspace in V . Then

calculating IU, JU, KU and imposing orthogonality conditions IU ⊥ U, JU ⊥
U, KU ⊥ U , we obtain

ωE|E1 = ωE |E2 ≡ 0,

from 1) and 2), and

ωE(e, T e′) + ωE(Te, e′) = 0, ∀e, e′ ∈ E1

from 3).
Viceversa, given a pure real subspace U = UF,T , from (13) we obtain IU ⊥

U, JU ⊥ U, KU ⊥ U . For any

X = h1 ⊗ e+ h2 ⊗ Te and Y = h1 ⊗ e′ + h2 ⊗ Te′,

we get

g(X,Y ) = ωE(e, T e′) − ωE(Te, e′) = 2ωE(e, T e′).(14)

Since U is nondegenerate, ωE(E1×E2) is nondegenerate as well, and hence E1∩E2 =
{0}. We have denoted by ωE(E1×E2) the restriction of the symplectic form ωE to the
subspace E1×E2 of E×E. Moreover, by saying that ωE(E1×E2) is nondegenerate,
we mean that

ker ωE(E1 × E2) = {b ∈ E2 | ωE(e1, e2) = 0, ∀e1 ∈ E1} = {0}.

2. Decomposition of a generic subspace

Let U ⊂ V be a subspace of the para-quaternionic Hermitian vector space

V = (H ⊗ E, Q̃ = sl2(R) ⊗ Id, g = ωH ⊗ ωE).

For any A ∈ Q̃ we denote by UA the maximal A-invariant subspace in U .
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The following proposition shows that, by using para-quaternionic, pure complex,
weakly pure para-complex and real subspaces as building blocks, we can construct
any subspace U ⊂ V .

Proposition 2.9. Let U be a subspace in V and U0 be its maximal para-quaternionic
subspace. Then U admits a direct sum decomposition of the form

U = U0 ⊕ U ′

with

U ′ = U1
I1 ⊕ . . .⊕ Up

Ip
⊕ Up+1

J1
⊕ . . .⊕ Up+q

Jq
⊕ UR,

where U i
Ii
, i = 1, . . . , p, are pure Ii-complex subspaces, whereas U j

Jj
, i = 1, . . . , q, are

Jj-pure weakly para-complex subspaces and UR is real.

Proof. We denote by U1 a complement to U0 in U and choose a complex structure I1
so that U1

I1

= {0}; then we can write U = U0 ⊕U1

I1
⊕U2, where U2 is a complement

to U0 ⊕ U1
I1

.
Let us choose now a complex structure I2 so that U2

I2

= {0}. Then U = U0 ⊕

U1
I1

⊕ U2
I2

⊕ U3, where U3 is a complement to U0 ⊕ U1
I1

⊕ U2
I2

.
Denote by p+ 1 the step in which Up+1 has no invariant pure complex subspace.

Then choose a para-complex structure J1 so that Up+1
J1


= {0}. Then

U = U0 ⊕ U1
I1 ⊕ . . .⊕ Up

Ip
⊕ Up+1

J1
⊕ Up+2,

where Up+2 is a complement to U0 ⊕ U1
I1

⊕ . . . ⊕ Up
Ip

⊕ Up+1
J1

. By carrying on this
construction, we arrive at a complementary Up+q+1 which has neither pure complex
nor pure weakly para complex invariant subspaces. In this case Up+q+1 = UR is real.

Observe now that, by using as building blocks para-complex subspaces instead
of weakly para-complex ones, we necessarily need to use also nilpotent subspaces;
for example, let think of a decomposable subspace U = h⊗ F .

The decomposition of Proposition (2.9) is clearly not unique. The first reason
depends obviously on the nonuniqueness of the complement at each step. Moreover
the decomposition depends on the chosen order of types of subspaces, i.e. if we first
consider pure complex subspaces and then pure weakly para-complex or the other
way round.

As an example, let (I, J,K) be a hypercomplex basis of Q̃ and X ∈ V a non-
decomposable vector in H ⊗ E Consider U3 =< X, IX, JX >⊂ Q̃X (observe that
vectors X, IX, JX are mutually orthogonal). Then clearly, according to the cho-
sen order, U = U1 ⊕ U2 with (U1, I) =< X, IX > a pure complex subspace and
U2 =< JX > a real subspace. Yet, also U = U1 ⊕ U2 with (U1, J) =< X, JX > a
pure para-complex subspace and U2 =< IX > a real subspace.

To overtake this pair of problems, we may fix the order of types of subspaces, for
example first complex (resp. para-complex), and select, among all Up

A, A ∈ Q̃, A2 =
−Id, (resp. A2 = Id), the one with maximal dimension. Yet, as appears clearly
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from the above example, in the second case we could have also U = U1 ⊕ U2 with
(U1,K = IJ) =< IX, JX > being a pure para-complex subspace and U2 =< X > a
real subspace. Moreover, looking for a canonical metrical decomposition, we clearly
need to consider also the signature of the metric induced on each addend.

Further investigations are needed to verify the existence of some criteria to define
a canonical affine or metrical decomposition.
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Università di Salerno

I-84084 Fisciano (SA)

Italy

e-mail: massimo vaccaro@libero.it

Presented by W�lodzimierz Waliszewski at the Session of the Mathematical-Physical
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PODSTAWY LINIOWEJ GEOMETRII PARA-KWATERNIONOWEJ
II

ROZK�LAD PRZESTRZENI GENERUJA̧CEJ PARA-KWATERNIONOWEJ
HERMITOWSKIEJ PRZESTRZENI WEKTOROWEJ

S t r e s z c z e n i e
W obecnej czȩści II pracy badamy stosowne klasy podprzestrzeni para-kwaternionowych

hermitowskich przestrzeni wektorowych, a w szczególności rozk�lad przestrzeni generuja̧cej.
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Summary
The generalized Fourier coefficients γ̂(m,n) of a homeomorphic self-mapping γ of the

unit circle T are defined by the formula

γ̂(m,n) :=
1

2π

∫ π

−π

γ(eit)me−intdt , m, n ∈ Z .

In the paper [12] the following inequalities were proved:

1

K

∞∑
n=−∞

|n||λn|2 ≤
∞∑

n=−∞

∣∣∣∣∣
∞∑

m=−∞

√
|n|γ̂(m, n)λm

∣∣∣∣∣
2

≤ K
∞∑

n=−∞
|n||λn|2 ,

provided γ admits a K-quasiconformal extension to the unit disk D and Z � n �→ λn ∈ C is
a sequence such that

∑∞
n=−∞ |n||λn|2 < +∞. Note that they look similarly to the Grunsky

inequalities for holomorphic functions in the classes Σ(k), 0 ≤ k ≤ 1. This paper provides
an answer to the question about the equality in these inequalities.
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Key words and phrases: Dirichlet integral, extremal quasiconformal mapping, Fourier

coefficient, generalized Fourier coefficient, harmonic function, Poisson integral, quasicon-
formal mapping, quasisymmetric automorphism, Teichmüller mapping.
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Introduction

Given a function f : T → C measurable on the unit circle T := {z ∈ C : |z| = 1}
and m,n ∈ Z we define

f̂(m,n) :=
1

2π

∫ π

−π

f(eit)me−intdt =
1

2π

∫
T

f(z)mz−n|dz| ,(0.1)

provided the respective functions are integrable on T. If m = 1 then (0.1) takes the
form of

f̂(1, n) = f̂(n) :=
1

2π

∫ π

−π

f(eit)e−intdt =
1

2π

∫
T

f(z)z−n|dz| ,(0.2)

and so f̂(1, n) is just a n-th Fourier coefficient of the function f . This justifies to call
f̂(m,n) the (m,n)-generalized Fourier coefficient of the function f . If f satisfies the
following condition

0 < ess inf
z∈T

|f(z)| ≤ ess sup
z∈T

|f(z)| < +∞ ,

then f̂(m,n) is well defined for any m,n ∈ Z. Let Hom+(T) denote the family of
all sense-preserving homeomorphic self-mappings of T. If f ∈ Hom+(T), then all
generalized Fourier coefficients f̂(m,n), m,n ∈ Z, are well defined. For K ≥ 1 let
Q(T;K) be the class of all γ ∈ Hom+(T) which admit a K-quasiconformal extension
to the unit disk D := {z ∈ C : |z| < 1}. Homeomorphisms belonging to the class
Q(T) :=

⋃
K≥1 Q(T;K) were called by Krzyż as quasisymmetric automorphisms of

the unit circle; cf. [4] and [5]. He noticed that each f ∈ Q(T) can be described by a
similar condition to the well-known Beurling-Ahlfors quasisymmetricity condition;
cf. [2]. For another characterizations of the class Q(T) see [16] and [13].

In the paper [12] the following result was proved.

Theorem A. Given K ≥ 1 let γ ∈ Q(T,K). If Z � n �→ λn ∈ C is a sequence such
that

∞∑
n=−∞

|n||λn|2 < +∞ ,(0.3)

then for each n ∈ Z the sequence N � p �→
p∑

m=−p

√|n|γ̂(m,n)λm is convergent as

p→ ∞ and

1
K

∞∑
n=−∞

|n||λn|2 ≤
∞∑

n=−∞

∣∣∣∣∣
∞∑

m=−∞

√
|n|γ̂(m,n)λm

∣∣∣∣∣
2

≤ K

∞∑
n=−∞

|n||λn|2 .(0.4)

Note that the inequalities (0.4) look similarly to the Grunsky inequalities for
holomorphic functions in the classes Σ(k), 0 ≤ k ≤ 1; cf. [14, Sect. 3.1 and 9.4].
By the works of R. Kühnau [6–8] and Y. Shen [15] we know that the inequalities
(0.4) can be improved in general, because the quasiconformality constant K can be
replaced by a better one for a certain γ. In this paper we prove that the second
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(resp. first) equality in (0.4) is possible for a nonzero sequence Z � n �→ λn ∈ C iff
γ (resp. γ−1) admits the extremal regular quasiconformal Teichmüller extension ϕ

to D with the complex dilatation

∂̄ϕ

∂ϕ
=
K − 1
K + 1

F ′

F ′ a.e. on D ,(0.5)

where F : D → C is a non-constant holomorphic function with finite Dirichlet
integral. This completes the considerations from [12]. Here and later on we abbreviate
almost everywhere and almost every to a.e.

1. On a modification of the Poisson integral

Let L0(T) be the class of all Lebesgue’s measurable functions f : T → C. We adopt
the usual notation L1(T) for the class of all functions f ∈ L0(T) which are integrable
on T with respect to the Lebesgue arc-length measure, i.e.

∫
T
|f(z)||dz| < +∞. Let

P[f ] be the Poisson integral of a function f ∈ L1(T), i.e.

P[f ](z) : =
1

2π

∫
T

f(u) Re
u+ z

u− z
|du|(1.1)

= f̂(0) +
∞∑

n=1

f̂(n)zn +
∞∑

n=1

f̂(−n)zn , z ∈ D .

It is well known that P[f ] is a complex-valued harmonic function on D. Moreover,
if the function f is continuous, then the function P[f ] is the unique solution to
the Dirichlet problem for f which means that for every z ∈ T, P[f ](ζ) → f(z) as
D � ζ → z. Let D[F ] denote the Dirichlet integral of a function F : D → C, a.e.
differentiable on D, i.e.

D[F ] :=
∫

D

(∣∣∣∂F
∂x

∣∣∣2 +
∣∣∣∂F
∂y

∣∣∣2
)

dxdy = 2
∫

D

(|∂F |2 + |∂̄F |2)dxdy ,(1.2)

where

∂F :=
1
2

(
∂F

∂x
− i

∂F

∂y

)
, ∂̄F :=

1
2

(
∂F

∂x
+ i

∂F

∂y

)

are so-called the formal derivatives of F . If F : D → C is a harmonic mapping in D
given by the series expansion

F (z) =
∞∑

n=0

anz
n +

∞∑
n=1

a−nz
n , z ∈ D ,
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with coefficients an ∈ C, n ∈ Z, then integrating by substitution we obtain
∫

D

(|∂F |2 + |∂̄F |2)dxdy = lim
R→1−

lim
p→∞

∫ R

0

∫ 2π

0

(∣∣∣
p∑

n=1

nanr
n−1ei(n−1)t

∣∣∣2

+
∣∣∣

p∑
n=1

na−nr
n−1e−i(n−1)t

∣∣∣2)rdtdr

= lim
R→1−

∫ R

0

2π
( ∞∑

n=1

n2|an|2r2n−1 +
∞∑

n=1

n2|a−n|2r2n−1
)

dr

= π lim
R→1−

∞∑
n=−∞

|n||an|2R2n = π
∞∑

n=−∞
|n||an|2 ,

and consequently,

D[F ] = 2π
∞∑

n=−∞
|n||an|2 ;(1.3)

cf. [12, (1.2)]. By Theorem A we can modify the Poisson integral P[f ] as follows.
Setting H1/2 := {h ∈ L1(T) : D[P[h]] < +∞} we conclude from (1.3) that

2π
∞∑

n=−∞
|n||f̂(n)|2 = D[P[f ]] < +∞ , f ∈ H1/2 .(1.4)

Applying now Theorem A for an arbitrary fixed K ≥ 1, γ ∈ Q(T;K) and the
sequence Z � n �→ λn := f̂(n) we know that for each n ∈ Z the sequence N � p �→

p∑
m=−p

√|n|γ̂(m,n)λm is convergent as p→ ∞ and we may define

f̂(0; γ) := f̂(0) and f̂(n; γ) := lim
p→∞

p∑
m=−p

γ̂(m,n)f̂(m) , n ∈ Z \ {0} .(1.5)

Moreover, by the inequalities (0.4),

1
K

∞∑
n=−∞

|n||f̂(n)|2 ≤
∞∑

n=−∞
|n||f̂(n; γ)|2 ≤ K

∞∑
n=−∞

|n||f̂(n)|2 .(1.6)

This means, by (1.4), that the modified Poisson integral operator

H1/2 � f �→ Pγ [f ] :=
∞∑

n=0

f̂(n; γ)zn +
∞∑

n=1

f̂(−n; γ)zn , z ∈ D ,(1.7)

is well defined for all f ∈ H1/2 and γ ∈ Q(T); cf. [9]. Combining (1.7) with (1.3) and
(1.4) we can rewrite the inequalities (1.6) in the following shorter form

1
K

D[P[f ]] ≤ D[Pγ [f ]] ≤ K D[P[f ]] ,(1.8)

where K ≥ 1, γ ∈ Q(T,K) and f ∈ H1/2; cf. [9, Corollary 1.1]. As a matter of fact
the inequalities in (1.8) are equivalent to the ones in (0.4).
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By the definition of the operator Pγ the following its properties can be inferred;
cf. [9, Remark 1.2].

Theorem B. For any γ ∈ Q(T) the following properties hold:

(i) If γ is the identity mapping on T, then Pγ = P, i.e. the mapping (f, γ) �→ Pγ [f ]
generalizes the Poisson operator P;

(ii) Pγ [μf + νg] = μPγ [f ] + ν Pγ [g] as μ, ν ∈ C and f, g ∈ H1/2, i.e. the operator
Pγ is linear;

(iii) Pγ [f ] = Pγ [f ] as f ∈ H1/2;

(iv) Pγ [Re f ] = Re Pγ [f ] and Pγ [Im f ] = Im Pγ [f ] as f ∈ H1/2.

In [11] and [10] the operator Bγ was assign to every γ ∈ Q(T). We recall now
its construction. For all f, g ∈ L0(T) the notation f � g means that f − g equals
a constant function a.e. on T. It is clear that � is an equivalence relation in the
class L0(T). Let [f/ �] stands for the abstract class of f ∈ L0(T) with respect to �.
Consider the class

H := {[f/ �] : f ∈ Re L1(T) and D[P[f ]] < +∞} .(1.9)

Here and subsequently, we set ReX := {Re f : f ∈ X} for any family X of complex-
valued functions. It can be verified in the standard way that (H , ‖ · ‖H) is a real
Hilbert space, where

∥∥[f/ �]
∥∥

H
:=

√
1
2

D[P[f ]] , f ∈ Re H1/2 ;(1.10)

cf. [11, Sect. 2.4]. We adopt the usual notation C(T) for the class of all complex-
valued continuous functions on T. From (1.9), (1.10) and (1.4) it follows that the set
{[f/ � ] : f ∈ Re C(T)}∩H is dense in (H , ‖ · ‖H). Moreover, it may be concluded
from [11, (2.5.1) and Theorems 2.5.3 and 2.4.3] that the inequalities

1
K

D[P[f ]] ≤ D[P[f ◦ γ]] ≤ K D[P[f ]]

hold for all K ≥ 1, f ∈ C(T) and γ ∈ Q(T,K). Then there exists the unique linear
continuous operator Bγ : H → H in (H, ‖ · ‖H) satisfying

Bγ([f/ �]) = [f ◦ γ/ �] , f ∈ Re C(T) ∩ H1/2 .(1.11)

As a matter of fact Bγ is a linear homeomorphism of the space (H , ‖ · ‖H) onto
itself; cf. [11, Corollary 2.5.4]. Note, that the operator Bγ is defined implicitly by
the condition (1.11). From the famous Beurling-Ahlfors result [2] we know that a
quasisymmetric automorphism γ of T does not have to be absolutely continuous
function. Moreover, γ can be even purely singular. Therefore in such a case the
composite mapping f ◦ γ is not Lebesgue’s measurable function in general. In con-
sequence, f ◦ γ /∈ L0(T) for a certain f ∈ H1/2, and so the family Re C(T) ∩ H1/2
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can not be replaced by Re H1/2 in (1.11). This means that defining the operator
Bγ directly by composition of functions fails for a singular γ. This problem was
overcome in [11, Sect. 2.5] where the following result was stated:

Bγ([f/ �]) = [Tr[P[f ]] ◦ γ/ �] , f ∈ Re H1/2 ;(1.12)

cf. [11, (2.5.8)]. Here and later on the symbol Tr[F ] denotes the radial limiting valued
function of a function F : D → C, i.e. for every z ∈ T,

Tr[F ](z) := lim
t→1−

F (tz)

as the limit exists, while Tr[F ](z) := 0 otherwise. It is well known that Tr[P[f ]] = f

a.e. on T for every f ∈ L1(T); cf. [3, Sect. 1.2]. By (1.8),

Tr[Pγ [f ]] ∈ H1/2 , f ∈ H1/2 , γ ∈ Q(T) .(1.13)

From this and Theorem B we see that Tr ◦Pγ : H1/2 → H1/2 is a linear operator as
γ ∈ Q(T). The operators Bγ and H � f �→ ‖Bγ(f )‖H can be described by means
of the operator Tr ◦Pγ as follows.

Theorem C. [9, Theorem 2.1 and Corollary 2.2] For every γ ∈ Q(T),

Bγ([f/ �]) = [Tr[Pγ [f ]]/ �] , f ∈ Re H1/2 ,(1.14)

as well as

‖Bγ([f/ �])‖2
H =

1
2

D[Pγ [f ]] , f ∈ Re H1/2 .(1.15)

2. Auxiliary properties of the Dirichlet integral

It is well known that the Dirichlet integral is quasi-invariant; cf. [1, p. 18]. In
particular, it means that for every harmonic function F : D → C and every K-
quasiconformal self-mapping ϕ of D,

D[F ◦ ϕ] ≤ K D[F ] .(2.1)

We need the inequality (2.1) in a little bit more stronger version. Let us recall that
the signum function sgn is defined by the formula

C � z �→ sgn(z) :=

{
z/|z| as z �= 0 ,

0 as z = 0 .
(2.2)

Lemma 2.1 If K ≥ 1 and ϕ is a quasiconformal self-mapping of D, then for every
harmonic function F : D → C with D[F ] < +∞ the following inequality holds

D[F ◦ ϕ] = K D[F ] − Qϕ[F ] − Rϕ[F ] ,(2.3)
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where

Qϕ[F ] := 4
∫

D

|∂ϕ∂ ϕ|∣∣(∂F ◦ ϕ) sgn(∂ϕ) − (∂̄F ◦ ϕ) sgn(∂ ϕ)
∣∣2dxdy ,

Rϕ[F ] := 2
∫

D

(|∂F ◦ ϕ|2 + |∂̄F ◦ ϕ|2)
(
K − |∂ϕ| + |∂̄ϕ|

|∂ϕ| − |∂̄ϕ|
)

(|∂ϕ|2 − |∂̄ϕ|2)dxdy .

Proof. Fix a harmonic function F : D → C such that D[F ] < +∞. Let us observe
first that for any a1, a2 ∈ C and b1, b2 ∈ C \ {0}
(|a1|2 + |a2|2)(|b1| + |b2|)2 − |a1b1 + a2b2|2 − |a1b2 + a2b1|2

= 2|a1|2|b1b2| + 2|a2|2|b1b2| − 4 Re
(
a1b1a2b2

)

= 2|b1b2|
(∣∣∣a1

b1
|b1|
∣∣∣2 +

∣∣∣a2
b2
|b2|
∣∣∣2 − 2 Re

(
a1

b1
|b1|a2

b2
|b2|
))

= 2|b1b2|
∣∣∣a1

b1
|b1| − a2

b2
|b2|
∣∣∣2 .

Hence for all a1, a2, b1, b2 ∈ C,

(2.4) |a1b1 + a2b2|2 + |a1b2 + a2b1|2

= (|a1|2 + |a2|2)(|b1| + |b2|)2 − 2|b1b2|
∣∣a1 sgn(b1) − a2 sgn(b2)

∣∣2 .
Differentiating the composed mapping F ◦ ϕ we see that a.e. in D,

∂(F ◦ ϕ) = (∂F ◦ ϕ)∂ϕ+ (∂̄F ◦ ϕ)∂ ϕ ,

∂̄(F ◦ ϕ) = (∂F ◦ ϕ)∂̄ϕ+ (∂̄F ◦ ϕ)∂̄ ϕ .

Applying now the identity (2.4) and the change of variables formula we obtain

D[F ◦ ϕ] = 2
∫

D

(|∂(F ◦ ϕ)|2 + |∂̄(F ◦ ϕ)|2)dxdy

= 2
∫

D

(|∂F ◦ ϕ|2 + |∂̄F ◦ ϕ|2)(|∂ϕ| + |∂̄ϕ|)2dxdy

− 4
∫

D

|∂ϕ∂ ϕ|∣∣(∂F ◦ ϕ) sgn(∂ϕ) − (∂̄F ◦ ϕ) sgn(∂ ϕ)
∣∣2dxdy

= 2
∫

D

(|∂F ◦ ϕ|2 + |∂̄F ◦ ϕ|2)(|∂ϕ| + |∂̄ϕ|)2dxdy − Qϕ[F ]

as well as

2
∫

D

(|∂F ◦ ϕ|2 + |∂̄F ◦ ϕ|2)(|∂ϕ| + |∂̄ϕ|)2dxdy

= 2
∫

D

(|∂F ◦ ϕ|2 + |∂̄F ◦ ϕ|2)
|∂ϕ| + |∂̄ϕ|
|∂ϕ| − |∂̄ϕ| (|∂ϕ|

2 − |∂̄ϕ|2)dxdy

= 2K
∫

D

(|∂F ◦ ϕ|2 + |∂̄F ◦ ϕ|2)(|∂ϕ|2 − |∂̄ϕ|2)dxdy − Rϕ[F ]

= 2K
∫

D

(|∂F |2 + |∂̄F |2)dxdy − Rϕ[F ] = K D[F ] − Rϕ[F ] .

These equalities yield the equality (2.3), which proves the lemma. �
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Lemma 2.2 If γ ∈ Q(T) and ϕ is its quasiconformal extension to D, then

D[Pγ [f ]] = D[P[f ] ◦ ϕ] − D[P[f ] ◦ ϕ− Pγ [f ]] , f ∈ H1/2 .(2.5)

Proof. Given γ ∈ Q(T) suppose that ϕ is its quasiconformal extension to D. From [10,
Theorem 1.2] and Theorem C it follows that

D[Pγ [f ]] = D[P[f ] ◦ ϕ] − D[P[f ] ◦ ϕ− Pγ [f ]] , f ∈ Re H1/2 .(2.6)

Let f ∈ H1/2. Then f ∈ L1(T) and D[P[f ]] < +∞. Hence Re f, Im f ∈ L1(T). By
(1.1), we get

P[f ] = P[Re f + i Im f ] = P[Re f ] + i P[Im f ] .(2.7)

Combining this with (1.2) we see that

D[P[Re f ]] + D[P[Im f ]] = D[P[f ]] < +∞ .

Therefore D[P[Re f ]] < +∞ and D[P[Im f ]] < +∞ which means that Re f, Im f ∈
H1/2. Applying now (2.6) we obtain

D[Pγ [Re f ]] = D[P[Re f ] ◦ ϕ] − D[P[Re f ] ◦ ϕ− Pγ [Re f ]] ,

D[Pγ [Im f ]] = D[P[Im f ] ◦ ϕ] − D[P[Im f ] ◦ ϕ− Pγ [Im f ]] .
(2.8)

From Theorem B it follows that

Pγ [f ] = Pγ [Re f ] + i Pγ [Im f ] .(2.9)

By (1.2) we see that for every function F : D → C differentiable a.e. on D,

D[F ] = D[ReF ] + D[ImF ] .

Combining this with (2.9) and (2.7) we conclude that

D[Pγ [f ]] = D[Pγ [Re f ] + i Pγ [Im f ]] = D[Pγ [Re f ]] + D[Pγ [Im f ]] ,

D[P[f ] ◦ ϕ] = D[P[Re f ] ◦ ϕ+ i P[Im f ] ◦ ϕ] = D[P[Re f ] ◦ ϕ] + D[P[Im f ] ◦ ϕ]

as well as

D[P[f ] ◦ ϕ− Pγ [f ]] = D[(P[Re f ] ◦ ϕ− Pγ [Re f ]) + i(P[Im f ] ◦ ϕ− Pγ [Im f ])]

= D[P[Re f ] ◦ ϕ− Pγ [Re f ]] + D[P[Im f ] ◦ ϕ− Pγ [Im f ]] .

These equalities together with the equalities (2.8) yield the equality in (2.5) for any
f ∈ H1/2, which completes the proof. �

3. The main results

We recall that a quasiconformal self-mapping ϕ of D is said to be a regular Te-
ichmüller mapping if there exists a non-zero holomorphic function F in D and a
constant k, 0 ≤ k < 1, such that the complex dilatation of ϕ is of the form

∂̄ϕ

∂ϕ
= k

F

|F | a.e. on D .
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Theorem 3.1 Suppose that K > 1, γ ∈ Q(T;K) and f ∈ H1/2 satisfies D[P[f ]] > 0.
Then

D[Pγ [f ]] = K D[P[f ]](3.1)

iff there exist α, c ∈ R such that eiαf(z) − ci ∈ R for a.e. z ∈ T and γ admits a
regular quasiconformal Teichmüller extension ϕ to D with the complex dilatation

∂̄ϕ

∂ϕ
= e−2iαK − 1

K + 1
∂ Pγ [f ]
∂ Pγ [f ]

a.e. in D .(3.2)

Proof. Fix K > 1, γ ∈ Q(T;K) and f ∈ H1/2 such that D[P[f ]] > 0. Suppose first
that the equality (3.1) holds. Since γ ∈ Q(T,K) there exists a K-quasiconformal
extension ϕ of γ to D. Applying now Lemmas 2.2 and 2.1 we have

D[Pγ [f ]] = D[P[f ] ◦ ϕ] − D[P[f ] ◦ ϕ− Pγ [f ]]

= K D[P[f ]] − Qϕ[P[f ]] − Rϕ[P[f ]] − D[P[f ] ◦ ϕ− Pγ [f ]] .

Combining this with (3.1) we see that the following equalities

Qϕ[P[f ]] = 0 , Rϕ[P[f ]] = 0 and D[P[f ] ◦ ϕ− Pγ [f ]] = 0

hold. They respectively imply

(∂ P[f ] ◦ ϕ)∂ϕ|∂ ϕ| = (∂̄ P[f ] ◦ ϕ)∂ ϕ|∂ϕ| a.e. in D(3.3)

|∂̄ϕ| =
K − 1
K + 1

|∂ϕ| a.e. in D(3.4)

as well as

∂(P[f ] ◦ ϕ) = ∂ Pγ [f ] and ∂̄(P[f ] ◦ ϕ) = ∂̄ Pγ [f ] a.e. in D .(3.5)

Since K > 1, (3.4) shows that |∂̄ϕ| > 0 a.e. in D. Then (3.3) yields |∂ P[f ]| = |∂̄ P[f ]|
a.e. in D. By the assumption, D[P[f ]] > 0. Since both the functions ∂ P[f ] and ∂̄ P[f ]
are holomorphic in D, we see that P[f ] is not a constant function and∣∣∂̄ P[f ]/∂ P[f ]

∣∣ = 1 a.e. in D .

Then the maximum principle for holomorphic functions shows that for a certain
α ∈ R,

∂̄ P[f ](z) = e2iα∂ P[f ](z) , z ∈ D .(3.6)

Hence for every z ∈ D,

0 = eiα∂ P[f ](z) − eiα∂̄ P[f ](z) = ∂ P[eiαf ](z) − ∂̄ P[eiαf ](z)

= ∂ P[eiαf ](z) − ∂ P[eiαf ](z) = ∂ P[eiαf − eiαf ](z) = 2i∂ P[Im(eiαf)](z)

and

0 = eiα∂̄ P[f ](z) − eiα∂ P[f ](z) = ∂̄ P[eiαf ](z) − ∂ P[eiαf ](z)

= ∂̄ P[eiαf ](z) − ∂̄ P[eiαf ](z) = ∂̄ P[eiαf − eiαf ](z) = 2i∂̄ P[Im(eiαf)](z).
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Therefore there exists c ∈ R such that Im(eiαf)(z) = c for a.e. z ∈ T, and so
eiαf(z) − ci ∈ R for a.e. z ∈ T. Combining (3.3) and (3.4) we conclude that

(K − 1)(∂ P[f ] ◦ ϕ)∂ϕ = (K + 1)(∂̄ P[f ] ◦ ϕ)∂ ϕ a.e. in D .(3.7)

Differentiating the composed mapping P[f ] ◦ ϕ we conclude from the first equality
in (3.5) that

∂ Pγ [f ] = (∂ P[f ] ◦ ϕ)∂ϕ+ (∂̄ P[f ] ◦ ϕ)∂ ϕ a.e. in D .

Hence and by (3.7) we see that a.e. in D,

(K − 1)∂ Pγ [f ] = 2K(∂̄ P[f ] ◦ ϕ)∂ ϕ

(K + 1)∂ Pγ [f ] = 2K(∂ P[f ] ◦ ϕ)∂ϕ .

Combining this with (3.6) we obtain

∂̄ϕ

∂ϕ
=
K − 1
K + 1

∂ P[f ] ◦ ϕ
∂̄ P[f ] ◦ ϕ

∂ Pγ [f ]
∂ Pγ [f ]

= e−2iαK − 1
K + 1

∂ Pγ [f ]
∂ Pγ [f ]

a.e. on D ,

and consequently (3.2) holds. This completes the proof in the direction (⇒).
Conversely, assume now that there exist α, c ∈ R such that eiαf(z) − ci ∈ R for

a.e. z ∈ T and γ admits a regular quasiconformal Teichmüller extension ϕ to D with
the complex dilatation satisfying the equality (3.2). Setting fα := eiαf − ci we see
that fα ∈ Re H1/2. Then by (3.2) and Theorem B,

∂̄ϕ

∂ϕ
=
K − 1
K + 1

∂ Pγ [fα]
∂ Pγ [fα]

a.e. in D .(3.8)

Since the function fα is real-valued, fα = fα. By (1.13), g := Tr[Pγ [fα]] ∈ H1/2 ⊂
L1(T), and we may consider the Schwarz integral of g, i.e. the function G : D → C
defined by the following formula

G(z) :=
1

2π

∫
T

g(u)
u+ z

u− z
|du| = ĝ(0) + 2

∞∑
n=1

ĝ(n)zn , z ∈ D .(3.9)

By (3.9) and (1.1), G is a holomorphic function in D and

ReG(z) = P[g](z) = Pγ [fα](z) , z ∈ D ,(3.10)

as well as

2∂ Pγ [fα](z) = G′(z) and 2∂ Pγ [fα](z) = G′(z) , z ∈ D .(3.11)

Let F : D → C be the function satisfying the equation

2KF ◦ ϕ(z) = (K + 1)G(z) + (K − 1)G(z) , z ∈ D .(3.12)

Differentiating both sides of this equality we see that a.e. in D,

2K(∂F ◦ ϕ)∂ϕ+ 2K(∂̄F ◦ ϕ)∂ ϕ = (K + 1)G′ ,

2K(∂F ◦ ϕ)∂̄ϕ+ 2K(∂̄F ◦ ϕ)∂̄ ϕ = (K − 1)G′ .
(3.13)

Since a.e. in D,

∂ϕ ∂̄ ϕ− ∂̄ϕ ∂ ϕ = ∂ϕ∂ϕ− ∂̄ϕ ∂̄ϕ = |∂ϕ|2 − |∂̄ϕ|2 > 0 ,
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we conclude from (3.13), (3.8) and (3.11) that ∂̄F = 0 a.e. in D. In this way the
function F is holomorphic in D; cf. [1, Sect. II.B]. Hence and by (3.13),

2K(F ′ ◦ ϕ)∂ϕ = (K + 1)G′ and 2K(F ′ ◦ ϕ)∂̄ϕ = (K − 1)G′ a.e. in D .

Applying now the change of variables formula we obtain

(K + 1)2
∫

D

|G′|2dxdy − (K − 1)2
∫

D

|G′|2dxdy

= 4K2

∫
D

|(F ′ ◦ ϕ)∂ϕ|2dxdy − 4K2

∫
D

|(F ′ ◦ ϕ)∂̄ϕ|2dxdy

= 4K2

∫
D

|F ′ ◦ ϕ|2(|∂ϕ|2 − |∂̄ϕ|2)dxdy

= 4K2

∫
D

|F ′|2dxdy .

Hence and by (3.11)

D[Pγ [fα]] =
∫

D

|G′|2dxdy = K

∫
D

|F ′|2dxdy = K D[ReF ] .(3.14)

Since fα ∈ H1/2, we deduce from (3.14) and (1.8) that f̃α := Tr[ReF ] ∈ H1/2 and

D[Pγ [fα]] = K D[P[f̃α]] .(3.15)

From (3.12) and (3.10) it follows that

P[f̃α] ◦ ϕ(z) = ReF ◦ ϕ(z) = ReG(z) = Pγ [fα](z) , z ∈ D .

Applying now [11, Theorem 2.5.2] we have

Tr[P[f̃α]] ◦ γ(z) = Tr[P[f̃α] ◦ ϕ](z) = Tr[Pγ [fα]](z) , z ∈ T .(3.16)

By Theorem C and (1.12) we obtain respectively

Bγ([fα/ �]) = [Tr[Pγ [fα]]/ �] and Bγ([f̃α/ �]) = [Tr[P[f̃α]] ◦ γ/ �] .

Combining these equalities with (3.16) we have

Bγ([fα/ �]) = Bγ([f̃α/ �]) .

Therefore [fα/ �] = [f̃α/ �], because the operator Bγ is injective; cf. [11, Corollary
2.5.4]. Then (3.15) shows that

K D[P[fα]] = K D[P[f̃α]] = D[Pγ [fα]] .

Since fα = eiαf(z) − ci, we infer from this and Theorem B the equality (3.1). This
completes the proof in the direction (⇐).

Both the implications yield the equivalence, which is our claim. �

Corollary 3.2 Suppose that K > 1, γ ∈ Q(T;K) and f ∈ H1/2 satisfies D[P[f ]] >
0. Then

D[Pγ [f ]] =
1
K

D[P[f ]](3.17)
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iff there exist α, c ∈ R such that eiαf(z) − ci ∈ R for a.e. z ∈ T and γ−1 admits a
regular quasiconformal Teichmüller extension ϕ to D with the complex dilatation

∂̄ϕ

∂ϕ
= e−2iαK − 1

K + 1
∂ P[f ]
∂ P[f ]

a.e. in D .(3.18)

Proof. Fix K > 1, γ ∈ Q(T;K) and f ∈ H1/2 such that D[P[f ]] > 0. Then also
γ−1 ∈ Q(T;K). By the definition of the class H1/2 we have f1 := Re f ∈ Re H1/2

and f2 := Im f ∈ Re H1/2. Then by Theorem B and (1.8) we can see that gk :=
Tr[Pγ [fk]] ∈ Re H1/2 as k = 1, 2. From Theorem C it follows that

Bγ([fk/ �]) = [Tr[Pγ [fk]]/ �] = [gk/ �] , k = 1, 2 ,(3.19)

and consequently,

[Tr[Pγ−1 [gk]]/ �] = Bγ−1([gk/ �]) = [fk/ �] , k = 1, 2 ,(3.20)

because the operator Bγ is injective and B−1
γ = Bγ−1 ; cf. [11, Corollary 2.5.4].

Applying Theorem C once more we conclude from (3.19) and (3.20) that

D[Pγ−1 [gk]] = D[P[fk]] and D[Pγ [fk]] = D[P[gk]] , k = 1, 2 .(3.21)

Thus setting g := Tr[Pγ [f ]] we deduce from Theorem B that

D[P[g]] = D[P[g1] + i P[g2]] = D[P[g1]] + D[P[g2]] = D[Pγ [f1]] + D[Pγ [f2]](3.22)

= D[Pγ [f1] + i Pγ [f2]] = D[Pγ [f1 + if2]] = D[Pγ [f ]]

as well as

D[P[f ]] = D[P[f1] + i P[f2]] = D[P[f1]] + D[P[f2]](3.23)

= D[Pγ−1 [g1]] + D[Pγ−1 [g2]] = D[Pγ−1 [g1] + i Pγ−1 [g2]]

= D[Pγ−1 [g1 + ig2]] = D[Pγ−1 [g]] .

From (3.20) and Theorem B it follows that

Tr[Pγ−1 [g]] = Tr[Pγ−1 [g1]] + i Tr[Pγ−1 [g2]] � f1 + if2 = f ,

from which

∂ Pγ−1 [g] = ∂ P[f ] .(3.24)

Suppose now that the equality (3.17) holds. Then by (3.22), (3.23) and the as-
sumption D[P[f ]] > 0 we have

D[Pγ−1 [g]] = K D[P[g]] > 0 .(3.25)

Applying Theorem 3.1 with γ and f replaced respectively by γ−1 and g we see that
there exist α, c0 ∈ R such that eiαg(z) − c0i ∈ R for a.e. z ∈ T and γ−1 admits a
regular quasiconformal Teichmüller extension ϕ to D with the complex dilatation

∂̄ϕ

∂ϕ
= e−2iαK − 1

K + 1
∂ Pγ−1 [g]
∂ Pγ−1 [g]

a.e. in D .(3.26)
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This together with (3.24) yields (3.18). Moreover,

eiαf � eiα Tr[Pγ−1 [g]] − c0i = Tr[Pγ−1 [eiαg − c0i]] .

Hence there exists c ∈ R such that eiαf(z) − ci ∈ R for a.e. z ∈ T. In this way the
corollary was proved in the direction (⇒).

Conversely, assume now that there exist α, c ∈ R such that eiαf(z) − ci ∈ R for
a.e. z ∈ T and γ−1 admits a regular quasiconformal Teichmüller extension ϕ to D
with the complex dilatation satisfying the equality (3.18). Combining (3.18) with
(3.24) we get the equality (3.26). Moreover, by Theorem B,

eiαg � eiα Tr[Pγ [f ]] − ci = Tr[Pγ [eiαf − ci]] .

Hence there exists c0 ∈ R such that eiαg(z) − c0i ∈ R for a.e. z ∈ T. Applying now
Theorem 3.1 with γ and f replaced respectively by γ−1 and g we conclude that the
equality in (3.25) holds. Then by (3.22) and (3.23) we derive the equality (3.17), and
this completes the proof in the direction (⇐).

Both the implications yield the equivalence, which is our claim. �

We are now in a position to answer to the question about a possible equality
in (0.4).

Remark 3.3 Given K ≥ 1 let γ ∈ Q(T,K). Suppose that Z � n �→ λn ∈ C is a
sequence satisfying the condition (0.3). Then by (1.3), f := Tr[F ] ∈ H1/2, where F
is the function defined by

F (z) :=
∞∑

n=0

λnz
n +

∞∑
n=1

λ−nz
n , z ∈ D .(3.27)

Hence for every α ∈ R,

Im
(
eiαF (z)

)
=

1
2i
(
eiαF (z) − eiαF (z)

)

=
1
2i

∞∑
n=0

(
eiαλn − eiαλ−n

)
zn +

1
2i

∞∑
n=1

(
eiαλ−n − eiαλn

)
zn

=
∞∑

n=0

Im
(
eiαλn

)
zn +

∞∑
n=1

Im
(
eiαλ−n

)
zn , z ∈ D .

Therefore for all α, c ∈ R, eiαf(z) − ci ∈ R for a.e. z ∈ T iff Im
(
eiαλ0

)
= c and

Im
(
eiαλn

)
= 0 , n ∈ Z \ {0} .(3.28)

By (3.27), f̂(n) = λn for n ∈ Z. Combining this with (1.5) and (1.7) we have

∂ Pγ [f ](z) =
∞∑

n=1

nf̂(n; γ)zn−1 =
∞∑

n=1

n
( ∞∑

m=−∞
γ̂(m,n)λm

)
zn−1 , z ∈ D .(3.29)

Moreover, by (1.1),

∂ P[f ](z) =
∞∑

n=1

nf̂(n)zn−1 =
∞∑

n=1

nλnz
n−1 , z ∈ D .(3.30)
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By the equalities (1.4), (1.5) and (1.7) we know that the equality
∞∑

n=−∞

∣∣∣∣∣
∞∑

m=−∞

√
|n|γ̂(m,n)λm

∣∣∣∣∣
2

= K

∞∑
n=−∞

|n||λn|2(3.31)

holds iff the equality (3.1) holds. Then by Theorem 3.1 and (3.29), the equality (3.31)
holds iff there exists α ∈ R satisfying the condition (3.28) and γ admits a regular
quasiconformal Teichmüller extension ϕ to D such that for a.e. z ∈ D,

(3.32) (K + 1)∂̄ϕ(z)eiα
∞∑

n=1

n
( ∞∑

m=−∞
γ̂(m,n)λm

)
zn−1

= (K − 1)∂ϕ(z)e−iα
∞∑

n=1

n
( ∞∑

m=−∞
γ̂(m,n)λm

)
zn−1 .

On the other hand side, from the equalities (1.4), (1.5) and (1.7) it follows that the
equality

∞∑
n=−∞

∣∣∣∣∣
∞∑

m=−∞

√
|n|γ̂(m,n)λm

∣∣∣∣∣
2

=
1
K

∞∑
n=−∞

|n||λn|2(3.33)

holds iff the equality (3.17) holds. Then by Corollary 3.2 and (3.30), the equality
(3.33) holds iff there exists α ∈ R satisfying the condition (3.28) and γ−1 admits a
regular quasiconformal Teichmüller extension ϕ to D such that for a.e. z ∈ D,

(K + 1)∂̄ϕ(z)eiα
∞∑

n=1

nλnz
n−1 = (K − 1)∂ϕ(z)e−iα

∞∑
n=1

nλnz
n−1 .(3.34)
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UOGÓLNIONE WSPÓ�LCZYNNIKI FOURIERA
I EKSTREMALNE ROZSZERZENIE QUASIKONFOREMNE
QUASISYMETRYCZNEGO AUTOMORFIZMU
OKRȨGU JEDNOSTKOWEGO

S t r e s z c z e n i e
Uogólnione wspó�lczynniki Fouriera γ̂(m, n) homeomorfizmu γ okrȩgu jednostkowego T

na siebie sa̧ określone formu�la̧

γ̂(m,n) :=
1

2π

∫ π

−π

γ(eit)me−intdt , m, n ∈ Z .
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W pracy [12] zosta�ly udowodnione nastȩpuja̧ce nierówności

1

K

∞∑
n=−∞

|n||λn|2 ≤
∞∑

n=−∞

∣∣∣∣∣
∞∑

m=−∞

√
|n|γ̂(m,n)λm

∣∣∣∣∣
2

≤ K
∞∑

n=−∞
|n||λn|2 ,

o ile γ dopuszcza K-quasikonforemne rozszerzenie na ko�lo jednostkowe D i Z � n �→ λn ∈ C
jest cia̧giem spe�lniaja̧cym warunek

∞∑
n=−∞

|n||λn|2 < +∞.

Zauważmy, że wygla̧daja̧ one podobnie jak nierówności Grunsky’ego dla funkcji holomor-
ficznych w klasach Σ(k), 0 ≤ k ≤ 1. Niniejsza praca dostarcza odpowiedzi na pytanie kiedy
w tych nierównościach zachodzi równość.
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IS TORSION NEEDED IN A THEORY OF GRAVITY?
A REAPPRAISAL I
MOTIVATION FOR INTRODUCING AND LACK OF EXPERIMENTAL EVIDENCE

Summary
It is known that General Relativity (GR) uses a Lorentzian Manifold (M4; g) as a

geometrical model of the physical spacetime. The metric g is required to satisfy Einstein’s
equations. Since the 1960s many authors have tried to generalize this geometrical model
of the physical space-time by introducing torsion. In the first part of the paper we discuss
the present status of torsion in a theory of gravity, motivation for introducing, and lack of
experimental evidence.

1. Introduction

In past we were enthusiast of torsion, mainly under influence of excellent papers given
by F. W. Hehl and A. Trautman. But studying Poincare’ field theories of gravity
(PGT) one can easily see that torsion leads to serious complications, especially
calculational.

About twenty years ago we have observed that the our idea of the superenergy
and supermomentum tensors (very effective in general relativity) fails in a spacetime
having torsion. So, our interest to torsion has diminished.

In the meantime we have read many papers by C. M. Will, G. Esposito-Farese,
T. Damour, S. Kopeikin, S. G. Thuryshev and others devoted recent experiments on
gravity. As we understood all these experiments confirmed standard general relativity
(GR) with a very high precision and excluded torsion, at least in vacuum.

Besides, during the last three decades there was given many interesting pa-
pers on universality of the GR equations. So, in consequence, we have decided to
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analyze status of torsion in gravitational physics. From this analysis the review has
originated.

Of course, we do not prove that torsion is not admissible at all. Rather, we only
give short information about recent gravitational experiments and collect problems
which arise when one introduces torsion as a part of the geometrical structure of the
physical spacetime. But, as you see, we will finish review with the conclusion (based
mainly on Ockham razor):

1. Torsion in needn’t in a theory of gravity:

2. The Levi-Civita connection is sufficient for the all physical applications. This
the most simple connection is exactly just what we need.

The paper is organized as follows. In Section 2 we remind a general definition of
torsion and in Section 3 we consider motivations to introduce torsion into geomet-
rical model of the physical spacetime. We will see that these motivations are not
convincing. In Section 4 we very shortly discuss experimental evidence for torsion
and Section 5 we present arguments against torsion in a theory of gravity. We will
conclude in Section 6 (from the facts given in the two previous Sections) that torsion
rather should not be introduced into a geometrical model of the physical spacetime.

2. Torsion of a linear connection ωi
k on L(M)

We confine to the metric-compatible connection which satisfies

Dgik = dgik − ωp
igpk − ωp

kgip = 0

because we do not see any reasons to consider more general connection. Here, and in
the following, D means exterior covariant derivative and d is the ordinary exterior
derivative.

One can give the following, general definition of torsion Θi [31, 32] of a linear
connection

Θi := Dθi = dθi + ωi
k ∧ θk =:

1
2
Qi

klθ
k ∧ θl.(1)

Here θi are canonical 1-forms (or soldering 1-forms) on the principial bundle of the
linear frames L[M,GL(n;R), π] (L(M) in short) over a manifold M , and Qi

kl denote
components of the torsion tensor.

After pulling back by local section σ : U → L(M); U ⊂ M , one gets on the
base M

Θ̃i = dϑi + ω̃i
k ∧ ϑk =

1
2
Q̃i

klϑ
k ∧ ϑl.(2)

ω̃i
k := σ∗ωi

k are pull-back of ωi
k and ϑi are pull-back of θi. ϑl := ϑ0, ϑ1, ϑ2, ϑ3

form a Lorentzian coframe on M .
In a coordinate (= holonomic) frame {∂i} and dual coframe {dxk} on M one has

ω̃i
k = Γi

lkdx
l, and Q̃i

kl = Γi
kl − Γi

lk.
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3. Motivation to introduce of torsion into gravity

In the 1960s–1970s some researchers introduced torsion into the theory of gravity.
We omit here older attempts to introduce torsion because they have only historical
meaning [1–6]. The main motives (only theoretical) were the following:

1. Studies on geometric theory of dislocations (Theory of a generalized Cosserat
continuum) led, following Günter, Hehl, Kondo, and Kröner, to heuristic argu-
ments for a metric spacetime with torsion, i.e., to Riemann–Cartan spacetime.

2. Investigations of spinning matter in GR resulted in conclusion that the canon-
ical energy-momentum tensor of matter cT

k
i can be source of curvature and

the canonical intrinsic spin density tensor cS
ikl = (−)cS

kil can be source of
torsion of the underlying spacetime. From this Einstein-Cartan-Sciama-Kibble
(ECSK) theory and its generalizations originated.

3. Attemts to formulate gravity as a gauge theory for Lorentz group L or for
Poincare’ group P by using Palatini’s formalism led to a space-time endowed
with a metric-compatible connection which might have (but not necessarily)
non–vanishing torsion, i.e., again one was led to Riemann-Cartan space-time
[7–11].

Some remarks are in order concernig 3.

1. If we admit a metric-compatible connection with torsion when “gauging”
groups L or P by using Palatini’s approach and Ehreshmann theory of con-
nection, then we will end up with strange situation, different then in ordinary
gauge fields: we get a “gauge theory” which has two gauge potentials

ϑi − translational (= pseudoorthonormal coframe),(3)

ωi
k − rotational (= metric− compatible linear connection),(4)

and two gauge strengths

Θi = Dϑi − translational (torsion),(5)

Ωi
‘k = Dωi

k − rotational (curvature).(6)

Notice that ϑi do not transform like gauge potentials and contribute to

ωi
k = LCω

i
k +Ki

k;

besides, the gauge strengths

Θi = Ki
k ∧ ϑk

contribute to

ωi
k = LCω

i
k +Ki

k and also to Ωi
k = dωi

k + ωi
p ∧ Ωp

k.

Here LCω
i
k denotes the Levi-Civita Connection and Ki

k is the contortion.
So, the gauge potentials and gauge strengths are not independent in the case.
This is not satisfactory and suggests other approach to “gauging” gravity.
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2. Besides, the action integrals in these trials to gauge gravity didn’t have forms
like an action integral for a gauge field,

∫
tr(F ∧ �F ), and led to very com-

plicated field equations of 3rd order, different from GR equations. These field
equations contain many arbitrary parameters (10 apart from Λ in the case of
the so-called Poincare’ Gravity Theories, PGT). Here � means Hodge duality
operator.
There exist many serious problems connected with these field equations:
tachyons, ghosts, instability of their solutions, ill–posedness Cauchy problem,
etc., (see, e.g., [71]).
We would like to emphasize that there exists an old approach to “gauge”
gravity proposed by Yang [69] which has action typical for a gauge field:

∫
Ωi

k∧
�Ωk

i. But, unfortunately, this approach leads to incorrect theory of gravity.

The above theoretical motives are not convincing. For example, the often used
argument for torsion (following from study of spinning matter in GR) based on the
(non-homogeneous) holonomy theorem [4, 11] (this theorem says that torsion gives
translations, and curvature gives Lorentz rotations in tangent spaces of a Riemann-
Cartan manifold induced by (Cartan) displacement along loops) holds only if one
uses Cartan displacement which displaces vectors and contactpoints [12]. Ordinary
parallell displacement (which displaces only vectors) gives only Lorentz rotations (=
homogeneous holonomy group) even in a Riemann-Cartan space-time [12]. Moreover,
there are other geometrical interpretations of torsion, e.g., Bompiani [13] connects
torsion with rotations in tangent spaces, not with translations.

We also needn’t to generalize GR in order to get a gauge theory with L or P
as a gauge group [14,48,70]. The most convincing argument in this field is given by
Cartan’s approach to connection and geometry [70].

Roughly speaking, in Cartan’s approach (for details, see [70]) one combines the
linear Ehreshmann connection form ω and coframe field θ into one connection A =
ω⊕θ valued in a larger Lie algebra g (In our case ω is the Ehresmann connection on
principal bundle of the orthonormal frames O[M,L, π] and θ is the soldering form
on this bundle. g is the algebra of the Poincare’ group P or de Sitter group).

In consequence, one has only one gauge potential A = ω ⊕ θ and one gauge
strength F̂ = Ω − Λ

3 θ ∧ θ (Λ is the cosmological constant) for gravity.
Using Cartan’s approach to connection one can write the ordinary GR action

with Λ

Sg =
∫ √

|g|(R− Λ)d4x,

in the form

Sg = (−)
3

2GΛ

∫
tr(F̂ ∧ �F̂ ),

i.e., exactly in the form of the action of a gauge field.
Thus, the Cartan’s (not Ehreshmann) approach to connection and geometry suits

to correct “gauging” of GR. The Ehreshmann theory suits to ordinary gauge fields.
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There exists also an other approach to GR as a gauge theory developed by
A. Ashtekar, C. Rovelli, J. Lewandowski and covorkers (Ashtekar’s variables) [15,16,
18, 74]. In this approach GR is also very akin to a Yang–Mills theory.

In resuming, one can say that we needn’t generalize or modify GR in order to
obtain a gauge theory of gravity.

4. Experimental evidence for torsion

Up to now we have no experimental evidence for existence torsion in Nature (see,
e.g., [75]). There exist only very stringent constraints on torsion components obtained
in a speculative, purely theoretical, methods (see, eg., [72, 75]).

To the contrary, all gravitational experiments confirmed with a very high preci-
sion (∼ 10−14) Einstein’s Equivalence Principle (EEP) and, with a smaller precision
(up to 0, 003% in Solar System , i.e., in weak field, and up to 0, 05% in binary pulsars,
i.e., in strong gravitational fields) the General Relativity (GR) equations [19–25].
Here by EEP we mean a formulation of this Principle given by C. W. Will [19]. In
this formulation (this constructive formulation of the Principle can be experimentally
tested) the EEP states:

1. The Weak Equivalence Principle (WEP) is valid. This means that the tra-
jectory of a freely falling spherical test body (one not acted upon by non-
gravitational forces and being too small to be affected by tidal forces) is inde-
pendent of its internal structure and material composition.

2. Local Lorentz Invariance (LLI) is valid. This means that the outcome of any
local non-gravitational experiment is independent of the velocity of the freely-
falling and non-rotating reference frame in which it is performed.

3. Local Position Invariance (LPI) is valid. This means that the outcome of
any local non-gravitational experiment performed in a freely-falling and non-
rotating reference frame is independent of where and when in the Universe it
is performed.

Following C. M. Will, the only theories of gravity that can embody EEP in the
above constructive formulation of the Principle are those that satisfy the postulates
of metric theories of gravity [19], which are:

1. Spacetime is endowed with a symmetric metric.

2. The trajectories of freely falling spherical test bodies are geodesics of that
metric.

3. In local freely-falling and non-rotating reference frames the non-gravitational
laws of physics are those written in the language of Special Relativity (SRT).

C. M. Will called the EEP “heart and soul of GR”.
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The EEP implies a universal pure metric coupling between matter and gravity.
It admits GR, of course, and, at most, some of the so-called scalar-tensor theories
(these, which respect EEP) [19, 21, 22] without torsion.

So, torsion seems to be excluded in vacuum or at least very strongly constrained
in vacuum by the latest gravitational experiments, i.e., at least propagating torsion
is excluded or very strongly constrained by these experiments which have confirmed
EEP with very high precision. Torsion is excluded or very strongly constrained
at least in vacuum because if we neglect a cosmological background, then the all
gravitational experiments were performed in vacuum. This means that ECSK theory
can survive since this theory is identical in vacuum with GR. Of course, the same
is true for other gravity theories which in vacuum reduce to GR. But the gravity
theories of such a kind do not admit propagating free torsion. As a consequence, at
least freely propagating torsion still seems to be purely hypothetical.

We would like to emphasize that T. Damour already concluded in past [22]: “Ein-
stein was right at least 99.9999999999% concerning EEP and 99, 9% concerning
Lagrangian and field equations”.

Thus, from the experimental point of view, up to now, torsion is not needed in a
theory of gravity.
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CZY TORSJA JEST POTRZEBNA W TEORII GRAWITACJI?
NOWE SPOJRZENIE I
MOTYWACJA WPROWADZENIA I BRAK EKSPERYMENTALNEGO UZASADNIENIA

S t r e s z c z e n i e
W pracy pokazano, że wprowadzenie skrȩcenia do modelu matematycznego fizycznej

czasoprzestrzeni nie jest ani konieczne, ani wskazane.
W pierwszej czȩści pracy omawiamy motywacjȩ ewentualnego wprowadzenia skrȩcenia

i brak eksperymentalnego uzasadnienia.
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APPLICATION OF THE CYLINDRICAL LENESES
IN EDUCATIONAL PHYSICAL EXPERIMENTS

Summary
The purpose of this paper is to present the properties of cylindrical lenses and provide

some examples of their use in performing easy school physics experiments. Such experiments
could be successfully conducted in the process of science education, in fun experiments that
teach physics and science fair projects, or used to entertain an audience by staging tricks,
effects or illusions of seemingly impossible or supernatural feats.

1. Simplest cylindrical lens

A cylindrical lens is a piece of transparent substance, commonly glass or plastic,
bounded by one or two cylindrical surfaces of different radii of curvature, with their
axes being parallel to each other. In its simplest form, a lens can be a rod of trans-
parent material of circular cross section. The optimal diameter of such a rod cannot
exceed more than a few centimeters. Since a rod of appropriate diameter can be dif-
ficult to find at home situation or in the school physics laboratory, any clear plastic
bottle with plane sides can be utilized as a substitute for a lens. The bottle must
be filled with water or other substance, such as glycerin. The thickness of the bottle
wall must be substantially less than its diameter so as to avoid the deviation of a
beam of light passing through the wall. Therefore, glass bottles with walls several
millimeters thick are unsuitable for the purpose.

It is important that the bottle should be filled up with water, which means that
there should not be any air bubbles in it, otherwise this would lead to undesirable
changes in direction of a beam of light passing through the bottle. In order to avoid
the production of air bubbles, the water must be first boiled and then cooled down to
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the temperature of not lower than 4 ◦C. The heating allows for the removal of gases
that have been dissolved in the water. The easiest way of filling up the bottle without
producing bubbles is to submerge it vertically in an appropriately deep water-filled
vessel. After the bottle has been filled up, it should be maintained for a while in
the same vertical position underwater and then corked. While holding the bottle
it should not be squeezed, since on releasing the squeeze an empty space would be
created within it. When the bottle is removed from the vessel and its content is
warmed to room temperature, its volume increases and the bottle is filled to full
capacity with water.

2. Set of words

After the bottle has been filled up with water, an appropriate list of words should be
prepared. For this purpose, the following twenty words in capitals should be typed
in a column on a sheet of paper: BED, BEE, BECK, BEDECK, BOB, BOOK,
BOOKED, COB, COD, CODE, CODED, COED, DIOXIDE, EBB, ECHO, ICE,
KICK, OH, OX, OXIDE. They will constitute the first column of words. Next to
it, in another column there are twenty other words: BAD, BELL, BLUR, BOSS,
BILL, BOY, BLUE, CAB, CABLE, CABIN, CADET, CADRE, DREAM, ENTER,
ENTRE, IDOL, KERNEL, OAR, OAK, OAT, CAKE. To type these words a vector
graphics editor CorelDraw has been used, applying Tw Cen MT Condensed Extra
Bold font. This clean cut, sans serif with geometric shapes is most appropriate for
display in headlines. Besides, the diagonal bar in the letter K, for instance, crosses
exactly at the midpoint of the vertical bar. Both rows of words should be typed on
a single piece of paper.

3. Magical experiment

With the bottle and the sheet of paper ready, we can set to performing experiments.
The paper is laid on top of the table. The water-filled bottle is held over the list of
words in such a way that the longitudinal axis is directed horizontally and parallel
towards the list. We try to move the bottle perpendicular to the surface of the sheet
and look at the words through the bottle. At some distance from the bottle to the
sheet we can notice that the images of the words are of the same size as the real
words on the sheet of paper. Moreover, we can see that the images of the words in
the first column below the word BED are not inverted, whereas the images of the
words in the adjacent column have been reversed and can be seen “upside down”.
Why this is so? Could the water-filled bottle be really capable of deciphering the
meanings of these words and reverse and invert the images of some of them and not
others.

The observed effect can be explained as follows. The water-filled bottle acts as a
cylindrical focusing lens. If the distance of the axis from the words is double that of
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its focal length, the lens creates a real image that is inverted. The size of the image is
equal to the size of the object. The bottle produces an inverted image of all the words
in both columns [1]. The secret behind the effect is that the printed words in the
first column are made up of letters that have a horizontal axis of symmetry. That is
why their reversed images look exactly the same as the words on the sheet of paper.
In other words, the words are invariable, that is, unchanging, after they have been
transformed by symmetry to their elongated axis. Those seeing the words at first
glance fail to notice the symmetry of letters and therefore are surprised by the effect.
This is exactly what enables us to make use of a cylindrical lens to demonstrate an
interesting magic trick that consists of inverting only some selected words. For this
reason, such a lens will be referred to as the magic lens in the further part of this
paper.

4. Different cylindrical lens

To facilitate performing the experiment, distance rings of appropriate diameters are
mounted at both ends of the transparent rod or water-filled bottle. The ring diameter
should be such that the axial distance of the rod or bottle from the lettered surface
is equal to double focal length. Such a lens looks like a spool with transparent axis
(Photo 1). Thus, to observe the said effect, it is suffice to move such a lens across
the sheet with lettering on it.

The magic lens can also be made in another way, as by fastening a transparent
rod at an appropriate distance above the surface along which the lettered sheet is
moved. This has been demonstrated in Photo 2. It is a lens of a large dimension, 40 cm
in length and 6 cm in diameter designed for use in the Exploratorium, interactive
laboratory in Lodz. A thin-walled glass tube filled with water is used in place of lens
(Fig. 1). Since the lens should work within a relatively wide range of temperatures, as
temperatures change throughout the year, thermal expansion compensator has been
applied. At both ends of the tube there are two corked thin-walled containers, facing
upward, which are filled with water and air. Water capacity has been calculated in
such a way that when the temperature is close to the near limit at which the lens
ceases to work, water fills the entire tube volume and no air bubbles are produced. On
the other hand, after the temperature rises to the upper point where the lens works,
there is still some air left in the containers. Since the trapped air is contractible
in volume, it prevents exerting excessive pressure and bursting of the tube. The
tube-ends, which are equipped with containers, are concealed from the spectators
by means of lens fixing brackets.

The magic lens does not have to be made from an entirely clear composition.
A segment of a transparent cylinder bounded by a cylindrical surface and a plane
parallel to the cylinder axis can serve the purpose. Such a lens has a longer focal
length than a full cylinder, for the focusing capacity of a cylinder section is smaller
than that of a full cylinder. Moreover, the section that has been obtained from the
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cylinder of great radius can be used, which expands the focal length. Since a lens of
this kind is far thinner than a full rod, it has fewer optical flaws, especially chromatic
aberration.

To facilitate the positioning of the lens in question at an appropriate distance from
the words, rectangular mounting brackets can be attached to both flat ends of the
cylinder section. Their height should be such that the lens distance from the lettered
surface on which the lens is placed is double that of the focal length. To help stiffen
the whole structure the bottom brackets should be connected with a plane clear
plate. The lens of this kind is shown on Fig. 2 and Photo 3. Different configurations
of words are scanned by the lens by moving its bracket across the lettered surface.
In place of the cylinder section, a Fresnel lens can be attached to the bracket. The
lens can be made from a conventional cylindrical lens by dividing/cutting it into a
set of concentric sections, each one having a convex surface of the same curvature
as the corresponding section, and mounting them on a transparent plate (Fig. 3).

Fig. 1: The cylindrical lens structure with a heat expansion compensator: 1 – glass tube,

2 – container 3 – cork, 4 – water, 5 – air.

Photo 1: The magic spool functioning as a cylindrical lens.
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Fig. 2: The magic frame structure; 1 – lens made from segment of a transparent cylinder,

2 – mount bracket, 3 – plain transparent plate.

Photo 2: The magic spool of large size with a heat expansion compensator as used

in the Exploratorium in �Lódź.
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Fig. 3: The principal of constructing a cylindrical Fresnel lens; 1 – the rejected segment of

the cylinder, the retained cylinder sections of the convex curvature, 3 – the parallel plane

portion of a Fresnel lens.

Photo 3: The magic spoon made from a segment of the transparent cylinder.
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Fresnel lenses are extremely useful for the illusionist arts, for the magic tricks to
be shown to large circus audiences or during a science fair. The lenses can have the
shape of elongated laths that resemble magic wands. The magician holds one end of
such a lens horizontally in front of a perpendicular chart at a distance that is double
its focal length. On the chart contains some typed/printed words, some of which
having a horizontal axis of symmetry, and some not. The spectators are in front
of the lens, also at a distance double the focal length. As the magician moves the
lens in a perpendicular plane, the spectators can see that some words are inverted,
and others remain unchanged. Long focal lengths of such lenses allow for seating the
viewers at a relatively great distance from the lettered chart.

5. Conclusions

Finally, it is worth adding that different words from those that have been provided
may be included in the list. It is important that some of them should be formed only
with letters having a horizontal axis of symmetry. Any pictures can be used instead
of words, yet some of them should have a horizontal axis of symmetry. The more
inquiring reader may, at this point, note that when a focusing spherical lens is placed
at a distance double that of its focal length from an object, it also gives a real image,
turned and of the same size as the object. This is true, but a spherical lens inverts
the image so the object’s reflection is not only upside down (up is down), but also
its right side becomes the left side [2]. The experiments that have been described
here show how some scientific principles and laws of physics may be used to create
magic illusions.
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ZASTOSOWANIE SOCZEWEK CYLIDRYCZNYCH
W EDUKACYJNYCH DOŚWAIDCZENIACH FIZYCZNYCH

S t r e s z c z e n i e
Celem tego artyku�lu jest przedstawienie w�lasności i przyk�ladów zastosowań wykonanych

w różny sposób soczewek cylindrycznych do przeprowadzenia edukacyjnych doświadczeń
z fizyki. Te interesuja̧ce doświadczenia można �latwo i skutecznie przeprowadzić w procesie
nauczania fizyki, albo wykonać podczas pokazów naukowych popularyzujcych fizykȩ dla
licznych grup widzów. Niektóre z tych doświadczeń wykazuja̧ również cechy zadziwiaja̧cych
sztuk iluzjonistycznych.



PL ISSN 0459-6854

B U L L E T I N
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SPACE MODELLING WITH MULTIDIMENSIONAL
VECTOR PRODUCTS

Summary
In the present work a multiproduct of vectors has been introduced and described; i.e.

means the product of vectors of a number greater than two, and a number of examples of
their uses in different kinds of cases have been presented, especially in transformations of
vectors between spaces.

1. Introduction

The vector calculus is a good tool for describing many complicated problems, both
in mechanics and other areas of science and technology. It can be used for building
spatial mathematical models describing problems of a high degree of complexity in
which numerous aspects of these questions are taken into consideration. Its advantage
is that it allows one to describe multi-parameter problems in any space, both three-
and multi-dimensional.

The building of a space is an open question, its dimension and character is a
question of choice, and can be changed during a modelling process, depending on
needs, possibilities or a subjective choice. One thing, however, does not change –
any ortho-Cartesian space is formed as a vector (a Cartesian) product of lower-
order spaces, hence the expansion or the reduction of the space dimension consists
in defining the next vector product or abandoning one of the previously defined
products. In addition, the orientation of the space selected is determined by the
assumed, exemplary order of lower spaces in the product of a higher order.
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In turn, a vector in any space is a scalar product of two matrices: the matrix of
coordinates of the vector in the space adopted and the matrix of the space basis (the
matrix of versors of the coordinate system). A scalar product of versors determines
the reciprocal relationship of two different spaces (vectors) and also allows the vector
to be transformed between the spaces. In addition, it can be used to present different
forms occurring in a space; for example, an equation of a plane in a three-dimensional
space or of a hyperplane in a space of any dimension.

Any vector which is the product of a scalar value and a versor lies in a one-
dimensional space and can be described in any – one or several – spaces of different
dimensions by means of transformation matrices, which are a form of a scalar product
of versors of the appropriate axes. The same vector subjected to the operation of
an operator (differentiation with respect to any variable, integration, multiplication
by an even number of other vectors or using it in a vector product) creates a new
vector in another one-dimensional space, which can be transformed into the same
or other spaces. It results from the above that the calculus of vectors makes use of
vector products of versors for creating new spaces and scalar products of versors
for determining the reciprocal relationships between these spaces. In this sense, we
can say that the modelling of a problem in any n-dimensional space is modelling
by means of products. In particular, in spaces higher than a three-dimensional one,
when both the space and the vector have an abstract character we can speak of
modelling by means of the product.

The concepts of basic products of two vectors in a three-dimensional space – the
scalar product and the vector product – are defined as early as in the secondary
school teaching programme. The vector product, among other things, allows one
to determine vectors of such parameters of motion as the speed and acceleration
of a point of a body, and in addition, vectors of the moment of force or angular
momentum with respect to any pole. Special kinds of even scalar products in a
three-dimensional space are moments of inertia of solid bodies, mass moments in
dynamics and cross-sectional moments in the mechanics of materials.

In this paper the same vector can be written in three different ways:

• in the classical form, which is a geometrical sum of projections of a vector onto
the axes of the system,

• in the form of a column matrix whose terms contain versors of the axis,

• in the form of a column matrix whose terms do not contain versors of the axis,
but only the values of the coordinates.

Thus, the following notations of the vector have been assumed:
�a the vector in the classical notation constitutes a geometrical sum of projections

of the vector onto the system axes,
â the vector in the form of a column matrix. The terms of the matrix are the

versors or vectors of projections of the vector �a onto the system axes,



Space modelling with multidimensional vector products 79

a the vector in the form of a column matrix. The terms of the matrix are scalars,
coordinates of the vector �a on the system axes.

In the text the following designations of the matrix have been assumed:

• one-dimensional matrices (column or verse ones) have been denoted by small
letters in bold, (a,aT , â, âT ),

• rectangular matrices have been denoted by capital letters in bold, (A, Â).

Rectangular matrices, depending on whether their terms are scalars or vectors,
have been designated as follows:

Â, P̂ the rectangular matrix whose terms are vectors,
A,P the rectangular matrix whose terms are scalars.
A scalar product of two vectors in the classical notation is denoted as �a�c, to

distinguish it from the notation of the corresponding product of the matrix, e.g.
aT c.

2. Multiproducts of vectors

The calculus of vectors, in which the concept of a vector in a three- and n-dimensional
space and basic operations on vectors – namely, their sum and product – have been
defined, is the basic tool of description of many physical phenomena and thereby,
constitutes an elementary problem of classical mechanics. Operations on vectors are
described by means of vector equations and have a well-known geometrical inter-
pretation in one-, two- and three-dimensional spaces. Although, the sum of vectors
is defined for two vectors, this definition can easily be extended to comprise any
number of them. Vector products, however, are subject to quantitative limitation,
since the calculus of vectors defines two kinds of products:

– the scalar products �a�c only for two vectors in any given space, and
– the vector product of n−1 vectors in an n dimensional space [1], in particular,

the vector product of two vectors in a three-dimensional space.
The following two situations can be a starting-off point for considerations [2]:
• when the axes (versors) in a problem are related only to the vectors functioning

in it, which means that spaces K1 of successive vectors are not contained in any
coordinate system.

• when the vectors being multiplied lie in a Euclidean space En, or in a n

dimensional Cartesian space Kn, determined by systems of n axes, and then they
are described in these systems of axes by coordinates. In a situation of a system of
orthogonal axes, spaces K1 of successive vectors lie in a space Kn.

In the latter case, the problem is that the scalar multiplication of vectors is
performed on the axes of an orthogonal system as the product of the versors of the
axes (positive unit vectors lying on the system axes); at the same time, the product
of the versors of the same axis is equal to 1, whereas the product of the versors of
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different axes is equal to 0. This results from the definition of a scalar product of
the versors of two axes �ek and �em, forming an angle ϕkm, �ek�em = cosϕkm. This
simple model functions well when two versors are multiplied, but when three or more
versors are multiplied, it loses its uniqueness. This is so because in the case of the
product of many vectors, the result of multiplication depends on a random order of
multiplication of versors and can be equal to 0, 1 or to one of the versors [2]. This
ambiguity can be avoided if two possible preferences of the choice of multiplication
are distinguished and defined and – as a result of this assumption – four basic kinds
of products of versors and – consequently, four basic kinds of products of vectors are
defined. Such multiplication of vectors is an unambiguous operation, independent of
the order of the vectors in the product. As a result, multiproducts (or plural products)
of the versors in an orthogonal space, which are invariants of the product of these
vectors.

In the first case, when the axes and their versors are associated with the vectors
lying randomly in a space, i.e., they are not orthogonal axes, the multiproduct of
these vectors depends on the order of their multiplication. This is demonstrated by
means of an example of the product of three vectors �a�g�c, lying on any three axes
in a space and described as �a = a�ea, �g = g�eg, �c = c�ec.The product of vectors
�a�g�c depends on the order of their multiplication. Multiplying these vectors in a
different order, we obtain three different resultant vectors, of different lengths, lying
on different direction.

�a�g�c = agc�ea�eg�ec =

⎧⎨
⎩

agc cosφgc�ea = (�g�c)�a
agc cosφac�eg = (�c�a)�g
agc cosφag�ec = (�a�g)�c

where
(�g�c)�a �= (�c�a)�g �= (�a�g)�c.

The constant value for the product of the three vectors �a�g�c, independent of the
order of their multiplication – that is to say, an invariant of this product - is the
vector sum of the right hand side of the products, �p3 = (�g�c)�a+ (�c�a)�g + (�a�g)�c. This
vector in has been denoted as �p3 and called a vector of the sum of the products of
three vectors.

3. Kinds of multiproducts of versors

The scalar product of versors of two axes assuming the orthogonality of the axes,
i.e., when the angle between the axes ϕkm = 1/2π, assumes one of the two values:

�ek�em = 0 if k �= m, �ek�em = 1 if k = m.

In the case of the multiproduct of m vectors, products of n versors, belonging to
different axes of the system, are obtained. The result of such a multiproduct of versors
of different axes, occurring in an n dimensional space, depends on two factors [2].

The first factor is the number of the versors multiplied.
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• When an even number of v versors are multiplied, a scalar value equal to 0 or
±1 is obtained. Such a product can be called an even product of v versors.

• When an odd number of d versors are multiplied, a zero vector or a vector
equal to one of the versors is obtained. Such a product can be called an odd product
of d versors.

The other factor determining the result of the product is the preference of the
multiplication adopted, i.e., the selected priority of the product in a situation when
it is necessary to multiply a number of versors belonging to different or the same
axes. In such a situation it should be decided whether to give priority of the same
versors (�ej�ej = 1) or different versors (�ej�ek = 0).

• A product in which priority is given to the multiplication of versors of the
same indices (�ej�ej = 1) can be called a product of the first kind or a homoproduct
of versors and designated as

fv
[e] – if it is an even product and �f d

[e] – if it is an odd product.
• A product in which priority is given to the multiplication of versors of different

indices (�ej�ek = 0) can be called a product of the second kind or a heteroproduct of
versors and denoted as

sv
[e] – if it is an even product and �s d

[e] – if it is an odd product .
And so, for example:

f4[elekelek] = (elel) (ekek) = 1, s4[elekelek] = (elek) (elek) = 0,

f4[elekeleu] = (elel) (ekeu) = 0, s4[elelelel] = (elel) (elel) = 1.

Even products of the first and the second kind of four versors can be can be equal
to zero or one.

�f
3
[elekel] = (elel) ek = ek, �s3[elekel] = (elek) el = 0,

�f
3
[elekel] = (elel) ek = ek, �s3[elelel] = elelel = el.

Odd numbers of the first and second kind of three versors, on the other hand,
disappear or are the versors of the axes.

4. A general case of multiproducts of versors of the axis and
vectors in an n-dimensional space

Let us now consider a general case, a problem of a product of m vectors in an
orthogonal n-dimensional space [3]. Let �ai, (i = 1, . . . ,m) be the i-th vector and
simultaneously, let its j-th coordinate in a Cartesian n-dimensional space have the
value aij , (j = 1, . . . , n). After denoting the versor of the j-th axis of the coordinate
system as �ej , we can write a projection of the i-th vector onto the j-th axis of the
system �aij and the vector itself �ai,

�aij = aij�ej ; �ai =
n∑

j=1

�aij =
n∑

j=1

aij�ej(1)
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where the versor of the j-th

�ej = [0, 0, 0 . . . , j = 1, . . . , 0, 0, 0].

The product of m vectors defined in an n-dimensional space by coordinates aij ,
can be written in the following way

�a1�a2 . . . �am =
m∏

i=1

�ai =
m∏

i=1

n∑
j=1

aij�ej .(2)

The following matrix notation can be an illustration of equation (2). Let us introduce
a vector of the coordinate system �n, the vector whose projections onto the particular
axes of the system will be the versors of these axes. This vector can be written in
classical notation or as a matrix

�n = �e1 + �e2 + . . .+ �en =
n∑

j=1

�ej , nT = |1, 1, 1, . . . , 1|.(3)

The vector of the coordinate system �n can also be written in the form of a column
matrix n̂, containing the versors of the system axes, such that n̂T = |�e1 �e2 . . . �en|

Let us now construct a matrix A, whose terms aij are the coordinates of the
vectors multiplied, A = [aij ], (i = 1, . . . , n; j = 1, . . . ,m) and a matrix Â, whose
terms are the vectors of projections of the successive vectors �ai onto the system
axes, written as products of corresponding coordinates and versors of the axes.

The matrix Â has the form Â = |aij�ej |, (i = 1, . . . ,m; j = 1, . . . , n).

A =

∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

am1 am2 . . . amn

∣∣∣∣∣∣∣∣
, Â =

∣∣∣∣∣∣∣∣

a11�e1 a12�e2 . . . a1n�en

a21�e1 a22�e2 . . . a2n�en

. . . . . .

am1�e1 am2�e2 . . . amn�en

∣∣∣∣∣∣∣∣
.(4)

Let us also introduce a column matrix of the multiplied vectors â, containing the
multiplied vectors

�aj (i = 1, . . . ,m), âT = |�a1 �a2 . . . �am|.(5)

The matrix of the multiplied vectors â is a product of the matrix A and the
matrix of the vector of the coordinate system �n or a product of the matrix Â and
the matrix n.

â = An̂ = Ân.(6)

The left hand side of equation (2) is a product of the terms of matrix (6), whereas
its right hand side contains all possible products of all the rows of the matrix Â.

5. Solution

The expansion of the right hand side of equation (2), multiplication and arrangement
of its successive terms causes it to be transformed into a sum products of m elements,
each containing one element of every row of the matrix Â (4). Simply speaking, every
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element of every row of the matrix Â is multiplied by every element of every other
row. In this way, a sum nm of products is obtained [3].

Each of them consists of a product of m scalar values, which are different coor-
dinates of successive vectors i = 1, 2, . . . ,m, and a product of versors of different
axes. The sequence of the indices of the versors of the axes and, at the same time,
successive coordinates in each of these products constitutes a variation with repeti-
tions u, containing m elements and made up of natural numbers 1, 2, . . . , n, which
are numbers of the system axes. Thus, after the multiplication and arrangement,
product (2) can be written as a sum containing nm of products of the coordinates
aiu and the versors �eu

m∏
i=1

�ai =
nm∑
k=1

m∏
i=1

aiu�eu(7)

where u = uki(u ∈ N) is the i-th term of the k-th variation with repetitions
uk, consisting of m elements, constructed on an n-element set of natural numbers
{1, 2, . . . , n} and nm is the number of m-element variations with repetitions, con-
structed on an n-element set.

The elements of the matrix U of dimensions (nm,m) are the indices of product
(7). The matrix U , containing the terms uki, in the successive rows contains all
possible m-element variations with the repetitions uk, (k = 1, 2, . . . , nm) of natural
numbers from the n element set. Successive elements i = 1, 2, . . . ,m belonging to
the k-th row of this matrix are the indices u = uki of a successive, k-th product
aiu�eu

U =

∣∣∣∣∣∣∣∣

u11 u12 . . . u1m

u21 u22 . . . u2m

. . . . . . . . . . . .

unm1 unm2 . . . unmm

∣∣∣∣∣∣∣∣
.(8)

We can now see that expression (7) is a sum of products of all the elements of any
given column of the matrix of projections of the vectors Â (4) when a complete
permutation of the elements in all the rows is performed.

The expansion of the right hand side of equation (7) leads us to conclude that it
is composed of a sum of nm products, each of which consists of m2 elements:

• the scalar coordinates aij , making up this product, constitute the first m
elements,

• the versors of the axis �ej , accompanying these coordinates, constitute the next
m elements.

Thus, product (7) can be written in the form
m∏

i−1

�ai =
nm∑
k=1

m∏
i=1

aiu�eu =
nm∑
k=1

(
m∏

k=1

aiu

m∏
i=1

�eu

)
.(9)

The calculation of a product of m scalar coordinates aiu is not a problem. On the
other hand, an attempt to multiply m versors by �eu one another, belonging to n



84 A. Polka

different axes of the coordinate system, makes us realize that there is a need to
define products of the versors of the axes in a general case, i.e. when we deal with
the number of nm variations with repetitions of the indices of the axes. This is
so because the products

∏m
i=1 �eu constitute m element variations with repetitions,

constructed on an n element set of the versors of the coordinate system.

6. Multiproducts of versors of the axes

We make use of the definition of a scalar product of versors of any two axes of an
orthogonal system �ek�em = 0 if k �= m, �ek�em = 1 if k = m. When multiplying
a greater number of versors belonging to several different axes, we notice that the
result depends on two factors.

The first factor is the number of the versors being multiplied.
• If we deal with an even number of versors (e.g. m = v), then, as a result of

multiplication, we obtain a scalar value, equal to 0 or 1. We can call such a product
an even product of v versors.

• If we multiply an odd number of versors (e.g. m = d), then we obtain a zero
vector or a vector equal to one of the versors. We will call such a product an odd
product of d versors.

The other factor determining the result of a product is the preference of multi-
plication adopted, i.e. the priority of a product chosen in the situation when we deal
with the multiplication of several versors belonging to different or the same axes.
Then, the priority can be given to a product of the same (�ek�ek = 1) or different
(�ek�em = 0) versors.

• A product in which the priority is given to the multiplication of versors of the
same indices will be called a product of the first kind or a homo-product of versors
and denoted as:

fv
[e] − if it is an even product, �f

d

[e] − if it is an odd product,

• A product in which the priority is given to the multiplication of versors of
different indices will be called a product of the second kind or a hetero-product of
versors and denoted as:

sv
[e] − if it is an even product, �sv

[e] − if it is an odd product,

In formula (9) there appears a multiproduct of m versors belonging to n different
axes of the system. This multiproduct can be denoted as δk (k-th multiproduct
aiu�eu) and written in the following form

δk =
m∏

i=1

�eu =
n∏

j=1

�e
bkj

j where
n∑

j=1

bkj = m.(10)

A multiproduct of m versors (10) is a product of versors of all the axes occurring
in the problem (j = 1, 2, . . . , n); at the same time, each of them is raised to a natural
power bkj indicating how many times this versors appears in the k-th product.
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Note also that in any given k-th multiproduct δk any j-th versor �ej may not
occur, which means that bkj = 0. Then, for this versor �e0

j = 1. Therefore we can
deduce, that the product (5.12) does not depend on any versor disappearing.

We will now present a method of determination of k-th multiproduct δk for
m versors. Depending on the values that are adopted by a sequence bkj of power
exponents for successive versors of the axis �ej , the multiproduct δk comes into the
category of a product of the first kind (homo-product) or the second kind (hetero-
product) discussed earlier. At the same time, we take into account whether we deal
with an even (m = v) or an odd (m = d) multiproduct of the versors of the axis.

For every k-th multiproduct δk =
∏m

i=1 �eu (10), corresponding to the k-th vari-
ation uk, we construct a zero-one matrix Ek forming this product of versors. The
matrix Ek has dimensions (m,n). The rows of this matrix are successive versors
�eu = |0, 0, . . . , u = 1, . . . , 0, 0| making up the k-th product. We also create a
column matrix p, containing m elements whose all elements are numbers 1, so
pT = |1, 1, . . . , 1|.

We multiply the matrix

ET
k p = bk(11)

and and obtain a column matrix bk containing n elements such that

bT
k = |bk1bk2 . . . bkn| and

n∑
j=1

bkj = m.

The elements of the matrix bk are numbers bkj ∈ N , which are exponents of powers
of the multiproduct of the versors δk described by formula (10).

Making use of equation (10), we defined four basic, described earlier, kinds of
multiproducts of versors:

• an even homo-product fv
[e], i.e. an even product m = v versors of the first kind,

when m = v, v ∈ {4, 6, 8, . . .}. It will appear when all the exponents of the powers
bkj are even numbers; it will disappear even if only one of the exponents is an odd
number. Then, the multiproduct of the versors δk will be introduced as δv

f = fv
[e].

fv
[e] =

n∏
j=1

�e
bj

j

f
=

⎧⎪⎪⎨
⎪⎪⎩

1 when ∀
j
bj ∈ {0, 2, 4, . . . , v}

0 when ∃
j
bj ∈ {1, 3, 5, . . . , v − 1}

(12)

• an even hetero-product Sv
[e], i.e. an even product m = v versors of the second

kind, when m = v, v ∈ {4, 6, 8, . . .}. It will appear only if one of the exponents of
the power bkj is equal to an even number of the versors v being multiplied, whereas
the remaining ones will be equal to zero. Then, δk will be replaced by δv

s = sv
[e]

sv
[e] =

n∏
j=1

�e
bj

j
s=

⎧⎪⎪⎨
⎪⎪⎩

1 when ∃
j
bj = v

0 when ∀
j
bj < v

(13)
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• a homo-product �f
d

[e], i.e. an odd product m = d versors of the first kind, when
m = d, d ∈ {3, 5, 7, . . .}. It will appear when one of the exponents is an odd number;
all the remaining exponents of the powers bkj will be even numbers. It disappears
when more than one of the exponents is an odd number. In this case δk will be
replaced by δd

f = �f
d

[e]

�f
d

[e] =
n∏

j=1

�e
bj

j

f
=(14)

f
=

⎧⎪⎪⎨
⎪⎪⎩

�ek when ∃
k∈{1,2,... ,n}

bk ∈ {1, 3, 5, . . . , d} ∧ ∀
j �=k

bj ∈ {0, 2, 4, . . . , d− 1}

0 when ∃
k,l∈{1,2,... ,n}

bk ∈ {1, 3, 5, . . . , d} ∧ bl ∈ {1, 3, 5, . . . , d}

• an odd hetero-product �sv
[e], i.e. an odd product m = d versors of the second

kind, when m = d, d ∈ {3, 5, 7, . . .}. It will appear only if one of the exponents of the
power bkj is equal to an odd number of the versors d being multiplied; the remaining
ones will be equal to zero. Then δk will be replaced by δd

s = �sv
[e]

�sv
[e] =

n∏
j=1

�e
bj

j
s=

⎧⎪⎪⎨
⎪⎪⎩

�ek when ∃
k∈{1,2,... ,n}

bk = d

0 when ∀
j
bj < d

(15)

The analysis of formulae (12–15) allows us to conclude that a product of the
second kind is contained in a product of the first kind, and this relationship holds
both for even and odd products. Hence, we can introduce a third kind of product
of m versors, which is a difference of a homo-product and a hetero-product, and
designate it as

tv[e] = fv
[e] − sv

[e] for even products and �t
v

[e] = �f
v

[e] − �sv
[e] for odd products.

Two products of the third kind can be defined as:
• an even product of the third kind v ∈ {4, 6, 8, . . .}. It will appear when all the

exponents of the powers bkj are even numbers, but smaller than v. It disappears
when even one of the exponents is an odd number or equal to v. Then δk will be
replaced by δv

t = tv[e]

tv[e] =
n∏

j=1

�e
bj

j
t=

⎧⎪⎪⎨
⎪⎪⎩

1 when ∀
j
bj ∈ {0, 2, 4, . . . , v − 2}

0 when ∃
j
bj ∈ {1, 3, 5, . . . , v − 1} ∨ ∃

j
bj = v

(16)

• an odd product of the third kind d ∈ {3, 5, 7, . . .}. It will appear when one of
the exponents of the powers bkj is an odd number but smaller than d, and all the
remaining exponents of the powers bkj are even numbers. It disappears when more
than one of the exponents is an odd number or when one of the exponents is equal
to d. Then δk will be replaced by δv

t = �t
d

[e]
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�t
d

[e] =
n∏

j=1

�e
bj

j
t=(17)

t=

⎧⎪⎪⎨
⎪⎪⎩

�ek when ∃
k∈{1,2,... ,n}

bk ∈ {1, 3, 5, . . . , d− 2} ∧ ∀
j �=k

bj ∈ {0, 2, 4, . . . , d− 1}

0 when ∃
k,l∈{1,2,... ,n}

bk ∈ {1, 3, 5, . . . , d} ∧ bl ∈ {1, 3, 5, . . . , d}

As with multiproducts of versors of the first and second kind, an even product
of the third kind tv[e] is a scalar, whereas an odd product of the third kind �t

d

[e] is a
vector.

7. Multiproducts of vectors in an n dimensional space

After introducing a multiproduct of the versors of the axis δk in the form of equation
(10) and defining four basic (12–15) and two derivative (16–17) multiproducts of the
versors of the axis, we can return to the product of m vectors. After taking into
consideration (10) in (9) we have

m∏
i=1

�ai =
nm∑
k=1

m∏
i=1

aiu�eu =
nm∑
k=1

m∏
i=1

aiuδk.(18)

In formula (18) expression (10) is a multiproduct of the versors δk formed for the
k-th variation with repetitions uk, described in matrix (8).

8. Scalar products of m vectors

Let us return to a starting point and calculate a product of m vectors determined
by means of simple versors on which these vectors lie, i.e. the form

�ai = ai�ei, �a1�a2 . . . �am =
m∏

i=1

�ai =
m∏

i=1

ai�ei.(19)

As proved using an example of a product of three and four vectors the result of
multiplication depends on the order of selection of pairs of vectors, for which a defi-
nition of a scalar product of two versors is used. Thus, we must separately consider
a product of an even number (m = v) of vectors and separately a product of an odd
(m = d) number of vectors.

9. Even product. Sum of the products

It is obvious that the result of multiplication of an even number of vectors will be a
scalar, since we deal with a multiplicity of a scalar product of two vectors. It is also
obvious that if formulae for a scalar product of two vectors are used, the result of
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the operation will depend on the randomly adopted order of multiplication of pairs
of vectors, since, for example

(a) (�a1�a2)(�a3�a4) . . . (�av−1�av) �= (�a1�a3)(�a2�a4) . . . (�av−1�av) �= . . .

Thus, multiplying the same vectors in different orders we will obtain many values of
the same product

�a1�a2 . . . �av =
v∏

i=1

�ai.

There will be as many results as there are ways to create two-element scalar products
within a v element set. Two of these possibilities, are given by way of example
in inequality (a). The number of such products, composed of v/2 pairs of vectors
forming scalar products in a v element set is cv

cv = (v − 1)(v − 3) . . . [v − (v − 1)] =
v/2∏
n=1

[v − (2n− 1)].(20)

As demonstrated, there is a certain constant value of products, attainable when a
product of m vectors is multiplied in different ways, both in the case of even products
and odd products.

For even products, it is a sum of products of all the scalar products formed by
the pairs of the vectors which are two-element combinations without repetitions,
created with the use of the whole set being multiplied {�a1, �a2, . . . , �av}. The number
of these products is equal to cv and determined by dependence (20). We will denote
this sum of products as pv and call it an invariant of an even product of v vectors.
For an even product of v vectors the sum of products pv is a scalar value equal to

pv = (�a1�a2)(�a3�a4) . . . (�av−1�av) + (�a1�a3)(�a2�a4) . . . (�av−1�av) + . . .

pv =
cv∑

i=1

v/2∏
j=1

sij ; sij = (�ak�al) .(21)

Indices {k, l} ∈ N form successive, j-th two-term elements of a combination without
repetitions, formed on the v element set of indices. The set of v natural numbers
is divided into v/2 pairs, forming an i-th combination of numbers. By changing the
composition of the pairs forming a group {k, l} of indices we obtain the number cv
(5.26) of all combinations of the indices.

It can be proved that for a fixed, even number of vectors v there is a relationship
between the sum of products pv and the even multiproducts of the vectors of the
first (fv), second (sv) and third (tv) kind described earlier, of the form

pv = fv + (cv − 1)sv.(22)

Since fv = sv + tv formula (22) can be transformed into the form

pv = cvs
v + tv.(23)
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The equations above can be used to calculate the invariant of the odd multiproduct
of d vectors, which is defined below as the vector of the sum of products �p d.

10. Odd products. Vector of the sum of the product

It is obvious that the result of multiplication of an odd number of d vectors will be
a vector, since we deal with a situation in which every d term product of vectors can
be expressed as a product of any selected k-th vector and an even number d − 1 of
the remaining vectors

�a1�a2 . . . �ad =
d∏

i=1

�ai = �ak

d∏
i=1
i�=k

�ai(24)

Product (24) is a vector lying on the direction of the vector �ak, which means that,
depending on the choice of the index k, we obtain d of different vectors lying on
d different directions and, additionally, having a different length, depending on the
way of multiplication of the even product of d-1 vectors. It result from the above
that if formula (24) is used, the result of the operation will depend on the randomly
adopted order of multiplication of vectors.

As in the case of an even product, we can define an invariant of the odd multi-
product of d vectors as a vector of the sum of products �p d, which is a vector sum of
all possible vectors (24) times the corresponding invariants of the even products of
v = d − 1 vectors. Thus, let us denote an invariant of the even product v = d − 1
vectors, containing the products of the vectors {�a1�a2 . . . �ai−1�ai+1 . . . �av} as pd−1

−i .
Then, the vector of the sum of products can be written in the form

�pd =
d∑

i=1

pd−1
−i �ai.(25)

The value of direction of the vector �pd is, for a definite group of the vectors being
multiplied, constant and independent of the order of their multiplication.

If, in the matrix Â (4), containing successive multiplied vectors in successive m
rows (in the case of the odd product m = d), we draw an i-th vector, we will obtain

a matrix Â
d−1

−i (26) containing an even number of v = d − 1 vectors, for which we
calculate an invariable sum of products pv.

Â d =

∣∣∣∣∣∣∣∣∣∣

a11�e1 a12�e2 . . . a1n�en

. . . . . . . . . . . .

ai1�e1 ai2�e2 . . . ain�en

. . . . . . . . . . . .

ad1�e1 ad2�e2 . . . adn�en

∣∣∣∣∣∣∣∣∣∣
, Â d−1

−i =

∣∣∣∣∣∣∣∣∣∣∣

a11�e1 a12�e2 . . . a1n�en

. . . . . . . . . . . .

ai1�e1 ai2�e2 . . . ain�en

. . . . . . . . . . . .

ad1�e1 ad2�e2 . . . adn�en

∣∣∣∣∣∣∣∣∣∣∣
(26)

The matrix Â d−1
−i of dimensions (d − 1, n) is an i-th complement of the matrix

Â d, corresponding to the i-th vector of the multiproduct �ai.
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11. Definition of a dyad

A dyad or, in other words, the external product of two vectors, is a rectangle matrix
of dimensions n×m, of the form P n×m, containing products of the coordinates of
two vectors �a and �b (in matrix form aT = [a1a2 . . . an] and bT = [b1b2 . . . bm]), in
a general case, of the vectors defined in different-dimension spaces n ×m [11]. The
terms of a dyad are products of the coordinates of vectors equal to, respectively:

P ab = |pij |; pij = aibj, (i = 1, 2, . . . , n; j = 1, 2, . . . ,m).(27)

From notation (27) it results that a dyad is sensitive to the order of its elements –
the vectors that it is composed of. A change in the order of the elements leads to a
transpose matrix. In addition, the product of the dyad P ab and its transpose matrix
P T

ab are equal to

P ab = P T
ba and P abP

T
ba = b2P aa.(28)

The matrix P ab corresponds to the product of two vectors �a and �b determined
in the form of different-dimension matrices (29); at the same time, to the product
written in such a form (in such an order) that the multiplication of the matrix is
impossible. Therefore, if

a =

∣∣∣∣∣∣
a1

. . .

an

∣∣∣∣∣∣ and bT = |b1 . . . bm|

then the notation of the product of the matrix

abT =

∣∣∣∣∣∣
a1

. . .

an

∣∣∣∣∣∣ |b1 . . . bm|(29)

is an equivalent of the dyad P ab in the multiproduct. The matrix P ab can be used
for the notation of multiproducts of vectors of any order, with the use of any pairs
of scalar products.

Thus, the dyad, which can also be referred to as a matrix of the product of two
vectors P ab, has the form

P ab =

∣∣∣∣∣∣∣∣

a1b1 a1b2 . . . a1bm
a2b1 a2b2 . . . a2bm
. . . . . . . . . . . .

anb1 anb2 . . . anbm

∣∣∣∣∣∣∣∣
(30)

and – which is easy to find out – contains appropriate products of the terms of the
coordinate of both vectors a and bT . A good illustration of the possibilities offered
by the use of a dyad in the notation of any multiprodutcs are the simplest odd and
even products which – after a dyad has been introduced – can be formed identically
in many ways; at the same time, the vectors can be reordered in different possible
ways in scalar products.The correctness of the identities cited can be checked by



Space modelling with multidimensional vector products 91

performing appropriate transformations. For example, in an odd product of the
third order (�a�b)�c

(aT b)cT = aT P bc or (bT a)cT = bT P ac,

c(aT b) = P cab or c(bT a) = P cba,

(31)

as well as in an even product of the fourth order (�a�b)(�c�d)

(aT b)(cT d) = aT P bcd or (bT a)(cT d) = bT P acd,

(aT b)(dT c) = aT P bdc or (bT a)(dT c) = bT P adc.

(32)

Identities (31) and (32) show the manner of writing a dyad into a multiproduct
and, incidentally, explain its other name: an external product of two vectors. It is
worth noting that all the expressions (31) describe the same vector written by means
of four different dyads and expressed twice in the form of a horizontal (transpose)
matrix, and twice in the form of a vertical matrix. A similar observation can be made
about products (32). This is the same scalar value (�a�b)(�c�d) written in four different
ways. In multiproducts of higher orders a dyad can be used any possible number
of times; taking into account identical elements (31) and (32) in the notation of a
multiproduct. For example:

(aT b)(cT d)(eT f)(gT h)( ) . . . ( ) = (aT b)(cT d)( ) . . . ( )eT P fgh =

= ( ) . . . ( )(aT b)(gT h)cT P def = ( ) . . . ( )(eT f)cT P dgP hab =

= ( ) . . . ( )fT P ecP dgP hab = etc.

The example above show just one possibility of using dyads in the notation of scalar
vector multiproducts in any orthogonal space.

12. Dyad of scalar products of the versors of the axes

The versors of the axes can also be the terms of the matrix of the external product
of two vectors. Then, a dyad contains scalar products of the versors of the axes of
the system. In a general case, they are products of the versors of the axes of two
different coordinate systems, whereas in a special case – as shown below – the dyad
P̂ contains products of the versors of the same coordinate system.

P̂
e

nm = |pij |, pij = �ei�ej , (i, j = 1, 2, . . . , n)

P̂
e

nm =

∣∣∣∣∣∣∣∣

�e1�e1 �e1�e2 . . . �e1�en

�e2�e1 �e2�e2 . . . �e2�en

. . . . . . . . . . . .

�en�e1 �en�e2 . . . �en�en

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 �e1�e2 . . . �e1�en

�e2�e1 1 . . . �e2�en

. . . . . . . . . . . .

�en�e1 �en�e2 . . . 1

∣∣∣∣∣∣∣∣
(33)
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The dyad P̂
e

nm is a square, n dimensional and symmetrical matrix.
If a system of axes is an orthogonal system, the terms of the matrix (33) are the

values of Kronecker’s delta δij ; in that case, the dyad P̂
e

nm becomes a unit matrix
of a dimension n, i.e. a matrix In. Then P̂

e

nm = |δij | = In.
This form a dyad – the unit matrix In – occurs with a scalar product of two

vectors �a�b, written in the same space in classical form,

�a�b = (a1�e1 + . . .+ an�en) (b1�e1 + . . .+ bn�en),

when this form of a product is reduced to the product of a matrix

�a�b = (aT ên) (bT ên) = (aT ên) (êT
n b) = aT P̂

e

nmb = aT Inb = aT b,(34)

where ên(êT
n = |�e1�e2 . . .�en|) is a matrix of versors of the coordinate system axes.

13. Dyad as a matrix of transformation of orthogonal systems

A dyad looks different when – in a general case – is a matrix containing products of
the versors of the axes of two different orthogonal reference systems. Then, a dyad
is made up of scalar products cij of the form

P̂
e

ab = |pij |, pij = �eai�ebj , (i = 1, 2, . . . , n; j = 1, 2, . . . ,m)(35)

where �eai is the versors of the first coordinate system of an n-dimensional orthogonal
space and �ebj is the versors of the axes of the second coordinate system of an m-
dimensional orthogonal space. In other words, the matrix êa(êT

a = |�ea1�ea2 . . . �ean|)
is a matrix of the versors �eai of the base of the vector �a in an n dimensional space
and êb(ê

T
b = |�eb1�eb2 . . .�ebm|) is a matrix of the versors �ebj of the base of the vector

�b in an m dimensional space. Then, the dyad has the following form:

P̂
e

ab =

∣∣∣∣∣∣∣∣

�ea1�eb1 �ea1�eb2 . . . �ea1�ebm

�ea2�eb1 �ea2�eb2 . . . �ea2�ebm

. . . . . . . . . . . .

�ean�eb1 �ean�eb2 . . . �ean�ebm

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

ca1b1 ca1b2 . . . ca1bm

ca2b1 ca2b2 . . . ca2bm

. . . . . . . . . . . .

canb1 canb2 . . . canbm

∣∣∣∣∣∣∣∣
(36)

where caibj = cosϕaibj is a scalar product of the corresponding versors of the base of
two orthogonal systems of axes. The dyad P̂

e

ab is a matrix of transformation of any
vector �a from an n dimensional space to the vector �b in an m dimensional space.
Let us assume that the same vector �u = u�eu, lying in a one-dimensional space, is
a vector �a in an orthogonal n dimensional space, while it is a vector �b in another
orthogonal m dimensional space. Then, we have

�u = u�eu = uêu

(in matrix notation u and êu is a one-term matrix),

�a = a1�ea1 + . . .+ an�ean = aT êa and �b = b1�bb1 + . . .+ bn�ebn = bT êb.(37)
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As this is the same vector, then

uT êu = aT êa = bT êb.(38)

The property used here states that every vector equation (including a matrix
one) after the multiplication of both sides by any vector (matrix) will hold true.
The right-handed multiplication of equation (38) by a one-term matrix êT

u leads to
Chasles’s equation in the form of transpose matrices:

uT = aT êaêT
u = aT P̂

e

au, uT = bT êbê
T
u = bT P̂

T

bu(39)

where the dyads P̂
e

au and P̂
e

bu are one-row matrices of transformation of the coor-
dinates of the vectors; of the vector �a from the n dimensional space and the vector
�b from the m dimensional space, respectively, to a one-term matrix uT , of the coor-
dinate u of the vector �u in the one-dimensional space.

On the other hand, after the right-handed multiplication of equation (38) by the
matrix êT

a we obtained equations (40) of transformation of the coordinates of the
vectors �u (from the one-dimensional space) and �b (from the m dimensional space)
to the coordinates of the vector �a in the n dimensional space,

aT = uT êuêT
a = uT P̂

e

ua, aT = bT êbê
T
a = bT P̂

e

ba.(40)

In equations (40) the dyad P̂
e

ua is a one-column, n row matrix of transformation
of the one-dimensional vector �u to n coordinates of the vector �a, whereas the dyad
P̂

e

ba of dimensions m × n is a matrix of transformation of the vector �b form the m
dimensional space to the vector �a in an n dimensional space. If the row matrix aT

is to be turned into a column one a, we transpose expressions (40) and obtain

a =
[
uT P̂

e

ua

]T
= P̂

e

auu, a =
[
bT P̂

e

ba

]T
= P̂

e

abb.(41)

In an orthogonal space coordinates of any vector �a on the system axes are equal
to scalar values of the rectangular projections of the vector onto these axes. This
means that successive coordinates of the vector �a, (aT = [a1a2 . . . an]) have the
values ai = �a�ei respectively, i.e.

aT = [�a�e1 �a�e2 . . . �a�en] .
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Stefanowskiego 1/15 , PL-90-924 �Lódź
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MODELOWANIE PRZESTRZENI ZA POMOCA̧
WIELOWYMIAROWYCH MULTIILOCZYNÓW WEKTORÓW

S t r e s z c z e n i e
W pracy opisano i zdefiniowano multiiloczyny wektorów i wersorów w przestrzeni n-wy-

miarowej, przy czym jako multiiloczyn potraktowano iloczyn wektorów w ilości wiȩkszej
niż dwa. Podano pewna̧ ilość przyk�ladów ich zastosowań w różnego rodzaju przypadkach,
zw�laszcza w transformacjach wektorów miȩdzy przestrzeniami. Do zapisu multiiloczynów
użyto diady, czyli macierzy iloczynu zewnȩtrznego dwóch wektorów, która przy transfor-
macjach wektorów spe�lnia rolȩ macierzy transformacji.
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2011 Vol. LXI

Recherches sur les déformations no. 2
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THE RELATIONSHIP AMONG THE KIRCHHOFF EQUATIONS
FOR THE LOOP OF ELECTRICAL CIRCUITS

Summary
We show what follows. For an electrical circuit, assume that Kirchhoff equations are sat-

isfied for (large) loops given by all permutations of all nodes. Then the Kirchhoff equations
are satisfied in any loop. Precisely, for permutations this result is given as some theorem
for an antisymmetric matrix.

1. Main result and its interpretation

The aim of this paper is the following characterisation of antisymmetric matrices
related to the Kirchhoff equations.

Theorem 1. Let (aij)1≤i,j≤n, aij ∈ R, n > 3 be a matrix such that

aij + aji = 0 for i �= j,

and for any permutation π of the set {1, . . . , n} we have

aπ(n)π(1) +
n−1∑
i=1

aπ(i)π(i+1) = 0.

Then
(i) for some Vi ∈ R, i = 1, . . . , n,

aij = Vj − Vi, i �= j.(1)
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(ii) for any m ∈ {1, . . . , n− 2} and for any permutation π of the set {1, . . . , n},

aπ(n−m)π(1) +
n−m−1∑

i=1

aπ(i)π(i+1) = 0.

Theorem 1 provides a generalized solution of the question posed in the preprint
by A. Paszkiewicz, Ogólne w�lasności informacji (in Polish; General properties of
information).

Theorem 1 has obvious interpretation in terms of the Kirchhoff equations. For a
given (oriented) edge joining points i and j of electrical circuits, let Eij be electro-
motive force and Uij be voltage drop for this edge. Put

aij = Eij − Uij .(2)

Kirchhoff’s second law ([Wr] p. 167) says that in any loop of circuit sum of voltage
drops for suitable segments of the circuit is equal to the sum of electromotive forces
occurring in the circuit. We can this write the formula as

Uπ(n)π(1) +
n−1∑
i=1

Uπ(i)π(i+1) = Eπ(n)π(1) +
n−1∑
i=1

Eπ(i)π(i+1),

where π is any permutation of the set {1, 2, . . . , n}. Transforming the above expres-
sion we have

Eπ(n)π(1) − Uπ(n)π(1) +
n−1∑
i=1

(Eπ(i)π(i+1) − Uπ(i)π(i+1)

)
= 0,

and using (2) we have

aπ(n)π(1) +
n−1∑
i=1

aπ(i)π(i+1) = 0.

It is wellknown, that the above equations follow from the simplest equations aij +
ajk +aki = 0, for pairwise different i, j, k (1 ≤ i, j, k ≤ n). Moreover, these equations
determine existence of potentials Vi for points i (1 ≤ i ≤ n) of electrical circuit
satisfying (1).

At present we are going to show that equations for long cycles determine existence
of potentials and all equations of Kirchhoff for shorter cycles.

2. Auxiliary lemma

In this section we will give usefull corollaries 1 and 2 below. These Corollaries im-
mediatelly follow from the following

Lemma 1. Let x1, . . . , xn, y1, . . . , yn−1 ∈ R, n ∈ N and n ≥ 2. Then
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det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 1 0 . . . 0 0 0
y2 1 1 . . . 0 0 0
y3 0 1 . . . 0 0 0
...

...
...

. . .
...

...
...

yn−2 0 0 . . . 1 1 0
yn−1 0 0 . . . 0 1 1
x1 x2 x3 . . . xn−2 xn−1 xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (−1)n+1
[
x1 +

n∑
i=2

i−1∑
j=1

(−1)i+jxiyj

]
.

Proof. The proof will be carried out by induction with respect n. For n = 2 the
assertion follows from

det
[
y1 1
x1 x2

]
= x2y1 − x1,

and
(−1)3(x1 + (−1)3x2y1) = x2y1 − x1.

Assume that the assertion holds for n. We show that it is true for n+1. Using the
Laplace expansion with respect to the (n+1)th column and the induction hypothesis
we get

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 1 0 . . . 0 0
y2 1 1 . . . 0 0
y3 0 1 . . . 0 0
...

...
...

. . .
...

...
yn 0 0 . . . 1 1
x1 x2 x3 . . . xn xn+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (−1)2n+1 det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 1 0 . . . 0 0
y2 1 1 . . . 0 0
y3 0 1 . . . 0 0
...

...
...

. . .
...

...
yn−1 0 0 . . . 1 1
x1 x2 x3 . . . xn−1 xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+(−1)2n+2xn+1 det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 1 0 . . . 0 0
y2 1 1 . . . 0 0
y3 0 1 . . . 0 0
...

...
...

. . .
...

...
yn−1 0 0 . . . 1 1
yn 0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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= (−1)2n+1(−1)n+1
[
x1 +

n∑
i=2

i−1∑
j=1

(−1)i+jxiyj

]

+(−1)2n+2xn+1(−1)n+1
[
yn +

n−1∑
j=1

(−1)n+jyj

]

= (−1)n+2
[
(−1)2n

(
x1 +

n∑
i=2

i−1∑
j=1

(−1)i+jxiyj

)
+ (−1)2n

n∑
j=1

(−1)n+1+jxn+1yj

]

= (−1)n+2
[
x1 +

n+1∑
i=2

i−1∑
j=1

(−1)i+jxiyj

]
.

This completes the proof. �

From the above lemma we immediately obtain the following two corollaries.

Corollary 1. Let c1, . . . , cn ∈ R, n ∈ N and n ≥ 2. Then

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 1 0 . . . 0 0 0
c2 1 1 . . . 0 0 0
c3 0 1 . . . 0 0 0
...

...
...

. . .
...

...
...

cn−2 0 0 . . . 1 1 0
cn−1 0 0 . . . 0 1 1
cn (−1)3 (−1)4 . . . (−1)n−1 (−1)n (−1)n+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (−1)n+1
[
cn +

n−1∑
i=1

(−1)i+1(n− i)ci
]
.

Corollary 2. For the n-dimensional matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 . . . 0 0 0
0 1 1 . . . 0 0 0
0 0 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 1 0
0 0 0 . . . 0 1 1

(−1)2 (−1)3 (−1)4 . . . (−1)n−1 (−1)n (−1)n+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

we have
detB = (−1)n+1n.
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3. Proof of Theorem 1

Consider the following representation:

a12 = V2 − V1,

a23 = V3 − V2,

a34 = V4 − V3,(3)

...

an−1,n = Vn − Vn−1,

where Vi ∈ R. Obviously the numbers Vi exist. From the assumption

an,1 +
n−1∑
i=1

ai,i+1 = 0.

Thus we easily get
an,1 = V1 − Vn.

Since the matrix is antisymmetric, then

a21 = V1 − V2,

a32 = V2 − V3,

a43 = V3 − V4,

...

an,n−1 = Vn−1 − Vn,

a1,n = Vn − V1.

It remains to show that
aij = Vj − Vi,

where 1 < |i− j| < n− 1.
Consider any (i, j) such that |i− j| = 2, that is to say:

(1, 3), (2, 4), (3, 5), (4, 6), . . . , (n− 2, n).(4)

To antisymmetricity of matrix A above pairs exhaust any possibilities. Now we
choose n− 3 permutations (transpositions) binding any two adjacent pairs of (4) as
follows:

(1, 3), (2, 4) �−→ π1 = (1, 3, 2, 4, 5, 6, . . . , n),

(2, 4), (3, 5) �−→ π2 = (1, 2, 4, 3, 5, 6, 7, . . . , n),

(3, 5), (4, 6) �−→ π3 = (1, 2, 3, 5, 4, 6, 7, 8 . . . , n),
...

(n− 3, n− 1), (n− 2, n) �−→ πn−3 = (1, 2, 3, 4, . . . , n− 3, n− 1, n− 2, n),
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and one permutation of all pairs of binding (4):

πn−2 = (1, 3, 5, . . . , n− 2, n, n− 1, n− 3, . . . , 6, 4, 2) when n ∈ 2N − 1,

or

πn−2 = (1, 3, 5, . . . , n− 3, n− 1, n, n− 2, . . . , 6, 4, 2) when n ∈ 2N,

where 2N denote the set of even natural numbers and 2N − 1 denote the set of odd
natural numbers.

Let us consider the following system of n− 2 equations with n− 2 unknowns xij :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x13 + x24 = c1,

x24 + x35 = c2,

x35 + x46 = c3,
...

xn−3,n−1 + xn−2,n = cn−3,

(−1)2x13 + (−1)3x24 + · · · + (−1)n−1xn−2,n = cn−2,

(5)

where constants on the right-hand side are equal:

c1 = −(∑
i�=1
i�=3

aπ1(i)π1(i+1)

)− aπ1(n)π1(1),

c2 = −(∑
i�=2
i�=4

aπ2(i)π2(i+1)

)− aπ2(n)π2(1),

c3 = −(∑
i�=3
i�=5

aπ3(i)π3(i+1)

)− aπ3(n)π3(1),

...

cn−3 = −( ∑
i�=n−3
i�=n−1

aπn−3(i)πn−3(i+1)

)− aπn−3(n)πn−3(1),

cn−2 = −a21 − (−1)n−1an,n−1

for i �= n−3, i �= n−1 πn−1(i+1) = πn−1(i)+1. Obviously aij satisfies this system.
From (3) and antisymmetricity of the matrix A we have

c1 =
∑
i�=1
i�=3

aπ1(i+1)π1(i) + aπ1(1)π1(n)

= a23 + a54 + a65 + · · · + a1,n

= V3 − V2 + V4 − V5 + V5 − V6 + · · · + Vn − V1 = V3 − V1 + V4 − V2,
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c2 =
∑
i�=2
i�=4

aπ2(i+1)π2(i) + aπ2(1)π2(n)

= a21 + a34 + a65 + a76 + · · · + a1,n

= V1 − V2 + V4 − V3 + V5 − V6 + · · · + Vn − V1 = V4 − V2 + V5 − V3,

...

cn−3 =
∑

i�=n−3
i�=n−1

aπn−3(i+1)πn−3(i) + aπn−3(1)πn−3(n)

=a21 + a32 + a43 + · · · + an−3,n−2 + an−2,n−1 + a1,n

=V1 − V2 + V2 − V3 + V3 − V4 + · · · + Vn−2 − Vn−3 + Vn−1 − Vn−2

+ Vn − V1

=Vn−1 − Vn−3 + Vn − Vn−2,

cn−2 = a12 + (−1)n−1an−1,n = V2 − V1 + (−1)n−1(Vn − Vn−1).

Note that the main matrix of the system (5) has the form

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 . . . 0 0 0
0 1 1 . . . 0 0 0
0 0 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 1 0
0 0 0 . . . 0 1 1

(−1)2 (−1)3 (−1)4 . . . (−1)n−3 (−1)n−2 (−1)n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

so, by Corollary 2, detC = (−1)n−1(n − 2). Obviously detC �= 0. Moreover, the
matrix in which the first column was replaced by the column of free terms is of the
form

C1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 1 0 . . . 0 0 0
c2 1 1 . . . 0 0 0
c3 0 1 . . . 0 0 0
...

...
...

. . .
...

...
...

cn−4 0 0 . . . 1 1 0
cn−3 0 0 . . . 0 1 1
cn−2 (−1)3 (−1)4 . . . (−1)n−3 (−1)n−2 (−1)n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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By Corollary 1

detC1 =(−1)n−1
[
cn−2 +

n−3∑
i=1

(−1)i+1(n− 2 − i)ci
]

=(−1)n−1
[
V2 − V1 + (−1)n−1(Vn − Vn−1)

+
n−3∑
i=1

(−1)i+1(n− 2 − i)(Vi+2 − Vi + Vi+3 − Vi+1)
]

=(−1)n−1[V2 − V1 + (−1)n−1(Vn − Vn−1)

+ (−1)2(n− 3)(V3 − V1 + V4 − V2)

+ (−1)3(n− 4)(V4 − V2 + V5 − V3)

+ (−1)4(n− 5)(V5 − V3 + V6 − V4)

+ · · · + (−1)n−2(Vn−1 − Vn−3 + Vn − Vn−2)]

=(−1)n−1(n− 2)(V3 − V1).

Thus, using Cramer’s theorem ([Ko] p. 111) we obtain

x13 =
detC1

detC
=

(−1)n−1(n− 2)(V3 − V1)
(−1)n−1(n− 2)

= V3 − V1.

By uniqueness of solutions of the system (5) we obtain

a13 = V3 − V1.

Moreover, directly from the system (5), uniqueness of the solutions of this system
and antisymmetricity of matrix A we have

aij = Vj − Vi for |i− j| = 2.

Now we show that

aij = Vj − Vi for 2 < |i− j| < n− 1.

For this aim, consider the following cases.
1◦ i, j, n ∈ 2N or i ∈ 2N, j, n ∈ 2N − 1. Choose the permutations

τ1 =(i, j, j + 2, j + 4, . . . , n− 2, n, n− 1, n− 3, . . . , j + 1, j − 1, j − 2,

. . . , i+ 2, i+ 1, i− 1, i− 3, . . . , 3, 1, 2, 4, 6, . . . , i− 2)

with obvious conventions for i = 2 and j = n. For the permutation τ1, by assump-
tions and the proved part of the theorem we obtain

aij =Vj − Vj+2 + Vj+2 − Vj+4 + · · · + Vn−2 − Vn + Vn − Vn−1

+ Vn−1 − Vn−3 + · · · + Vj+1 − Vj−1 + Vj−1 − Vj−2 + · · · + Vi+2 − Vi+1

+ Vi+1 − Vi−1 + Vi−1 − Vi−3 + · · · + V3 − V1 + V1 − V2 + V2 − V4

+ V4 − V6 + · · · + Vi−2 − Vi

=Vj − Vi.
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In the further cases we arrange our calculations analogously as above, so we write
only permutations and the resulting equations:
2◦ i, j, n ∈ 2N − 1 or i ∈ 2N − 1, j, n ∈ 2N,

τ2 =(i, j, j + 2, j + 4, . . . , n− 2, n, n− 1, n− 3, . . . , j + 1, j − 1, j − 2,

. . . , i+ 2, i+ 1, i− 1, i− 3, . . . , 4, 2, 1, 3, 5, . . . , i− 2),

aij =Vj − Vj+2 + Vj+2 − Vj+4 + · · · + Vn−2 − Vn + Vn − Vn−1

+ Vn−1 − Vn−3 + · · · + Vj+1 − Vj−1 + Vj−1 − Vj−2 + · · · + Vi+2 − Vi+1

+ Vi+1 − Vi−1 + Vi−1 − Vi−3 + · · · + V4 − V2 + V2 − V1 + V1 − V3

+ V3 − V5 + · · · + Vi−2 − Vi

=Vj − Vi.

3◦ i, n ∈ 2N, j ∈ 2N − 1 or i, j ∈ 2N, n ∈ 2N − 1,

τ3 =(i, j, j + 2, j + 4, . . . , n− 3, n− 1, n, n− 2, . . . , j + 1, j − 1, j − 2,

. . . , i+ 2, i+ 1, i− 1, i− 3, . . . , 3, 1, 2, 4, 6, . . . , i− 2),

aij =Vj − Vj+2 + Vj+2 − Vj+4 + · · · + Vn−3 − Vn−1 + Vn−1 − Vn

+ Vn − Vn−2 + · · · + Vj+1 − Vj−1 + Vj−1 − Vj−2 + · · · + Vi+2 − Vi+1

+ Vi+1 − Vi−1 + Vi−1 − Vi−3 + · · · + V3 − V1 + V1 − V2 + V2 − V4

+ V4 − V6 + · · · + Vi−2 − Vi

=Vj − Vi.

4◦ n ∈ 2N, i, j ∈ 2N − 1 or j ∈ 2N, i, n ∈ 2N − 1,

τ4 =(i, j, j + 2, j + 4, . . . , n− 3, n− 1, n, n− 2, . . . , j + 1, j − 1, j − 2,

. . . , i+ 2, i+ 1, i− 1, i− 3, . . . , 4, 2, 1, 3, 5, . . . , i− 2),

aij =Vj − Vj+2 + Vj+2 − Vj+4 + · · · + Vn−3 − Vn−1 + Vn−1 − Vn

+ Vn − Vn−2 + · · · + Vj+1 − Vj−1 + Vj−1 − Vj−2 + · · · + Vi+2 − Vi+1

+ Vi+1 − Vi−1 + Vi−1 − Vi−3 + · · · + V4 − V2 + V2 − V1 + V1 − V3

+ V3 − V5 + · · · + Vi−2 − Vi

=Vj − Vi.

This gives (i). The part (ii) immediately follows from (i). �

Remark 1. Is easy to see that in the proof of Theorem 1 we used only certain
1
2 (n2 − 3n+ 2) permutations with all n! possible; thus the assumption of Theorem
1 can be restricted to those permutations.
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Remark 2. Since for every complex matrix A

A = ReA+ iImA

so, Theorem 1 holds for matrixes with complex coefficients.
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ZWIA̧ZKI MIȨDZY RÓWNANIAMI KIRCHHOFFA
DLA PȨTLI OBWODÓW ELEKTRYCZNYCH

S t r e s z c z e n i e
Wykazujemy co nastȩpuje. Dla elektrycznego obwodu, za�lóżmy, że równania Kirchoffa

sa̧ spe�lnione dla (dużych) pȩtli określonych przez wszystkie permutacje wszystkich punktów
wȩz�lowych. Wówczas równania Kirchoffa sa̧ spe�lnione dla każdej pȩtli. Dok�ladnie, dla per-
mutacji, wynik ten podajemy jako pewne twierdzenie dla macierzy antysymetrycznej.
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SURFACE SEGREGATION IN BINARY ALLOY THIN FILMS
IN VALENTA-SUKIENNICKI MODEL
VS. THE EXPERIMENTAL DATA

Summary

The study of thin films has been very intense during the last decades. It is observed,
both theoretically and experimentally that in thin alloy films the concentrations of atoms
differ between inner and outer layers in broad range of temperature. This effect, called
surface segregation is chosen and discussed in the article although we also mention the
other classical surface phenomena: relaxation, adsorption and reconstruction.

We apply, one of many, the so called Valenta-Sukiennicki model [13] considering the

pairwise interactions between atoms and originally used only for stoichiometric alloys. Based

on our previous considerations [39,40] we decide to use the extended version of this model,

which describes binary alloys of arbitrary concentrations of atoms. In the study we shall

consider CuxNi1−x fcc alloys. We present the calculations concerning the segregation effect

in 10 layers thin films of this alloy.

1. Introduction

It is observed, both theoretically and experimentally that in thin alloy films the
concentrations of atoms differ between inner and outer layers in broad range of
temperatures. This effect, called surface segregation is considered to be one of the
classical surface phenomena. The other often considered phenomena are: relaxation
– meaning the change of interlayers’ distances between the outer layers, meaning
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usually their contraction, adsorption of other atoms to the surface, and reconstruc-
tion – meaning the change of ordering pattern in the surface layer(s) compared to
the internal ones.

It is easy, within the Valenta-Sukiennicki model to include the effect of relaxation,
but the contraction between layers distance is about a couple of percent for most
atoms [21], therefore it seems that the effect is relatively weak and it might be
neglected. The reconstruction effect cannot be fully observed within the model as
we introduce only the long range order parametres. As for the adsorption effect, it
probably also effects the segregation effect weakly so this also might be neglected in
the considerations concerning surface segregation. The inclusion of the adsorption
phenomenon in the Valenta-Sukiennicki model is still an awaiting challenge.

2. Description of the Valenta-Sukiennicki model

For the sake of simplicity let us consider
a stoichiometric binary alloy AB3 thin film
of fcc lattice and (111) surface orientation.
We divide our system into n atomic layers
parallel to the surface. Each layer consists of
N atoms and the number N is big enough
to assume the surface of the layer infinite.
The lattice of the alloy consists of two sub-
lattices, α and β. The relative number of α
sites (β sites) is equal to Fα (Fβ). We have
Fα + Fβ = 1. In a stoichiometric alloy we
additionally have FA = Fα and FB = Fβ ,
where FA, FB denote the concentration of
A and B atoms in the sample, respectively.

Fig. 1: AB3 alloy with fcc lattice and

(111) orientation of the surface

Denote by pσ
X(i) the probability that the site σ in i-th layer is occupied by atom

X , σ ∈ {α, β}, X ∈ {A,B}, i = 1, 2, . . . , n. In a completely disordered state we have:

pα
A(i) = pβ

A(i), pα
B(i) = pβ

B(i), i = 1, 2, . . . , n.

We always have:

pα
A(i) + pα

B(i) = 1 and pβ
A(i) + pβ

B(i) = 1.(1)

The concentration of atoms A (atoms B) in i-th layer is given by:

zA(i) = Fαp
α
A(i) + Fβp

β
A(i)

(
zB(i) = Fαp

α
B(i) + Fβp

β
B(i)

)
.

Obviously,
n∑

i=1

zA(i) = nFα and
n∑

i=1

zB(i) = nFβ .(2)
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and

zA(i) = 1 − zB(i), i = 1, 2, . . . , n.

We define a long-range order parameter t(i) as

ti =
pα

A(i) − zA(i)
1 − Fα

, i = 1, 2, . . . , n.(3)

In a completely disordered state t(i) = 0, while in a completely ordered state t(i) = 1
for i = 1, 2, . . . , n.

The free energy of the system is given by:

F = U − TS,(4)

where U denotes the internal energy of the system, T absolute temperature, S en-
tropy. The equilibrium of the system is attained when the free energy of the system
is minimized.

Internal energy. In Bragg-Williams approximation the internal energy is given as
an average over the energies corresponding to given long-range order.

Let R denote the smallest distance between atoms in the lattice. The number of
pairs of nearest neighbours of atoms X and Y situated at the distance of R, and
such that X is in i-th layer, Y is in j-th layer (j = i, i± 1, i± 2) equals

〈XY 〉ij =
1
2
N
(
Fα

(
pα

X(i)rααp
α
Y (j) + pα

X(i)rαβp
β
Y (j)

)

+Fβ

(
pβ

X(i)rβαp
α
Y (j) + pβ

X(i)rββp
β
Y (j)

))
,(5)

for X,Y ∈ {A,B}, i = 1, 2, . . . , n, where rστ denotes coefficients characteristic for
the lattice of the alloy, namely the number of neighbours of an atom occupying a σ
site in i-th layer which are situated in τ site in i+ j-th layer [38, 60]. The approach
including only the first neighbours is called the first neighbours approach. We have
shown that in case of binary fcc alloys including only the first neighbours gives a
good enough approximation of the internal energy of the system [38,42].

Denoting the interaction energies between atomsX and Y situated at the smallest
distance R as −vXY , the internal energy of the film consisiting of n layers is given
by

U = −
∑

i, j = 1, 2, . . . , n
X, Y ∈ {A, B}

〈XY 〉ij vXY .(6)

Entropy. Entropy of binary alloy film is calculated according to the formula

SB = kB ln g,(7)

where g denotes the number of configurations of a given state for atoms concetrations
in layers and long-range order parameters [13, 38].
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3. Non-stoichiometric alloys

Non-stoichiometric alloys are more difficult to describe than stoichiometric ones
although, for practical reasons, they are more interesting than the stoichiometric
ones [48]. It has been observed that tiny deviations from stoichiometry in the bulk
composition of the NiPt-L1(0) ordered alloy have a great impact on the atomic
configuration of the (111) surface [46].

Non-stoichiometric alloys cannot be described by Valenta-Sukiennicki model eas-
ily, as we no longer have equality between the number of sites and the number of
the corresponding lattice, which makes formula (5) invalid. In order to overcome
this problem we assume that some kind of order exists in the alloy [24], although
we do not know it. This alows us to calculate the mean approximate value of the
coefficients rRs

στ in (5) as in [41].

4. Problems with experimental data

As our aim is to obtain numerical results which could be compared with the exper-
imental data a couple of remarks should be made before.

Firstly, many models, including the Valenta-Sukiennicki model assume that the
system stabilizes at the lowest level of free energy. Some experimental data show,
however, that in case of alloys of gold there are problems in obtaining the state of
minimal energy despite annealing [45].

Substantial amount of work has been devoted to Cu-Ni alloys of different concen-
trations due to the catalytic properties of this alloy. There is strong consensus that
Cu has tendency to segregate to the surface in broad range of temperatures and at
all concentrations of Cu in the bulk. It is, however, very interesting to know what
is the shape of the profile of the segregation – it might be oscillatory or monotonic,
say, exponential [59]. Some authors claim that the segregation might occur only on
the first one or two layers of the alloys [53]. It is also observed that the clean equi-
librated surfaces of the Cu-rich polycrystalline alloys consist almost entirely of Cu
atoms [11]. There are controversies and uncertainties concerning the reliability of the
experimental data themselves [52, 54]. One of the reasons is difficulty in obtaining
reliable experimental data, the other is applying many simplifying assumptions in
calculations which in effect lead to unreliable results. For example, some researchers
even assume the monotonic segregation profile in order to interpret the results of
their experiments [62].

Another problem is stoichiometry and its connection with surface segregation. It
has been observed that even tiny deviations from stoichiometry in the bulk composi-
tion of the NiPt-L1(0) ordered alloy have a great impact on the atomic configuration
of the (111) surface [4, 46].
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Fig. 2: Concentrations of Cu atoms in layers 1–10 in a 10 layers sample of CuNi3 alloy of
orientation (111) in dependence of temperature (d stands for an unknown positive constant)
– upper graph. The lower graph shows the long range order parameters values for this
sample.

5. Theoretical and experimental data for CuxNi1−x alloys

CuxNi1−x alloys are, for some reasons under special interest of researchers. One of
the reasons is the similar Cu and Ni atom sizes, which also makes them interesting
from the point of view of Valenta-Sukiennicki model.

It is known that CuxNi1−x alloys have fcc built. In order to make the compu-
tations we have to substitute the values of interactions between Cu-Cu, Ni-Ni and
Cu-Ni pairs of atoms to the formula (6). We assume that the values of interactions
between nearest neighbours atoms are

vCu−Cu = 0.42eV, vNi−Ni = 0.476eV,(8)

and
vCu−Ni =

√
vCu−Cu · vNi−Ni ≈ 0.447eV,(9)

where the latest have been calculated according to one of the mixing rules commonly
used in molecular dynamics numerical programms [1]. It seems that the previously
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Fig. 3: Concentrations of Cu atoms in layers 1–10 in a 10 layers sample of Cu0.1Ni0.9

alloy of orientation (111) in dependence of temperature (d stands for an unknown positive
constant) – upper graph. The lower graph shows the long range order parameters values
for this sample.

used V parametre [38, 41] equal to V = vAB − (vAA + vAB)/2 will not be suitable
this time as it is negative. Let us define the new parametre V

V :=
vCu−Cu − vNi−Ni

vCu−Ni
(10)

expressing the relative difference between Cu-Cu and Ni-Ni interactions. In case
of Cu-Ni alloys we obtain V = 0.125. As both in the case of stoichiometric and
non-stoichiometric case we define α sites as those occupied by Cu atoms and β sites
as those occupied by Ni atoms and so the relative number of sites is equal to the
relative number of corresponding atoms we can assume the classical long-range order
parametres (3).

The results of the calculations of concentrations of Cu atoms in layers in a sample
containing 10 layers and also the long range order parametres are given in the figures
2 and 3. The concentration of Cu atoms in the first sample is 0.25, while in the
second it is 0.1. The horizontal axis in each case represents increasing values of
temperature, namely kB · T · V · d, where kB denotes Boltzmann constant, T the
absolute temperature, V is defined by (10) and d denotes a positive constant.

Firstly, it can be observed that the segregation effect can be seen mostly in the
first two external layers. In both samples Cu segregates to the surface and this is
observed in the whole range of temperatures. Practically, in case of CuNi3 alloy at
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low temperatures the external surface consist of Cu atoms exclusively, which confirms
the results of [11]. With the rise of temperature the segregation effect in both samples
becomes smaller. As for the long range order parametres in both samples they are
always very close to zero.
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51 Sér. Rech. Déform. 35 (2001), 67–98.
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SEGREGACJA POWIERZCHNIOWA W CIENKICH WARSTWACH
STOPÓW DWUSK�LADNIKOWYCH W MODELU
VALENTY-SUKIENNICKIEGO A DANE EKSPERYMENTALNE

S t r e s z c z e n i e
Studium cienkich warstw by�lo bardzo intensywne w ostatnich dzisiȩcioleciach. Stwier-

dzono, zarówno teoretycznie jak i doświadczalnie, że w cienkich próbkach koncentracje
atomów miȩdzy powierzchniowa̧ a wewnȩtrzna̧ warstwa̧ jednoatomowa̧ różnia̧ siȩ miȩdzy
soba̧ w szerokim zakresie temperatur. Efekt ten, zwany segregacja̧ powierzchniowa̧ jest
wyróżniony i dyskutowany w artykule, ale wspominamy też o innych klasycznych zjawiskach
powierzchniowych: relaksacji, adsorpcji i rekonstrukcji.

Spośród różnych modeli wybieramy model Valenty-Sukiennickiego [13], skoncentrowany

na rozważaniu par zespo�lów atomów i oryginalnie odnosza̧cy siȩ jedynie do stopów stoi-

chiometrycznych. W oparciu o nasze poprzednie badania [39, 40] decydujemy siȩ, by użyć

rozszerzonej wersji modelu, która opisuje stopy dwusk�ladnikowe o dowolnej koncentracji

atomów. W szczególności rozważamy stopy CuxNi1−x. Przedstawiamy wyliczenia dotycza̧ce

efektu segregacji dla 10 warstw jednoatomowych takiego stopu.
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Summary

The use of relaxation method in solving static and time dependent Ginzburg-Landau
(GL) equations is described by a few instructive examples. The main focus of interest is the
solution of GL equations applied to unconventional Josephson junction made by putting
non-superconducting strip on the top of superconducting strip for s, d and p-wave su-
perconductor. Certain solutions of Ginzburg-Landau equation are obtained in the case of
placement of Josephson junction in time dependent temperature gradient, time dependent
or time independent external magnetic field or when given junction is polarized by de-
pendent or time independent superconducting current. Also the solutions of GL equations
for simple geometries as cylinder, rectangular, torus are presented. Certain perspectives of
extension of used GL model into non-equilibrium Green function picture are drawn.

1. Motivation

Studying superconducting structures is important both for fundamental and applied
science. There are many description levels of superconducting or superfluid phase
as by use of phenomenological or microscopic models. Because of technical com-
plication one usually starts from phenomenological level and then moves to more
microscopic and fundamental description. Therefore in this paper we will mainly
use Ginzburg-Landau model. Because of application perspectives as in THz elec-
tronics, superconducting qubit [1, 4], particular attention is paid to unconventional
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Fig. 1: Scheme of unconventional Josephson junction made by putting non-superconducting
strip on the top of superconductor strip (left) and SQUID made from such structure (right).

Josephson junction made by putting non-superconducting, ferromagnetic, antiferro-
magnetic or ferroelectric strip on the top of superconducting strip as depicted in
the Fig. 1. When the ferromagnetic or ferroelectric material is placed on the top of
unconventional Josephson junction then such system is regarded as field induced
Josephson junction.

In unconventional Josephson junction the Cooper pairs from superconductor
diffuse into non-superconducting element and therefore the superconducting order
parameter inside superconductor is decreased. Also unpaired electrons from non-
superconducting element diffuse into superconductor what brings further reduction
of superconducting order parameter. If ferromagnetic material with non-zero mag-
netization is placed on the top of superconductor then the magnetic field breaks the
Cooper pairs and lowers more the superconducting order parameter. Also electric
field can be used to modulate the superconducting properties of superconductor as
presented in [11]. Therefore we can replace ferromagnet with ferroelectric material
and should obtain similar properties.

Having certain geometry of non-superconducting element placed on the top of
thin superconductor it is possible to obtain the Josephson junction. This is because
after placement of the non-superconducting element on the top of superconductor,
one Cooper pair reservoir (superconductor) in terms of superconducting order pa-
rameter will be effectively separated into 2 superconducting reservoirs as described
in [5, 4]. The interaction between reservoirs is the origin of the Josephson effect.
Such approach is quite similar to the approach presented in [12]. With such defined
Josephson junction, we can build superconducting devices as the Josephson junction
array, SQUID (as depicted in Fig. 12 and 16), current limiter and other elements.
Many of these devices can be made in analogy to weak-link Josephson junctions
presented by K. Likharev [9] and others.
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2. Computational model

There are various methods, which can be used to solve the Ginzburg-Landau equa-
tions as the finite difference method, spectral methods, annealing methods (as by
[18]) and many others. Because of simplicity and numerical stability even for the
case of complex set of nonlinear equations the relaxation method is used. Deriving
Ginzburg-Landau equations we look for the case of functional derivative of free en-
ergy functional F set to the zero with respect to the physical fields upon which it
depends.

Then we obtain the following equations:
δ

δψ
F [ψ, �A, �M, �E] = 0,

δ

δ �A
F [ψ, �A, �M, �E] = 0,(1)

δ

δ �M
F [ψ, �A, �M, �E] = 0,

δ

δ �E
F [ψ, �A, �M, �E] = 0,(2)

where �A is vector potential, �M is the magnetization, ψ is the superconducting order
parameter(s) and �E is the electric field.

To approach the solutions given as the configuration of the (|ψ|, �M , �A, �E) fields we
need to make the initial guess of physical fields configuration and order parameter in
the given space using certain physical intuition. The initial guess should be not too
far from the solution. Having the initial guess we perform the calculation of fields
change on the given lattice with each iteration step virtual time δt according to the
scheme:

δ

δψ
F [ψ, �A, �M, �E] = −η1 δψ

δt
,
δ

δ �A
F [ψ, �A, �M, �E] = −η2 δ

�A

δt
,(3)

δ

δ �M
F [ψ, �A, �M, �E] = −η3 δ

�M

δt
,
δ

δ �E
F [ψ, �A, �M, �E] = −η4 δ

�E

δt
(4)

Here η1, η2, η3, η4 are phenomenological constants. The δt cannot have too big
value since it might bring the numerical instability in the simulation. If δt has very
small value the arriving to the solution is long. One of the signature of approaching
the solution is the minimization of free energy functional. Then one can observe the
characteristic plateua in the free energy as the function of iteration (virtual time) is
observed.

It should be underlined that the relaxation method applied here is in the frame-
work of the Ginzburg-Landau formalism. Much more detailed knowledge about su-
perconductor properties and in the whole range of superconductor properties as
from 0 to critical temperature is given by propagator formalism as: Usadel, Eilen-
berger, Gorkov or non-equilibrium Keldysh formalism. In those formalisms there
occurs self-consistency equations for the superconducting order parameter. In order
to avoid the difficulties it is always good to plug the superconducting order param-
eter from the Ginzburg-Landau equation and then start to use propagators as it
is depicted in Fig. 2. Many applications of relaxation method as for many types of
gauge fields are pointed by Adler [17].
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Fig. 2: Schematic illustration of generalized relaxation method.

3. S-wave superconducting structure in time-dependent tem-
perature gradient

For s-wave superconducting structure in time-dependent temperature gradient we
can write Ginzburg-Landau equation of the following form

γ
d

dt
ψ(x, y, t) = α(x, y, t)ψ(x, y, t) + βψ(x, y, t)|ψ(x, y, t)|2 +

1
2m

((
�
i

d

dx
− 2e

c
Ax(x, y))2

+(
�
i

d

dy
− 2e

c
Ay(x, y)) + (

�
i

d

dz
− 2e

c
Az(x, y))2)ψ(x, y, t)

with

ψ(x, y, t) = |ψ(x, y, t)|exp(iφ(x, y, z, t))(5)

φ =
2ei
�c

(
∫ zb

za

(Az(x, y, t)dz +
∫ xb

xa

Ax(x, y, t)dx +
∫ yb

ya

Ay(x, y, t)dy))(6)

where α(x, y, t) incorporates the existing gradient of temperatures and temperature
field across the sample and the total electric current flowing via the sample is the
sum of superconducting current and normal component of the form
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jz =
j�e∗

2m∗ (ψ† d
dz
ψ − h.c.− e∗

c
Az |ψ|2) +

dAz

dt
σn(7)

jy =
j�e∗

2m∗ (ψ† d
dy
ψ − h.c.− e∗

c
Ay|ψ|2) +

dAy

dt
σn(8)

jx =
j�e∗

2m∗ (ψ† d
dx
ψ − h.c.− e∗

c
Ax|ψ|2) +

dAx

dt
σn(9)

The normal current component are proportional to the derivative of vector po-
tential with time and brings the dissipation that heats the studied system locally as
from Drude model. It shall be underlined that the direct control of Az(x, y, t) vector
potential in laboratory conditions is not possible, but we can control the integral

∫ ∫
jz(x, y, t)dxdy = I(t)(10)

as by setting current source as to be of the certain function of time I(t). The condition
of total current flowing via the system is incorporated inside the relaxation algorithm.
The second controllable integral is given by external magnetic field as can be fixed
to be at the point B(x1, y1, t), which imposes conditions on Ax and Ay. It gives
another constrain

∮
�A ◦ �dr = 2πn, where n is the integer number.

The additionary boundary conditions comes from normal to the surface
superconductor-vacuum derivatives given as

(
�
i

d

dx
− 2e

c
Ax(x, y, t))ψ(x, y, t) = 0, (

�
i

d

dy
− 2e

c
Ay(x, y, t))ψ(x, y, t) = 0(11)

and for superconductor-normal metal interface we have

1
b
ψ(x, y, t) = (

�
i

d

dy
− 2e

c
Ay)ψ(x, y, t)(12)

The constant b can be determined from microscopic model as given by [10]. Let us
consider the SQUID as depicted in Fig. 1. In first numerical computations we set A
to be zero what means that there is no electric current flow and magnetic field in
the system. We incorporate the temperature gradient into GL equations by keeping
γ coefficient to be constant and by setting α(x, y, t) = α0 + a(x− x0)(t− t0). We set
t0 = x0 = 0.

Then we obtain the following α fields as depicted in the Fig. 3, 4 and 5. The
situation when there is no temperature gradient in the sample we name as zero
temperature gradient. Then temperature of sample is linearly time dependent so
α(x, y, t) = α0 + a(t− t0). If α(x, y, t) = α0 + a(x− x0)(t− t0) we call such situation
to be first temperature gradient. In case of α(x, y, t) = α0 + 2a(x − x0)(t − t0) we
name it second temperature gradient. Having given α field in dependence on time
and space we can trace the time dependence of superconducting order parameter
distribution in the structure. This is depicted in Fig. 6, 7, 8, 9, 10, 11. We can
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Fig. 3: α(x, y, t) for zero temperature gradient in times t0 < t1 < t2

Fig. 4: α(x, y, t) for first temperature gradient with times t0 < t1 < t2

Fig. 5: α(x, y, t) for second temperature gradient with times t0 < t1 < t2

Fig. 6: Order parameter for zero temperature gradient with times t0 < t1 < t2, γ = −200.
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Fig. 7: Order parameter for zero temperature gradient with times t0 < t1 < t2, γ = 500.

Fig. 8: Order parameter for first temperature gradient with times t0 < t1 < t2, γ = −200.

Fig. 9: Order parameter for first temperature gradient with times t0 < t1 < t2,γ = 500

trace the effect of γ coefficient in TDGL equation on superconducting distribution
in different time steps.

3.1. Toroidal uJJ SQUID in time dependent temperature gradient

Let us consider the system as depicted in Fig. 12, which is the unconventional torus
SQUID made by putting on the top of s-wave torus superconductor parametrized
by (r,R) the part of non-superconducting torus (toroidal strip) with hole inside
so the system can create 1 unconventional Josephson junction. In analogy to the
previous case of unconventional Josephson junction or unconventional Josephson
junction SQUID, the presence of nonsuperconducting strip will cause Cooper pairs
to diffuse from superconductor into non-superconductor. Also the electrons from
the normal toroidal strip will diffuse into superconductor. As the result the super-
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Fig. 10: Order parameter for second temperature gradient with times t0 < t1 < t2,γ =
−200.

Fig. 11: Order parameter for second temperature gradient with times t0 < t1 < t2,γ = 500.

conducting order parameter under toroidal non-superconducting strip will be de-
creased. This is described by the solutions of GL equation for the limiting case when
R >> r. Then the whole system can be treated as superconducting cylinder with
non-superconducting cylinder with hole placed on the superconducting cylinder with
certain periodic boundary conditions. Superconducting order parameter in cylindri-
cal unconventional SQUID is given by solution of GL with time dependent or space
uniform time dependent linear temperature gradient as depicted in Fig. 14. The
presence of the time-dependent temperature gradient allows to introduce additional
barrier in the superconductor order parameter. The dependence of temperature with
zero temperature gradient on superconducting order parameter distribution is de-
picted in Fig. 13. The validity of solutions of GL equations for d-wave superconductor
was check basing on Fig. 15.

γ
d

dt
ψ(r, φ, θ, t) = α(r, φ, θ, t)ψ(r, φ, θ, t) + βψ(r, φ, θ, t)|ψ(r, φ, θ, t)|2(13)

− �2

2m
(
d2

dr2
+

1
r

d

dr
)ψ(r, φ, θ, t).

Time dependent uniform gradient of temperature occurs in φ direction and is linearly
time and temperature dependent so α(r, ψ, θ, t) = (α0 + a1(t− t0)(ψ − ψ0)) is non-
zero inside superconductor and 0 outside. The physical situation becomes even more
interesting if the non-superconducting strip is magnetized or when it is ferroelectric
material. This situation will be the subject of investigations in future research.
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Fig. 12: Torus shape s-wave SQUID in unconventional Josephson junction architecture.

Fig. 13: Distribution of s-wave superconducting order parameter inside torus uJJ SQUID
for different temperatures T1(left) > T2(right). No temperature gradient is present. α is
linearly time dependent.

Fig. 14: Distribution of superconducting order parameter in superconductor region param-
eterized by angle φ and radius r are obtained by use of the relaxation algorithm. Gradient
of temperatures occurs in the direction of φ.

Because of various symmetries this system can be quite easy studied with more
advanced formalism as Bogoliubov-de Gennes or equilibrium and non-equilibrium
Usadel formalism as it is used in [9–11].

3.2. Case of d-wave Ginzburg-Landau equation

One of the study the d-wave GL equation for superconducting vortices was per-
formed by J. Alvarez [13]. Vortex in superconductor is the example of defect in the
superconducting order parameter. Another type of defects in superconductor is the
Josephson junction that can be induced by proximity effect and will be the subject
of our interest as in the SQUID configuration depicted in the Fig. 15, 16. It should be
noticed that the d-wave order parameter in the neighborhood of superconductivity
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Fig. 15: Distribution of s and d-wave superconducting order parameter components in
d-wave superconducting square in ab-plane.

disturbing factor diminish while s-wave order parameter is initially enhanced and
later lowered.

3.2.1. Testing relaxation algorithm

Highly correlated materials as d-wave superconductors are strongly anisotropic what
is reflected for example in the electron effective massive that is different in ab-plane
than in c axe by factor of 100. Properties of superconductor state in ab-plane can
be described by Ginzburg-Landau equations for d-wave superconductor also known
as GL x2 − y2 equations and are the set of 2 coupled non-linear partial differential
equation given as

(−γd∇2 + αd)ψd + γv(∇2
x −∇2

y)ψs + 2β2|ψd|2ψd + β3|ψs|2ψd + 2β4ψ
2
sψ

∗
d = 0(14)

(−γs∇2 + αs)ψs + γv(∇2
x −∇2

y)ψd + 2β1|ψs|2ψs + β3|ψd|2ψs + 2β4ψ
2
dψ

∗
s = 0(15)

where γρ ≡ �2/2mρ, and ρ = d, s, v. The parameters αd, αs, γv, β1, β2, β3, β4, γs,

γd can be derived from the extended Hubbard model. The electric current density
is given by

J =
e�
imd

{
ψ∗

d∇ψd − c.c.
}

+
e�
ims

{
ψ∗

s∇ψs − c.c.
}

− x̂
e�
imv

{
ψ∗

s∇xψd − ψd∇xψ
∗
s − c.c.

}
+ ŷ

e�
imv

{
ψ∗

s∇yψd − ψd∇yψ
∗
s − c.c.

}
.

In d-wave superconductors the superconducting order parameter Δ(x, y, z) is
given as

Δ(x, y, z) = ψs(x, y, z) + cos(2φ)ψd(x, y, z)(16)

and boundary conditiones are expressed as
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i

κ
n(Πψs +

1
2

(Πx − Πy)ψd) = −Vs(ψs),
i

κ
n(Πψd + (Πx − Πy)ψs) = −Vd(ψd).(17)

Here Vs and Vd depends on the material constants that can be determined from
the extended Hubbard model as from [13] and n is the unit vector normal to the
surface of superconductor-non-superconductor or superconductor-vacuum interface.
The Δ is the global superconducting order parameter, which is the complex scalar
field and is obtained from as the sum of 2 complex scalar superconducting fields ψs

and ψd. Here κ = λ/ξ is the ratio of magnetic field penetration field λ to supercon-
ducting coherence length ξ. We also define canonical momentum operator in various
directions as

Π =
�
i

(Πab + ηΠc) − 2e
�c

(Aab + ηAc),(18)

where canonical momentum in ab-plane is

Πab = i∇x + j∇y,(19)

vector potential in ab-plane Aab = iAx + jAy. In analogy we can define Πc = ∇z ,
η-parameter accounting electron effective mass anisotropy,

Πx =
�
i
∇x − 2e

�c
Ax,Πy =

�
i
∇y − 2e

�c
Ay(20)

Using only GL (x2 − y2) equations we confirm the results of [16] in static case as
presented in Fig. 14. The coeffcients describing GL functional was taken from [15].
After solving d-wave GL equations in static case, the time-dependent GL (x2 − y2)
was obtained in the case of superconducting 2 dimensional rectangular body in ab
plane, which is in the linearly dependent temperature gradient as it is depicted for
different time steps in Fig. 17. In comparison with Fig. 15. we note that s compo-
nent of superconducting order parameter has changed its distribution and become
asymmetric along temperature gradient. Therefore it will have non-trivial impact on
transport properties of such structure.

4. Conclusions and future work

We have conducted the computations of superconducting order parameter with use
of relaxation method. We have applied it to solve Time Dependent Ginzburg Lan-
dau equation in s-wave superconductor or equations in d-wave superconductor. This
algorithm, which was originally presented by [7, 17] and others, turns out to be
simple in implementation, fast and numerically stable even in the case of occur-
rence of more than 2 coupling scalar fields. The conducted computations provide
preliminary knowledge necessary in determination of the transport properties of the
superconducting structures especially in the case of zero electric current limit. In
the conducted work the particular interest should be paid to the unconventional
Josephson junction (uJJ) made by putting non-superconducting strip on the top of
superconductor strip. It is the continuation of previous work given by [5] and [14].
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Fig. 16: Rectangular d-wave superconductor SQUID scheme (left) made in unconventional
Josephson junction architecture. S-wave (center) and d-wave (right side) superconducting
orders parameter distribution inside superconductor region are obtained by use of the
relaxation algorithm. No magnetic field is present in the system.

Fig. 17: The s-wave superconducting order parameter distribution in the rectangular shape
d-wave superconductor placed in vacuum (2-dimensional GL x2 − y2) subjected to the
linearly changing in time and space temperature gradient for different times t = t, t+Δt, t+
2Δt, t + 3Δt, t + 4Δt (from top to bottom). The vertical and horizontal axes correspond to
y and x coordinates.The linear time-dependent temperature gradient occurs in y direction.

Such structure is easy in fabrication process and hence can be used in the supercon-
ducting circuits of high integration. Studying the properties of uJJ is the subject of
experiments described by [2–4, 6]. It is important to underline that Ginzburg Landau
formalism is the most phenomenological tool to study the superconducting struc-
ture properties. Its application to various structures is the preliminary step before
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the application of more complex formalism as the Bogoliubov-de Gennes, Usadel or
Keldysh techniques. It is not big suprise that the temperature gradient diminish su-
perconducting order parameter. However in certain cases as depicted in the left side
of right plot among Fig. 14 that can generate “superconductor barrier” for quasipar-
ticles and partly block their transport via Josephson junction. Also determination
of γ coefficients occurring in TDGL from microscopic theory is not easy task since
it deals with non-equilibrium processes, but is the future research target.
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NUMERYCZNE ROZWIA̧ZANIA RÓWNAŃ
GINZBURGA-LANDAUA ZALEŻNYCH OD CZASU
DLA RÓŻNYCH STRUKTUR NADPRZEWODZACYCH

S t r e s z c z e n i e

W niniejszej pracy prezentujemy algorytm relaksacyjny rozwia̧zywania równań Ginz-

burga-Landaua zależnych od czasu dla różnych geometrii nadprzewodzacych struktur w za-

leżnych od czasu polach temperaturowych oraz zależnym od czasu pra̧dzie elektrycznym

przep�lywaja̧cym przez nadprzewodnik.
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