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1ère page, 5.6 cm au dessous du bord supérieur du cadre de frappe; le titre de
l’acticle, en majuscules d’orateur 14 points, 7.1 cm au dessous de même bord.
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Fig. 1: The figure caption is located below the figure itself; it is automatically centered and
should be typeset in small letters.

2.2. Example of a table

Tab. 1: The table caption is located above the table itself; it is automatically centered and
should be typeset in small letters.
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Name and surname of the authors

TITLE – INSTRUCTION FOR AUTHORS
SUBMITTING THE PAPERS FOR BULLETIN

Summary

Abstract should be written in clear and concise way, and should present all the main

points of the paper. In particular, new results obtained, new approaches or methods applied,

scientific significance of the paper and conclusions should be emphasized.

1. General information

The paper for BULLETIN DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES
DE �LÓDŹ should be written in LaTeX, preferably in LaTeX 2e, using the style (the
file bull.cls).

2. How to prepare a manuscript

To prepare the LaTeX 2e source file of your paper, copy the template file in-
str.tex with Fig1.eps, give the title of the paper, the authors with their affilia-
tions/addresses, and go on with the body of the paper using all other means and
commands of the standard class/style ‘bull.cls’.

2.1. Example of a figure

Figures (including graphs and images) should be carefully prepared and submitted
in electronic form (as separate files) in Encapsulated PostScript (EPS) format.



3. How to submit a manuscript

Manuscripts have to be submitted in electronic form, preferably via e-mail as at-
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their manuscript electronically, it should be provided on a disk (DOS format floppy
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QUANTUM INFORMATION THEORY — TORUŃ SCHOOL

Summary
Roman S. Ingarden is one of the founders of quantum information theory (QIT). On

the one hand QIT can be regarded as a branch of modern quantum mechanics, while on the
other it is a generalization of classical (Shannon) information theory founded on noncom-
mutative probability theory. The aim of this paper is to present the role of R. S. Ingarden
and a group of his collaborators in the creation and subsequent development of fundamental
ideas of QIT.

1. Beginnings

Almost forty years ago Professor R. S. Ingarden published a seminal paper entitled
“Quantum Information Theory”, [5], in the introduction of which he wrote:

A conceptual analysis of the classical information theory of Shan-
non (1948) shows that this theory cannot be directly generalized to the
usual quantum case. The reason is that in the usual quantum mechan-
ics of closed systems there is no general concept of joint and conditional
probability. Using, however, the generalized quantum mechanics of open
systems (A. Kossakowski, 1972) and the generalized concept of observable
(“semiobservable” by E. B. Davies and J. T. Lewis, 1970) it is possible
to construct a quantum information theory being then a straightforward
generalization of Shannon’s theory.

In fact, the foundations of such a new approach to QIT and to quantum mechanics
of open systems were laid from two independent sides. In 1961, E. C. G.Sudarshan
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with collaborators announced a paper [20] where for the first time they formulated
the ideas of the so-called “quantum stochastic dynamics”. Somewhat later, the idea
of a non-Hamiltonian quantum statistical theory, whose central notions are an open
quantum system and its evolution governed by a “dynamical semigroup”, was born
and developed in Toruń by the members of Professor Ingarden’s group (cf. A. Kos-
sakowski [11]). Immediately emerging in this context is the fundamental problem
of the preservation of basic properties of quantum states by such a semigroup. For-
mally, the defining properties of density matrices representing quantum states, that
is positive semidefiniteness and trace being equal to 1, should be preserved during
time evolution. This problem was also studied around that time by the Toruń group
(cf. A. Jamio�lkowski [7]). Let us sketch the above ideas in a bit more detail.

The central object in the theory of classical statistical mechanics is the N -body
distribution function �(t, x), where x represents the “phase point” for the entire
N -body system. Similarly, in the quantum case an appropriate density matrix �(t)
represents the state of the system at time t.

The dynamics of a finite isolated quantum system is usually described by a one-
parameter group of unitary transformations in a complex Hilbert space and its action
on the system initial state �(0). However, in less idealized physical situations, it is
necessary to consider a quantum system as an open one, taking into account its
interaction with surroundings. Namely, the respective Hilbert space is assumed to
be composed of two parts — system and environment, H = Hs ⊗ Henv, and the
Hamiltonian is taken to consists of 3 terms,

H = Hs +Hint +Henv ,

where Hs describes the system itself, Henv rules the free evolution of the environment
and Hint introduces interaction between the two parts. As a whole, such a system
can be considered isolated, and hence its dynamics is fully described by a unitary
group, �(t) = U(t)�(0)U †(t). This picture, however, is totally impractical due to the
enormous number of environmental degrees of freedom entering the model. The usual
way of handling this problem is to resort to the reduced dynamics, i.e. to average
out the environment in �(t), �s(t) = Trenv(�(t)). Then the notion of a quantum
dynamical semigroup proves to be useful in more direct description of the reduced
dynamics of an open system or, at least, of some of its aspects (cf. e.g. [6,11]). Thus
in contrast to the idealized case of a strictly isolated system with Hamiltonian time
evolution prescribed in the form of a unitary group generated by H , the evolution
of an open quantum system is governed by a properly selected dynamical semigroup
Λ(t) characterized by its generator L. We will look closer at dynamical semigroups
and their generators in Section 2.

Obviously, an open system needs no longer be conservative: energy can flow back
and forth between the system and its environment. So if one considers the Cauchy
problem in such context, then some part of the dissipation is due to the reduced
description of �(0) (in the sense of Ingarden, see e.g. [18]), and some other part is
due to the element of randomness in the dynamics described by the generator L.
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Ingarden’s “level of description” is fixed by choosing a list of random variables (ob-
servables) Q1, . . . , Qn among which are the “sure” function I and the energy H .
The larger n is, the more detailed is our description. If pure states of our system are
described by elements of an N -dimensional Hilbert space (e.g. if we discuss quantum
networks), then a set of independent operators I, Q1, . . . , Qn, where n = N2 − 1 is
said to be a complete set of observables. If n < N2 − 1 then one speaks about an
incomplete set of observables. It is obvious that a measurement of mean values of
a complete set of observables fixes uniquely the state �(0) of our system (assuming
that the operators I, Q1, . . . , Qn are linearly independent). Note however that it is
not possible to use, for instance, I, Q, Q2, . . . , QN2−1 for a fixed Q, as a complete set
of observables ( [6] p. 124) because in this case, according to the Hamilton–Cayley
theorem, these operators must be linearly dependent.

Let us turn now to the information-theoretic aspect of open systems. If we adapt
the view that statistical mechanics is the study of mechanical systems (classical or
quantal) in terms of incomplete information, we are led to regard � as an object
representing the available knowledge about the system in question. Loss or gain
of information is recognized physically as the gain or loss of entropy — a special
function of �. For a given statistical operator � we determine its entropy by the von
Neumann formula s(�) = −Tr(� ln �). Now, if we want to reverse this procedure
and use certain physical properties of the system (e.g. mean values E(Qi) of a set
of observables Q1, . . . , Qn) to construct a unique statistical operator describing the
system state, we have to introduce the so-called principle of maximum entropy which,
in quantum statistical physics, is an information-theoretical estimation principle
(decision rule). This principle was formulated independently by E. T. Jaynes and
R. S. Ingarden (cf. e.g. [6, 18]).

In the next section we discuss the main ideas underlying the semigroup descrip-
tion of open quantum system dynamics.

2. Dynamical semigroups

Time evolution of an open quantum system of finitely many degrees of freedom
coupled to an infinite system, usually called a reservoir, can be described by a
one-parameter semigroup of transformations [6, 19]. We shall define the semigroup
accordingly.

Let H be the Hilbert space of the system in question (dimH = N < ∞). Let
us denote by T(H) the real Banach space of self-adjoint operators on H under the
trace norm ‖�‖ := Tr(�∗�)1/2. In this finite-dimensional setting T(H) contains in
fact all self-adjoint operators acting on H. States of the system are described by
density operators � ∈ P(H) ⊂ T(H), where the set P(H) is defined as

P(H) := {� ∈ T(H); � ≥ 0, Tr � = 1}.
Let us note that the smallest linear space in which P(H) can be embedded is just
the real Banach space T(H).
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The set of semipositive operators � ∈ T(H) constitutes a positive cone V +(H) in
T(H). Throughout the paper we shall use the terms “positive” and “semipositive”
for brevity in place of formally more appropriate “positive definite” and “positive
semidefinite” referring to linear operators on H. This cone can be also defined as:

V +(H) := {� ∈ T(H); ‖�‖ = Tr�},
because � ∈ V +(H) if and only if the equality ‖�‖ = Tr� is fulfilled.

Definition 1. A family {Λ(t), t ∈ R
1
+} of linear mappings

Λ(t) : T(H) −→ T(H)

constitutes a dynamical semigroup of a quantum system S iff

1) Λ(t) : V +(H) −→ V +(H) for all t ∈ R
1
+,

2) ‖Λ(t)�‖ = ‖�‖ for all � ∈ V +(H),

3) Λ(t)Λ(s) = Λ(t+ s) for all t, s ∈ R
1
+,

4) lim
t→0

Λ(t) = I (I – the identity operator in T(H)).

The limit in the latter equality should be understood as the limit in the norm
‖ · ‖ in T(H).

The meaning of conditions 1) and 2) in the above definition is that for all t ∈ R
1
+,

Λ(t) : P(H) −→ P(H). Condition 3) ensures that the family {Λ(t), t ∈ R
1
+}

constitutes a semigroup, whereas condition 4) is dictated by the requirement that for
all observables Q ∈ T

∗(H) and � ∈ T(H) the equality limt→0 Tr(Q(Λ(t)�− �)) = 0
is fulfilled.

It can be shown (cf. [6, 11]) that the family {Λ(t), t ∈ R
1
+} of linear mappings

Λ(t) : T(H) −→ T(H) constitutes the dynamical semigroup of a quantum system
S if and only if for all t, s ∈ R

1
+

1◦ Tr(Λ(t)�) = Tr� for all � ∈ T(H),

2◦ ‖Λ(t)�‖ ≤ ‖�‖ for all � ∈ T(H),

3◦ Λ(t) ◦ Λ(s) = Λ(t · s),
4◦ lim

t→0
Λ(t) = I.

The above theorem essentially states the equivalence of the first two conditions
of the definition with the requirements 1◦ and 2◦. These conditions in the form 1◦

and 2◦ refer to the whole space T(H) and not only to the positive cone V +(H).
As we shall see below, this allows us to introduce the notion of the generator of a
dynamical semigroup. On the other hand, the form of these conditions, as given in
the definition, enables a straightforward physical interpretation — they simply mean
that the mappings Λ(t), for t ∈ R

1
+, transform states into states.

By applying the Hille–Yosida theorem (see e.g. [22]) to the dynamical semigroup
{Λ(t), t ∈ R

1
+} we infer that there exists a linear operator L acting on the space

T(H), called the generator of {Λ(t)}, such that
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d

dt
(Λ(t)�) = L(Λ(t)�),

for all � ∈ T(H). If �(t) denotes the operator Λ(t)�0, where Λ(t) is an element of
the dynamical semigroup, then

R
1
+ � t �−→ �(t) ∈ T(H)

is a solution of the differential equation �̇(t) = L�(t) with initial condition �(0) =
�0 ∈ T(H). In other words, if dimH = N < ∞, then every family of stochastic
mappings Λ(t) : P(H) −→ P(H), satisfying the conditions given in Definition 1,
can be represented in the form Λ(t) = expLt, t ∈ R

1
+.

Let us note that if the inequality 2◦ above is replaced by equality

‖Λ(t)�‖ = ‖�‖
for all � ∈ T(H) and t ∈ R

1
+ or, which amounts for the same, if the equality 2) in

Definition 1 holding on V +(H) is extended to the whole space T(H), then one can
already infer the existence of a continuous one-parameter unitary group {U(t), t ∈
R

1} on H such that
Λ(t)� = U(t)�U †(t)

for all � ∈ T(H) and t ≥ 0. In other words, the strengthening of 2) allows one
technically to extend the semigroup {Λ(t), t ∈ R

1
+} to a full group of mappings

{Λ(t), t ∈ R
1}.

Physical intuitions behind the two situations are that the semigroup case corre-
sponds to the presence of dissipation in the system which gives rise to an irreversible
dynamics: one cannot trace back into the past of a process whose “current” state
is �(t0). On the other hand, the group structure of the dynamics allowing one to
propagate states backwards in time is rooted in conservative character of the system.

In the latter case, Stone’s theorem guarantees a spectral representation of the
group {U(t), t ∈ R

1},

U(t) =

∞∫
−∞

exp(−itλ)E(dλ).

The differential equation for �(t) = Λ(t)� assumes then the form
d

dt
�(t) = L0�(t) = −i[H, �(t)],

where the self-adjoint operator H acting on H is given by the spectral resolution
formula

H =

∞∫
−∞

λE(dλ).

In this manner we arrive at the conditions which determine the Hamiltonian de-
scription of a quantum system and the evolution equation in the form of the von
Neumann equation.
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Arguments of physical nature indicate that a semigroup describing the time evo-
lution of an open quantum system should not only be positive and trace preserving
but also completely positive. Formally, a linear mapping Θ : B(H) −→ B(H) is
completely positive iff the tensor product IIn ⊗ Θ is a positive map on Mn ⊗B(H)
for any natural n. Here B(H) is the set of bounded operators on H, Mn is the
space of complex n×n matrices and IIn denotes the identity mapping on this space.
Every such map IIn ⊗ Θ is called an amplification of Θ.

To put it in more intuitive terms, the complete positivity of a semigroup {Λ(t)}
guarantees that it will act consistently on the states (preserving their semipositivity)
when our system is treated as an autonomous part of a larger one. The amplification
(IIn⊗Λ)(t) of the semigroup advances the state of our system as before while leaving
the supplementary part at rest (see also (6–7) below).

Arguments in favour of completely positive semigroups as the foundation of non-
Hamiltonian dynamics along with a thorough study of their properties can be found
in the papers of Kraus [12], Lindblad [13] and Gorini, Kossakowski, and Sudard-
shan [3]. In particular, in [3,13] general form of the generator of a completely positive
dynamical semigroup was derived. Namely, a linear operator L : B(H) −→ B(H)
preserving T(H) proves to be the generator of a proper completely positive dynam-
ical semigroup if and only if it can be represented in the form

L� = −i[H, �] +
1
2

∑
j

(
[Vj�, V

∗
j ] + [Vj , �V

∗
j ]
)

(1)

where Vj ∈ B(H) for j = 1, 2, . . . , and H ∈ B(H) is self-adjoint.
It should be emphasized though that determining the generator of a semigroup

alone is insufficient to describe the evolution of the system in question. Equally
essential is the ability to decide its initial state at an arbitrary time instant t0 (we
usually assume that t0 = 0). In the presently considered finite-dimensional setting
knowledge of the initial state �(t0) ∈ P(H) it suffices to determine the system state
at time t > t0 according to the formula

R
1
+ � t �−→ �(t) = exp

(
L(t− t0)

)
�(t0).

The initial state �(t0) can be determined by measuring expectation values or
correlation functions of some observables belonging to the space T

∗(H). It is es-
sential thereby whether the accessible information about the system is sufficient to
determine its state uniquely. It is worth emphasizing that even if the space T(H)
is finite-dimensional, the two spaces T(H) and T

∗(H) should not be identified, al-
though they are algebraically isomorphic as spaces of the same dimension, the reason
being that the norms in these spaces are introduced differently. If the expectation
values of a relevant set of observables Q1, . . . , Qn, where n < N2 − 1, are measured
at a finite number of time instants t1, . . . , ts, then such procedure of determining
the state �0 can be effective only for N -level systems, because in general infinitely
many measurements are necessary to describe �0 entirely. Nonetheless, in this case
it is also possible to establish certain conditions which must be fulfilled (and which
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are sufficient) in order that the state of an open quantum system be determined
uniquely. The branch of physics which is concerned with identification of quantum
states is called “quantum tomography” and has also been developed in Toruń since
1980’s, [8–10].

3. Superoperators which preserve semipositivity

Another important problem formulated by R. S. Ingarden and discussed in Toruń in
1970’s was the preservation of semipositivity and trace of states represented by den-
sity matrices by the action of a dynamical semigroup. As we have already mentioned
it in the previous section, time evolution of a non-isolated (open) quantum system
is described by the differential equation in the general form

d �(t)
dt

= L�(t) ,

with the generator L given by (1). Solutions of the above equation can be rewritten
in the form

�(t) = Λ(t)�(0) ,

where Λ(t) is a superoperator with respect to the operators � ∈ B(H).
This representation of time evolution leads directly to the following question:

what are the condintions that a superoperator Λ(t) must obey in order to preserve
semipositivity of density operators �. An answer to this problem was given in 1973
by A. Jamio�lkowski [7]. This answer can be formulated as follows.

Let H1 and H2 be two finite-dimensional Hilbert spaces with dimH1 = n and
dimH2 = m. By (·, ·)i we denote respectively the inner product in Hi, i = 1, 2. Let
L(H1,H2) be the vector space of linear transformations between H1 and H2. We
also write simply L(H) for L(H,H). Let moreover Ai = A(Hi) be the full algebra
of linear operators on Hi with inner product [A,B]i = Tr(B∗A), i = 1, 2. Note that
L(H), B(H) and A(H) refer to the same set of objects, but with different structure
in mind: an ordinary vector space, a Banach space and an algebra, respectively.

Let H1 ⊗ H2 denote the tensor product of H1 and H2 which, when endowed
with inner product of the form

((x1 ⊗ y1, x2 ⊗ y2)) = (x1, x2)1 · (y1, y2)2

for any xi ∈ H1 and yi ∈ H2, becomes a Hilbert space of its own. Analogously,
the tensor product of algebras A1 ⊗A2 is naturally equipped with a unitary space
structure by

[[A1 ⊗B1, A2 ⊗B2]] := [A1, A2]1 · [B1, B2]2

for all A1, A2 ∈ A1 and B1, B2 ∈ A2.
Let us recall the standard fact that the algebras A(H1 ⊗H2) and A1 ⊗A2 are

isomorphic.
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Now following [7], let J denote the linear transformation which maps the space
L(A1,A2) to the space A1 ⊗A2,

J : L(A1,A2) −→ A1 ⊗A2 ,

whose value for arbitrary Λ ∈ L(A1,A2) is defined by the equality

[[J(Λ), A∗ ⊗B]] = [Λ(A), B]2(2)

for any A ∈ A1 and B ∈ A2. It can easily be verified that

J(Λ) =
∑

i

E∗
i ⊗ Λ(Ei) ,(3)

for any orthonormal basis {Ei} in A1. In other words, J is an isomorphism between
linear maps from A1 to A2 and operators on H1⊗H2. In literature this isomorphism
if often referred to as the Jamio�lkowski isomorphism or Choi-Jamio�lkowski isomor-
phism. The isomorphism was originally introduced in 1972 by one of the present
authors (A. J.) [7] in the physically motivated context of conservation of density
matrix properties by open quantum dynamics, while it also emerged a bit later, in
1975, in a purely mathematical study by M. D. Choi, [2]. It easily follows from (2)
that J is, in fact, an isometry. Moreover, in [7] the following relevant properties of
J are demonstrated:

(i) Λ : A1 → A2 preserves hermiticity if and only if its image by J is Hermitian
in A1 ⊗A2 = A(H1 ⊗H2);

(ii) Λ preserves strict positivity of operators if and only if its image by J is Her-
mitian and

((J(Λ)x ⊗ y, x⊗ y)) > 0(4)

for all x ∈ H1 and y ∈ H2. Observe that the last condition is weaker than
ordinary positive definiteness of J(Λ), since it is required to hold only for
product vectors x⊗ y which form a proper subset of H1 ⊗H2.

(iii) In the same spirit, Λ preserves semipositivity of operators iff its image by J is
Hermitian and (4) holds with “≥” replacing the strict inequality “>”.

Let us mention that there is an important application of the J mapping in the
theory of entanglement in bipartite quantum systems, namely it establishes an equiv-
alence between positive but not completely positive maps and so-called entanglement
witnesses. The two notions are of fundamental importance for the surprisingly in-
volved problem of distinction between separable and entangled states in contempo-
rary quantum information science. We will draw a perspective of these and related
issues in the next section.

4. Entanglement, entanglement witnesses and positive maps

If H is a Hilbert space of a composite quantum system, e.g. H = H1 ⊗ H2, then
a large part of its elements cannot be represented in the product form z = x ⊗ y
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regardless of the basis chosen. Such vectors are called entangled and there exists a
standard algebraic procedure, called Schmidt decomposition, by means of which one
can check whether a given vector is a product or an entangled one. Entanglement
is understood as the manifestation of quantum correlations between the constituent
parts in the system as opposed to much weaker classical correlations which can well
be encoded in a product or — in alternative terminology — a separable state.

These notions of separability and entanglemet are immediately extended to mixed
states of a compound quantum system.

Definition 2. A mixed state � ∈ P(H1 ⊗H2) is separable iff it can be represented as
a convex combination of projections onto product vectors,

� =
∑

i

pi |ei ⊗ fi〉〈ei ⊗ fi| =
∑

i

pi |ei〉〈ei| ⊗ |fi〉〈fi|, pi ≥ 0,
∑

i

pi = 1 ,

with ei ∈ H1, fi ∈ H2. Otherwise � is said to be entangled.

Let us mention that, in contrast to the pure state situation, where one can test a
vector for separability/entanglement by the Schmidt procedure, deciding separability
of a mixed state is a very difficult task: in principle one would have to check all
possible decompositions of � into projections (note that the spectral resolution of �
is merely just one of them) to tell whether it is separable or entangled.

It is well known that if a linear map Λ : A → A sends the set Ah = {X ∈
A ; X = X∗} of all Hermitian elements of A into itself, then Λ can be represented
in the form

Λ(X) =
κ∑

i=1

aiK
∗
i XKi ,(5)

where Ki ∈ A, and ai, i = 1, . . . , κ are real numbers [1, 16]. In general, all maps
of the form (5) are hermiticity-preserving. However, the representation (5) is not
unique: in general, for a given Λ, there exist many possible representations of such
form. The minimal length of Λ is defined to be the smallest κ among all expansions
(5) of Λ. If we assume that the operators Ki for i = 1, . . . , κ are linearly independent,
then κ in (5) must be minimal.

Recall that a map Λ : A → A which preserves the set Ah of Hermitian elements
is called positive if Λ(X) ≥ 0 whenever X ∈ A is positive, i.e. (Xη, η) ≥ 0 for all
η ∈ H.

A map Λ is called k-positive if its k-amplification Λ(k) := IIk ⊗Λ that is the map

IIk ⊗ Λ : Mk(C) ⊗A → Mk(C) ⊗A(6)

is positive. Mk(C) denotes here the set of of all k × k complex matrices. We can
identify Mk(C) ⊗ A with the set of all k × k matrices Mk(A) with entries in A
and in such notation one can represent Λ(k) : Mk(A) → Mk(A) simply by
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Λ(k)

⎛
⎜⎜⎜⎝

...

· · · Xij · · ·
...

⎞
⎟⎟⎟⎠ :=

⎛
⎜⎜⎜⎝

...

· · · Λ(Xij) · · ·
...

⎞
⎟⎟⎟⎠ .(7)

The map Λ is called completely positive if it is k-positive for all k = 1, 2, . . . . This
terminology goes back to Stinespring [17]. It is well known that for A = L(H),
where H denotes an N -dimensional Hilbert space,N -positive maps on A are already
completely positive.

Let us observe that all hermiticity-preserving maps which are not only positive
but also completely positive can be written in the form (5) with positive ai, i =
1, . . . , κ, i.e. equivalently by

Λ(X) :=
κ∑

i=1

K̃∗
i XK̃i ,(8)

where K̃i =
√
aiKi and κ ≤ N2. Relation (8) is the so-called Kraus representation of

a completely positive map Λ. This representation is very useful in quantum informa-
tion theory. In particular, completely positive maps are used to describe the so-called
quantum operations and quantum channels. In general, any map which is positive
but not completely positive can be represented as a difference of two completely
positive maps:

Λ(X) =
κ1∑
i=1

K∗
i XKi −

κ2∑
j=1

M∗
j XMj ,(9)

where operators K1, . . . ,Kκ1 , M1, . . . ,Mκ2 are linearly independent and

κ = κ1 + κ2

denotes the minimal length of Λ.
In Section 2 we have stressed physical importance of complete positivity in con-

nection with dynamical semigroup actions. Namely, the complete positivity of a su-
peroperator guarantees that it maps states of a quantum system again to legitimate
physical states regardless of the way the system is immersed in its surroundings. We
have formulated it in the language of appropriate amplifications.

It turns out that allegedly nonphysical maps which are positive, or k-positive,
but not completely positive, are also relevant for quantum physics. It is due to the
fact that they provide theoretical tools allowing one to distinguish separable and
entangled states of a bipartite quantum system. This is characterized by the famous
Peres-Horodecki theorem [4, 15]: if � ∈ P(H1 ⊗ H2) is a mixed state of a bipartite
quantum system then � is separable iff for every positive map Λ : A(H2) → A(H2)
the matrix (II ⊗ Λ)� is semipositive (here II denotes the identity map on A(H1)).

The image of � under II⊗Λ is automatically semipositive if Λ is completely posi-
tive, but this condition may fail for some positive Λ: then � is necessarily entangled.
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An immediate example is provided by the transposition map Λ = T . Then (II⊗ T )�
is simply the partial transpose of � with respect to the second subsystem, �T2 . So if
such a partial transpose has a negative eigenvalue, then � is entangled. Observe that
semipositivity of the partial transpose alone is only necessary for the separability
of �. It happens to be also the sufficient condition in low-dimensional systems, i.e.
2 × 2 or 2 × 3. This fact is a direct consequence of particularly simple structure of
low-dimensional positive maps which, in this case, all turn out to be decomposable,
i.e. they can be represented in the form

Λ = Λ1 + Λ2 ◦ T
with Λi being completely positive, i = 1, 2. In higher dimensions not all positive maps
are decomposable and hence the transposition no longer plays such a distinguished
role. Characterization of the structure of positive indecomposable maps has been a
notoriously hard problem of contemporary mathematics.

An alternative method for the detection of entangled states is based on the so-
called entanglement witnesses. By definition, a Hermitian operatorW ∈ L(H1⊗H2)
is an entanglement witness if it fulfils the following conditions:

(i) ((x⊗ y,Wx⊗ y)) ≥ 0 for all x ∈ H1 and y ∈ H2,

(ii) ((η,Wη)) < 0 for some η ∈ H1 ⊗H2.

That is, an entanglement witness is not a semipositive operator (i.e. has a nega-
tive eigenvalue) but it is positive when restricted to product states (in quantum-
information terminology: on separable pure states) or, using other terminology, it is
block-positive.

From an experimentalist’s point of view, entanglement witness is a nonlocal (in
the sense that it extends over both parts of our system) observable whose expectation
value, when measured in a state �, i.e. the quantity Tr(�W ), can serve as a direct
indicator of the entanglement present in �. Often one can make use of “true” physical
observables, like e.g. energy, which are relatively easy to measure in experiments.
Appropriate techniques related to the spectral properties of such observables allow
one to convert them into entanglement witnesses, see e.g. [14]. It is so far the best
available way of detecting entanglement in laboratory experiments.

The relation between entanglement witnesses and positive but not completely
positive maps giving rise to separability criteria is provided by the J isomorphism
discussed in the previous section. Namely, from its properties it follows that if
((η,Wη)) ≥ 0 for all η ∈ H1 ⊗ H2, then Λ = J

−1(W ) is completely positive.
It means that positive maps which are not completely positive, that is ones having
the form (9), are mapped to observables which are entanglement witnesses.

Let us conclude this section with an example of the application of J isomorphism.
Suppose for simplicity that H1 = H2 =: H and let {ei}, i = 1, . . . , n, be its fixed
orthonormal basis. For i, j = 1, . . . , n let Eij be the operator defined by Eijej = ei

and Eijek = 0 if k = j. The Hermitian operator on H ⊗H
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V =
n∑

ij=1

Eij ⊗ Eji

is called the swap operator in quantum information literature. Then using (3) V
can be identified with the J image of the transposition T on B(H). Indeed V is an
entanglement witness: on the one hand we have

((x⊗ y, V x⊗ y)) = |(x, y)|2 ≥ 0 ,

while on the other hand
V ψ = −ψ

for any antisymmetric vector ψ, so that V has eigenvalue −1.

5. Conclusion

Quantum information theory is today one of the most promising parts of physics.
Enormous technological progress of the recent two decades has opened new practical
applications of subtle quantum phenomena, like entanglement. Entanglement proves
particularly useful in quantum cryptography, communication and information pro-
cessing and is the very agent giving quantum technologies an advantage over their
classical counterparts: security, efficiency and speed.

Forty years ago Professor R. S. Ingarden and his collaborators in Toruń outlined
the programme of research whose goal was to incorporate information theoretic ideas
and techniques into quantum physics. Its importance and meaning back then was
purely theoretical. The results of this research prove even more important today in
the context of developing quantum technologies.
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S t r e s z c z e n i e
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nej strony QIT może być uważana za ga�la̧ź wspó�lczesnej mechaniki kwantowej, z drugiej
zaś stanowi ona także uogólnienie klasycznej, shannonowskiej teorii informacji w oparciu
o niekomutatywna̧ teoriȩ prawdopodobieństwa. Niniejsza praca stawia sobie za cel przy-
bliżenie roli, jaka̧ odegrali Profesor Ingarden i zespó�l jego wspó�lpracowników w tworzeniu,
a nastȩpnie w rozwijaniu podstaw kwantowej teorii informacji.
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BASICS OF LINEAR PARA-QUATERNIONIC GEOMETRY I
HERMITIAN PARA-TYPE STRUCTURE ON A REAL VECTOR SPACE

Summary In the present Part I of the paper we describe para-type structures on a
real vector space and on a pseudo-Euclidean vector space. In Part II we shall inves-
tigate relevant classes of subspaces of a para-quaternionic Hermitian vector space, in
particular the decomposition of a generic subspace. This article deals with basic def-
initions and results in para-quaternionic geometry. The standard para-quaternionic
structure Q̃ on the tensor product H⊗E of a pair of real vector spaces of dimension
2 and 2n respectively is defined as the Lie algebra Q̃ = sl(H) of the special lin-
ear group SL(H) of volume preserving automorphisms on H . Any para-quaternionic
vector space (V, Q̃) is isomorphic to (H2 ⊗ En, sl(H)). Furthermore if (H,ωH) and
(E,ωE) are symplectic spaces, the 2-form ωH ⊗ ωE defines a Q̃-Hermitian metric
on (H2 ⊗ En, sl(H)) and any Hermitian para-quaternionic vector space (V, Q̃, g) is
isomorphic to (H2 ⊗ E2n, sl(H), ωH ⊗ ωE).

Introduction

In Section 1 we recall the (pairwise dual) definitions of (para)-complex, (para)-
hypercomplex and (para)-quaternionic structures. A para-hypercomplex structure
{I, J,K} on a real vector space V is a left module structure over the Clifford algebra
of para-quaternions which is the real algebra H̃ generated by unity 1 and imaginary
units i, j, k satisfying

−i2 = j2 = k2 = 1, ij = −ji = k.(1)
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For a para-quaternionic structure Q̃ the left module structure is defined up to coni-
ugation in H̃.

The real algebra of para-quaternions is isomorphic to Mat(2,R) (3), then from
Wedderburn theorem it follows (Proposition 1.1) that any vector space V with a
para-hypercomplex or para-quaternionic structure is the direct sum of 2-dimensional
irreducible components; this implies that dimV = 2n. This represents one difference
respect to a hypercomplex and quaternionic vector space whose dimension is nec-
essarily a multiple of 4. Other differences together with some analogies are listed
afterwards.

In Section 2 we consider a real vector space V endowed with a pseudo Euclidean
scalar product. A para-complex (resp. para-hypercomplex, resp. para-quaternionic)
structure preserving (in the sense of Lie algebra) such a metric is called a para-
Hermitian (resp. Hermitian para-hypercomplex, resp. Hermitian para-quaternionic)
structure. The eigenspaces of a para-complex structure are totally isotropic, then an
Hermitian metric is always neutral.

There exists a one to one correspondence between a para-Hermitian structure
(g,K) on V , a pseudo Euclidean vector space (V, g) with a decomposition into a
pair of totally isotropic subspaces, or equivalently a symplectic vector space (V, ω)
with a bi-Lagrangian decomposition (Proposition 2.3).

The dimension of a Hermitian para-hypercomplex and Hermitian para-quater-
nionic vector space is 4n (Proposition 2.4).

The prototype of a para-hypercomplex Hermitian vector spaces is the n-di-
mensional para-quaternionic numerical space H̃

n which is a real vector space of
dimension 4n, a H̃-module with respect to left multiplication by para-quaternions
and is endowed with the canonical Hermitian product

h · h′ =
n∑

α=1

hαh′α ; h = (h1, . . . , hn), h′ = (h′1, . . . , h
′
n) ∈ H̃

n.

The real part of the Hermitian product defines a pseudo-Euclidean (canonical) scalar
product of neutral signature on the real vector space H̃n � R2n,2n. Moreover, left
multiplications by i, j, k, respectively, induce real endomorphisms of H̃n satisfying
(1) and skew-symmetric with respect to the metric. As an H̃-module, on a para-
hypercomplex Hermitian vector space (V 4n, {I, J,K}, g) we define the (H̃-valued)-
Hermitian product (·) = (·){I,J,K} by:

(·) : V × V → H̃,

(X,Y ) �→ X · Y = g(X,Y ) + ig(X, IY ) − jg(X, JY ) − kg(X,KY ).

On a para-quaternionic Hermitian vector space (V 4n, Q̃, g), by using admissible
para-hypercomplex bases {I, J,K} of Q̃, the (H̃-valued)-Hermitian product is defined
up to inner automorphisms of H̃.

A tensor product H ⊗ E of two real vector spaces of dimension 2 and 2n re-
spectively carries a standard para-quaternionic structure Q̃ which can be identified
with the Lie algebra sl(H) of the special linear group SL(H) of volume preserving
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linear operators on H . Any para-quaternionic vector space (V, Q̃) is isomorphic to
(H2 ⊗En, sl(H)), (Corollary (1.2)). Moreover if ωH and ωE are symplectic forms on
H and E respectively, the 2-form ωH ⊗ωE is an Hermitian metric on (H⊗E, sl(H))
and we call (sl(H), ωH ⊗ ωE) a standard Hermitian para-quaternionic structure on
H ⊗ E. In Proposition (2.5) we prove that any Hermitian para-quaternionic vector
space (V, Q̃, g) is isomorphic to some (H2 ⊗ E2n, sl(H), ωH ⊗ ωE).

In the second part [8], by referring to the tensorial presentation of a para-
quaternionic Hermitian vector space

(V, Q̃, g) � (H2 ⊗ E2n, sl(H), ωH ⊗ ωE),

we will characterize some relevant classes of subspaces of V defined with respect
to the structure group of Q̃ and (Q̃, g), respectively, and give a “para-quaternionic
decomposition” of any vector subspace of V .

1. Para-type structures on a vector space

We first recall the definitions of some well known structures in complex and quater-
nionic geometry [1, 2].

Definition 1.1. Let V be a real vector space.
A complex structure on V 2n is an endomorphism J ∈ End(V ) such that J2 = −Id.
A hypercomplex structure H on V 4n is a triple (Jα) = (J1, J2, J3) of anti-

commuting complex structures on V satisfying J1J2 = J3; it defines on V the
structure of left vector space over quaternions H = span

R
{1, i, j, k} such that multi-

plications by i, j and k are given by J1, J2 and J3.
A quaternionic structure on V 4n is the 3-dimensional subspace Q ⊂ End(V )

spanned by a hypercomplex structure H i.e. Q = span
R
{J1, J2, J3}. We say that

the hypercomplex structure H is subordinate to the quaternionic structure Q or
equivalently that it is an admissible basis of Q.

Note Q ⊂ gl(V ) is a Lie subalgebra isomorphic to sp(1) ∼= Im H = span(i, j, k),
the Lie algebra of the Lie group Sp(1) = S3 ⊂ H = span{1, i, j, k} of unit quater-
nions.

Definition 1.2. A Euclidean scalar product g =< ·, · > on (V, J) (resp. (V,H), (V,Q))
is called J-Hermitian (resp. H-Hermitian, Q-Hermitian) if J (resp. H , Q) is a
skew-symmetric endomorphism (resp. consists of skew-symmetric endomorphisms)
of (V,< ·, · >). A vector space V endowed with a complex structure J (resp. hyper-
complex structure H , quaternionic structure Q) and an Hermitian scalar product
g is called an Hermitian vector space (V, J, g) (resp. hypercomplex Hermitian vector
space (V,H, g), quaternionic Hermitian vector space (V,Q, g)).

Let us give now the corresponding definitions for para-geometry.
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Definition 1.3. Let V be a real vector space of dimension n and K ∈ End(V ) such
that K2 = Id. Let denote V +

K and V −
K the +1 and −1 eigenspaces of K. Then K

is called a product structure on V if dimV +
K , dimV −

K > 0. A para-complex structure
on V is a product structure with dimV +

K = dimV −
K .

A triple (J1, J2, J3) of anticommuting endomorphisms of V satisfying the rela-
tions:

−J2
1 = J2

2 = J2
3 = Id, J1J2 = J3(2)

is called a para-hypercomplex structure on V . Observe that (J1 is a complex structure
and) J2 and J3 are para-complex structures on V . In fact, since J1 and J2 anti-
commute, J1(V +

J2
) ⊆ V −

J2
and J1(V −

J2
) ⊆ V +

J2
, which implies dimV +

J2
= dim V −

J2
,

and analogously for J3. A Lie subalgebra Q̃ ⊂ gl(V ) is called a para-quaternionic
structure on V if there exists a basis J1, J2, J3 satisfying the relations (2). Such a
para-hypercomplex structure is called an admissible basis of Q̃.

A para-hypercomplex structure (J1, J2, J3) defines on V the structure of a left
module over the Clifford algebra of para-quaternions H̃ [9] which is the real algebra
generated by unity 1 and generators i, j, k satisfying

−i2 = j2 = k2 = 1, ij = −ji = k.

We recall the isomorphisms

H̃ := Cl1,1(R) =< 1, e1 = i, e2 = j, e3 = e1e2 = −e2e1 = k >

or equivalently
H̃ := Cl2,0(R) =< 1, e1 = j, e2 = k, e3 = e1e2 = −e2e1 = −i >,

and also that H̃ is isomorphic, as a real algebra, to the algebra Mat2(R) of real
(2 × 2)-matrices, the isomorphism being given by

Φ : q = q0 + q1i+ q2j + q3k �→
(
q0 − q3 q2 − q1

q2 + q1 q0 + q3

)
,(3)

where N (q) := qq̄ = q2
0 + q2

1 − q2
2 − q2

3 = det(Φ(q)).
A basic example of a para-hypercomplex structure is the standard para-hyper-

complex structure (I,J ,K) of R2 represented, in the canonical basis, by

I =
(

0 −1
1 0

)
, J =

(
0 1
1 0

)
, K =

( −1 0
0 1

)
.(4)

Observe that < I,J ,K >R� sl2(R) is the matrix Lie algebra of (2 × 2)-matrices of
zero trace of the unimodular Lie group SL2(R) of matrices preserving any volume
form of R2.

Generalizing, we define the standard para-hypercomplex structure H̃ = (I, J,K)
of R2n represented, in the canonical basis, by

I = I ⊕ I ⊕ . . .⊕ I; J = J ⊕ J ⊕ . . .⊕ J ; K = K ⊕K ⊕ . . .⊕K(5)

with I,J ,K given in (4).
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By the identification H̃ ∼= Mat2(R) given in (3), and from Wedderburn theorem,
stating that every representation of a unitary, associative, semisimple algebras is
direct sum of standard representations, we can than affirm that

Proposition 1.1.
• There exists a unique, up to isomorphism, irreducible H̃-module H2 � R2.
• Every H̃-module V 2n is reducible as a direct sum V = H2 ⊕ . . .⊕H2.

Note that to have a direct sum decomposition of the H̃-module (V 2n, H̃ =
{I, J,K}), into invariant 2-dimensional subspaces U1, . . . , Un, let consider a basis
e+

i of V +
J , eigenspace of the para-complex structure J associated to the eigenvalue

1 (then Ke+
1 , . . . ,Ke

+
n is a basis of V −

J ). The 2-dimensional subspaces

Ui =< e+
i ,Ke

+
i >, i = 1, . . . , n(6)

are clearly H̃-invariant, irreducible and isomorphic as H̃-modules. Choosing the ba-
sis < e+

i − Ke+
i , e

+
i + Ke+

i > in each Ui, H̃ corresponds to the standard para-
hypercomplex structure of R2n given in (5).

Let H2 and En be real vector spaces. For any fixed basis (h1, h2) of H , one has
the identification H � R2: we define a corresponding standard para-hypercomplex
structure {I, J,K} on H2 ⊗ En by

I = I(h⊗ e) = Ih⊗ e, J = J(h⊗ e) = J h⊗ e, K = K(h⊗ e) = Kh⊗ e(7)

with I,J ,K given in (4) and the standard para-quaternionic structure sl2(R) ⊗ Id
on H2 ⊗ En generated by any standard para-hypercomplex structure.

Since sl2(R) � sl(H), the Lie algebra of the Lie group SL(H) of unimodular
transformations of H , we will use the equivalent notation

sl2(R) ⊗ Id � sl2(R) � sl(H).

For any basis {e1, . . . , en} in En, any standard para-hypercomplex structure on
H2 ⊗ En associated to the basis {h1, h2} of H is represented in the basis {h1 ⊗
ei, h2 ⊗ ei, i = 1, . . . , n} by (5); we can then state the following:

Proposition 1.2. Any vector space V 2n with a para-hypercomplex structure
{I, J,K} is isomorphic to H2 ⊗ En with a standard para-hypercomplex structure.
Consequently any para-quaternionic vector space (V 2n, Q̃) is isomorphic to (H2 ⊗
En, sl(H)).

More explicitly, for any basis e1, . . . , en of V +
J , h1, h2 of H2 and f1, . . . , fn of En

an isomorphism is given by

(ei −Kei) ↔ h1 ⊗ fi, (ei +Kei) ↔ h2 ⊗ fi,

where (ei +Kei) ∈ V +
K and (ei −Kei) ∈ V −

K . For i = 1, . . . , n, we have the following
other correspondences



28 M. Vaccaro

Ui =< ei,Kei >=< (ei −Kei), (ei +Kei) >↔ H ⊗ fi;

ei ↔ 1
2

(h1 + h2) ⊗ fi, Kei ↔ −1
2

(h1 − h2) ⊗ fi;

V +
J ↔ (h1 + h2) ⊗ E, V −

J ↔ (h1 − h2) ⊗ E;

V +
K ↔ h2 ⊗ E, V −

K ↔ h1 ⊗ E.

We underline some analogies and some differences between quaternionic and para-
quaternionic spaces.

• A quaternionic vector space V has dimension 4n, a para-quaternionic has di-
mension 2n with n ∈ N.
In fact any irreducible H-submodule has dimension 4: it follows from Wedder-
burn theorem since the simple algebra H is isomorphic to some ring of 4 × 4
real matrices. On the other hand, as already stated, for any X �= 0 such that
TX �= λX , λ ∈ R, T ∈ ã, the H̃-invariant submodule < X, J1X, J2X, J3X >

is reducible since

< X, J1X, J2X, J3X >=< X + J3X, J2(X + J3X) >

⊕ < X − J3X, J2(X − J3X) > .

• If dim V = 4n, in quaternionic and para-quaternionic case, there always exists
a basis of V of the following type:

{X1, . . . , Xn, J1X1, . . . , J1Xn, J2X1, . . . , J2Xn, J3X1, . . . , J3Xn}
for any admissible basis J1, J2, J3.

• Let H be a hypercomplex structure H = H or respectively a para-hyper-
complex structure H = H̃ on a vector space V . Let Q =< H > be the corre-
sponding quaternionic structure Q (resp. para-quaternionic structure Q̃). The
3-dimensional vector space

End(V ) ⊃ Q =< H >= RI + RJ + RK

has a natural Euclidean (resp. pseudo-Euclidean) norm defined by

L2 = −‖L‖2 Id, L ∈ Q.
Namely, if Q = Q is a quaternionic structure and

Q � L = aI + bJ + cK, a, b, c ∈ R,

since L2 = (−a2 − b2 − c2) Id, then

‖L‖2 = (a2 + b2 + c2).

In the same way, if Q = Q̃ is a para-quaternionic structure and L ∈ Q, from
L2 = (−a2 + b2 + c2) Id, we get

‖L‖2 = a2 − b2 − c2.
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Clearly, complex (resp. para-complex) structures have norm equal 1 (resp.
−1). Notice the existence in Q̃ of null vectors, i.e. L ∈ Q̃ such that ‖L‖2 = 0,
corresponding to nilpotent endomorphisms.

• Two admissible bases of Q are related by an orthogonal matrix A = (Aα
β) ∈

SO(3) in the case of Q = Q, or by a pseudo-orthogonal matrix A = (Aα
β ) ∈

SO(1, 2) in the case of Q = Q̃.

• A complex structure or para-complex structure L on V is called compatible
with H = (I, J,K) if it belongs to Q =< H >. The set of complex and
para-complex structures compatible with H is denoted by S(Q). If H = H is
a hypercomplex structure then

S(Q) := S− = {L = aI + bJ + cK, a, b, c ∈ R, ‖L‖2 ≡ a2 + b2 + c2 = 1}
is a 2-sphere of complex structure. If H = H̃ is a para-hypercomplex structure
then

S(Q) = S+(Q) ∪ S−(Q),

where

S+(Q) = {L = aI + bJ + cK, a, b, c ∈ R, ‖L‖2 = a2 − b2 − c2 = −1},
is a one-sheet hyperboloid consisting of para-complex structures, and

S−(Q) = {L = aI + bJ + cK, a, b, c ∈ R, ‖L‖2 = a2 − b2 − c2 = 1},
is a two-sheets hyperboloid consisting of complex structures [2]. Observe that
the set of nilpotent endomorphisms

{A = aI + bJ + cK, a, b, c ∈ R, ‖L‖2 = a2 − b2 − c2 = 0}
in Q̃ is a cone.

2. Para-type structures on a pseudo-Euclidean vector space

Definition 2.1. Let (V,K) be a 2n-dimensional para-complex vector space. A pseudo-
Euclidean scalar product g =< ·, · > on (V,K) is called K−Hermitian if K is a
skew-symmetric endomorphism of (V,< ·, · >).

A vector space V endowed with a para-complex structure K and a K-Hermitian
scalar product g is called a para-Hermitian vector space (V,K, g). The reason why
we do not consider n-dimensional vector spaces endowed with a product structure
not para-complex is that, as it will be stated afterwards, the metric on such spaces
is always degenerate.

A para-hypercomplex structure (J1, J2, J3) on V is called para-hypercomplex Her-
mitian structure with respect to the pseudo-Euclidean scalar product g if its endo-
morphisms are skew-symmetric with respect to g.
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A para-quaternionic structure Q̃ on V is called para-quaternionic Hermitian
structure with respect to g if some (and hence any) admissible basis is Hermitian
with respect to g.

We give the following

Definition 2.2. Let (V, g) be a pseudo-Euclidean vector space. A subspace W ⊂ V is
called degenerate if the restriction g|W is degenerate i.e. if there exists a non zero
y ∈ W such that g(x, y) = 0, ∀x ∈ W , and is called totally isotropic if g|W ≡ 0 i.e.
if g(x, y) = 0, ∀x, y ∈W .

We need also the following lemma of linear algebra:

Lemma 2.1. A pseudo-Euclidean vector space (V 2n, g) has signature (n, n) if and
only if V admits a decomposition V = U1 ⊕ U2 into a direct sum of two totally
isotropic subspaces. Moreover dim U1 = dim U2 = n.

Proof. Let define

α : U1 → U∗
2 ,

X �→ αX = g(X, ·)
such that αX(Y ) = g(X,Y ), X ∈ U1, Y ∈ U2. The map α is clearly linear. Moreover,
since g is non degenerate, it is injective. This implies dimU1 ≤ dimU∗

2 . Analogously,
defining the map

α′ : U2 → U∗
1 ,

Y �→ α′
Y = g(Y, ·)

we get that dimU1 = dimU2 = n and α : U1 → U∗
2 is an isomorphism. Let choose

(f1, . . . , fn) a basis of U2 and denote by (f∗
1 , . . . , f

∗
n) the dual basis of U∗

2 , i.e.
f∗

i (fj) = δij . Then (ei = α−1(f∗
i ), i = 1, . . . , n) is a basis of U1. With respect to

the basis (e1, . . . , en, f1, . . . , fn) of V the Gram matrix of g is

g =
(

0 Id
Id 0

)
.

Then, with respect to the basis

(ui =
1
2

(ei + fi), u′i =
1
2

(ei − fi), i = 1, . . . , n),

we have

g =
(

Id 0
0 −Id

)
.

Viceversa, considering the basis (e1, . . . , en, f1, . . . , fn, ) of V , with respect to
which g is diagonal with g(ei, ei) = 1 and g(fi, fi) = −1, the subspaces

U1 =< e1 + f1, . . . , en + fn > and U2 =< e1 − f1, . . . , en − fn >

are totally isotropic of same dimension.
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In the following, by neutral signature we will refer both to pseudo-Euclidean
metrics (indicating a (n, n) signature) as well as to degenerate metrics (meaning a
(n, s, n) signatures with s = dim ker g).

More generally, it is straightforward to prove the

Lemma 2.2. Let (V n, g) be a vector space with an eventually degenerate scalar prod-
uct g. The signature of g is neutral if and only if V admits a decomposition into a
direct sum of a pair of totally isotropic subspaces i.e. V = (V1)h ⊕ (V2)k. More
precisely the signature is (r, n − 2r, r) where r = rk g(V1 × V2) or equivalently the
signature is

(
n− s

2
, s,

n− s

2
),

where
s = dim ker g(V1 × V2) + dim ker g(V2 × V1).

Proposition 2.3. Let V be a vector space. There exists a 1 − 1 correspondence
between the following objects:
1) para-Hermitian structure (g,K) on V ,
2) pseudo-Euclidean metric g (of neutral signature) together with a decomposition
V = V + ⊕ V − such that V + and V − are totally isotropic subspaces i.e.

g(V ±, V ±) = 0,

3) nondegenerate skew-symmetric bilinear form ω (symplectic form), together with a
decomposition V = V + ⊕ V − such that V + and V − are Lagrangian subspaces, that
is ω(V ±, V ±) = 0.

Proof. We shall distinguish three steps.

• 1) → 2): the metric is the same given metric g: V + = V +
K and V − = V −

K

are the eigenspaces of K; from the g-skew symmetry of K, they are totally
isotropic. Moreover, by Lemma (2.1), g has signature (n, n).

• 2) → 3): Define K = Id on V +, K = −Id on V −. Then K is g-skew symmetric,
and hence ω = g ◦ K is a symplectic 2-form. Moreover V + and V − are ω-
Lagrangian subspaces.

• 3) → 1): Define K = Id on V +, K = −Id on V −. Then g = ω ◦ K−1 =
ω ◦K is symmetric. Bilinearity and nondegeneracy of g follow from bilinearity
and nondegeneracy of ω. Moreover the para-complex structure K is g-skew
symmetric.

The existence of a nondegenerate, indefinite Hermitian metric on a para-hyper-
complex (resp. para-quaternionic) Hermitian vector space leads to the following
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Proposition 2.4. The dimension of a vector space V , endowed with a para-hyper-
complex (resp. para-quaternionic) Hermitian structure (H̃, g) (resp. (Q̃, g)), is a mul-
tiple of 4. Moreover g has neutral signature (n, n), n even.

Proof. Let (H̃ = {I, J,K}, g) be a para-hypercomplex Hermitian structure (resp.
(Q̃ =< I, J,K >, g) be a para-quaternionic Hermitian structure) of V . Let moreover
(e1, . . . , en) be a basis of V +

J , the eigenspace corresponding to the +1 eigenvalue of
the para-complex structure J . Observe that (Ke1, . . . ,Ken) is a basis of V −

J . The
subspace V +

J (resp. V −
J ) is totally isotropic since, by the skew-symmetry of J ,

0 = g(JX, Y ) + g(X, JY ) = 2g(X,Y ) ∀X,Y ∈ V +
J

(resp. ∀X,Y ∈ V −
J ) and V = V +

J ⊕ V −
J which, by Lemma (2.1), implies that g has

neutral signature. With respect to the basis {e1, . . . , en,Ke1, . . . ,Ken} the metric
g can be written as

g =
(

0 A

At 0

)
,

where A is a skew-symmetric (n × n)-matrix by the Hermitian hypothesis. Then g

nondegenerate on V implies n even.

Remark 2.7. In the proof above we have proved that the subspaces V +
J and V −

J are
totally isotropic. When dealing with a para-quaternionic Hermitian structure the
eigenspaces associated to any admissible para-complex structure are always maximal
totally isotropic.

As a consequence of Proposition (2.4), the decomposition

V 4n = U1 ⊕ U2 ⊕ . . .⊕ U2n

of the Q̃-module (V 4n, g, Q) into direct sum of Q̃-invariant 2-dimensional subspaces
Ui =< ei,Kei > defined in (6) is not orthogonal since each Ui is totally isotropic
whereas g is nondegenerate on V .

The prototype of para-hypercomplex Hermitian vector spaces is the n-dimension-
al para-quaternionic numerical space H̃n which is a real vector space of dimension
4n, a H̃-module with respect to left multiplication by para-quaternions i.e.

q(h) = q(h1, . . . , hn) := (qh1, . . . , qhn) ∀h ∈ H̃
n, q ∈ H̃

and is endowed with the canonical Hermitian product

h · h′ =
n∑

α=1

hαh′α ; h = (h1, . . . , hn), h′ = (h′1, . . . , h
′
n) ∈ H̃

n.(8)

The real part of the Hermitian product,

Re(h · h′) = Re (h1h′1) + . . .+ Re (hnh′n), hi, h
′
i ∈ H̃,(9)

defines a pseudo-Euclidean (canonical) scalar product of neutral signature on the
real vector space H̃n � R2n,2n.
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Left multiplications by i, j, k, respectively, induce real endomorphisms, that we
denote by the same name and symbol, on the real vector space H̃n satisfying (2).
With respect to the scalar product (9), i is an isometry, while j and k are anti-
isometries of H̃n. All three endomorphisms i, j, k are skew-symmetric with respect
to the metric. Observe that i, j, k are not automorphisms of H̃n regarded a vector
space over H̃. In fact in general i(qX) �= q(iX), X ∈ H̃n, q ∈ H̃ unless q is real.

Any para-hypercomplex Hermitian vector space

V = (V 4n, {I, J,K}, g)

is isomorphic to (H̃n, {i, j, k},Re( · )). As an H̃-module, on a para-hypercomplex Her-
mitian vector space V we define the (H̃-valued)-Hermitian product (·) = (·){I,J,K}
by

(·) : V × V → H̃,(10)

(X,Y ) �→ X · Y = g(X,Y ) + ig(X, IY ) − jg(X, JY ) − kg(X,KY ).

Claim 2.8. For any isomorphism φ : V → (H̃n, {i, j, k},Re( · )) of Hermitian para-
hypercomplex vector spaces, we have

X · Y = φ(X) · φ(Y ), ∀X,Y ∈ V.

Proof. Let φ : V → (H̃n, {i, j, k},Re( · )) be an isomorphism of Hermitian para-
hypercomplex vector spaces and denote h = φ(X), h′ = φ(Y ), X, Y ∈ V . We
prove that g(X, IY ), −g(X, JY ), −g(X,KY ), are the coefficients of i, j, k in (h ·h′),
respectively. We get

g(X, IY ) = Re(h · ih′) = Re[
n∑

α=1

(hαih′α)] = Re[−
n∑

α=1

(hαh′α)i] = −Re[(h · h′)i].

Considering that j2 = k2 = 1, the conclusion follows.

When taking into account a para-quaternionic Hermitian vector space (V, Q̃, g),
we observe that the (H̃-valued)-Hermitian product defined in (10) depends on the
chosen admissible basis {I, J,K} ∈ Q̃. Two Hermitian products ( · ){I,J,K},
( · ){I′,J′,K′}, referred to different admissible bases, are related by an inner au-
tomorphism of H̃. This implies that

N ((X · Y ){I,J,K}) = N ((X · Y ){I′,J′,K′}), ∀X,Y ∈ V,

or equivalently, since the real part of the norm N ((X · Y )) is independent of the
basis {I, J,K},

N (Im(X · Y ){I,J,K}) = N (Im(X · Y ){I′,J′,K′}), ∀X,Y ∈ V.

Let consider now the standard para-hypercomplex vector space (H2 ⊗ E2n,
{I, J,K}), (resp. para-quaternionic vector space (H2 ⊗ E2n, sl(H))). Let ωE be a
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symplectic form on E and ωH = h∗1 ∧ h∗2 a (standard) volume form on H . Observe
that sl(H) � spωH (H), the Lie algebra of transformations preserving ωH .

The 2-form ωH ⊗ ωE is bilinear, symmetric and nondegenerate, defining a met-
ric g on H2 ⊗ E2n. In fact bilinearity and nondegeneracy follow from bilinearity
and nondegeneracy of both ωH and ωE ; furthermore, calculating on decomposable
vectors, we get

g(h′ ⊗ e, h̃⊗ e′) = ωH(h′, h̃)ωE(e, e′) = ωH(h̃, h′)ωE(e′, e) = g(h̃⊗ e′, h′ ⊗ e),

and hence g is symmetric. Observe that g = ωH ⊗ ωE is a para-hypercomplex
Hermitian (resp. para-quaternionic Hermitian) metric on H ⊗ E. In fact, for any
A ∈ sl(H), and calculating again on decomposable vectors, we obtain

g(Ah′ ⊗ e, h̃⊗ e′) = ωH(Ah′, h̃)ωE(e, e′) = −ωH(h′, Ah̃)ωE(e, e′)

= −g(h′ ⊗ e,Ah̃⊗ e′).

Definition 2.9. The 4n-dimensional space (H2 ⊗ E2n, {I, J,K}, ωH ⊗ ωE) (resp.
(H2 ⊗E2n, sl(H), ωH ⊗ωE) is a standard para-hypercomplex Hermitian space (resp.
the standard para-quaternionic Hermitian space).

Proposition 2.5. Let V 4n be a vector space with a para-quaternionic Hermitian
structure (Q̃, g). Then the para-quaternionic Hermitian space (V, Q̃, g) is isomorphic
to a standard para-quaternionic Hermitian space.

Proof. By Corollary (1.2) we identify (V 4n, Q̃) with (H2 ⊗ E2n, sl(H)).
Then the given para-quaternionic Hermitian metric g on H2⊗E2n can be written

as g = ωH ⊗ ωE where ωH = h∗1 ∧ h∗2 is the standard volume form on H and ωE is
defined by

ωE(e, e′) :=
g(h⊗ e, h′ ⊗ e′)

ωH(h, h′)
,

for one (and hence any) pair of linearly independent vectors h, h′. It is straightfor-
ward to prove that the right member is well defined by observing that, by hermi-
tianity, decomposable vectors are always isotropic (recall Remark 2.7) and g(h1 ⊗
e, h2 ⊗ e′) + g(h2 ⊗ e, h1 ⊗ e′) = 0. Moreover ωE is clearly symplectic.

We conclude this first part with the following proposition which generalizes to
the degenerate case a well known result valid for Hermitian vector spaces.

Proposition 2.6. Let g be an indefinite and (possibly) degenerate scalar product
in a 2n-dimensional (resp. n-dimensional) vector space V endowed with a g-skew-
symmetric complex (resp. product) structure I. Then the signature of g is of type
(2p, 2s, 2q) (resp. (m, t,m)) and there exist vectors X1, . . . , Xn of V such that

{X1, . . . , Xn, IX1, . . . , IXn}
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is a orthogonal basis of V and

‖Xi‖ = ‖IXi‖ = 1 for i = 1, . . . , p,

(resp. ‖Xi‖) = −‖IXi‖ = 1 for i = 1, . . . ,m),

‖Xi‖ = ‖IXi‖ = −1 for i = p+ 1, . . . , p+ q,

(resp. ‖Xi‖ = −‖IXi‖ = −1 for i = m+ 1, . . . , 2m),

and
‖Xi‖ = ‖IXi‖ = 0 for i = p+ q + 1, . . . , 2n

(resp. i = 2m+ 1, . . . , 2n).
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PODSTAWY LINIOWEJ GEOMETRII PARA-KWATERNIONOWEJ I
STRUKTURA PARA-TYPÓW HERMITOWSKICH NA RZECZYWISTEJ
PRZESTRZENI WEKTOROWEJ

S t r e s z c z e n i e
W pracy przedstawiamy podstawowe definicje i wyniki z geometrii para-kwaternionowej.

Standardowa struktura para-kwaternionowa Q̃ na iloczynie tensorowym H ⊗E odpowied-
nio pary rzeczywistych przestrzeni wektorowych wymiaru 2 i 2n jest określona jako al-
gebra Liego Q̃ = sl(H) specjalnej grupy liniowej SL(H) automorfizmów przestrzeni H za-

chowuja̧cych objȩtość. Każda para-kwaternionowa przestrzeń wektorowa (V, Q̃) jest izomor-
ficzna z przestrzenia̧ (H2 ⊗En, sl(H)). Co wiȩcej, jeśli (H,ωH) i (E,ωE) sa̧ przestrzeniami

symplektycznymi, to 2-forma ωH ⊗ωE określa metrykȩ Q̃-hermitowska̧ na (H2⊗En, sl(H))

i dowolna hermitowska para-kwaternionowa przestrzeń wektorowa (V, Q̃, g) jest izomor-
ficzna z przestrzenia̧ (H2 ⊗ E2n, sl(H), ωH ⊗ ωE).

W czȩści I pracy opisujemy struktury para-typów na przestrzeni wektorowej i na pseudo-
euklidesowej przestrzeni wektorowej. W czȩści II bȩdziemy badali stosowne klasy pod-
przestrzeni para-kwaternionowych hermitowskich przestrzeni wektorowych, a w szczegól-
ności rozk�lad przestrzeni generuja̧cej.



PL ISSN 0459-6854

B U L L E T I N
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SINGULAR PERTURBATION PROBLEM.
HOW TO APPROXIMATE DIRAC FUNCTION

Summary
In the present paper we consider the behaviour of elliptic equations of the type εu−u′′ =

f or u−εu′′ = f with the Dirichlet or Newman boundary conditions on an interval I =]0, 1[.
The second case is a limit problem for ε = 0 of a strictly lower order for problems with
ε > 0. In a second part, we define a Dirac function at the point x = 1/2 on I =]0, 1[ and we
approximate this kind of Dirac jump force by a still continuous function using the second
type of the equation u− εu′′ = 0 whose classical solution is a stiff hyperbolic sinus with a
force applied at the point x = 1/2 [1–3].

Introduction

We study the singular perturbation problem for elliptic equations of the type

(A) εu− u′′ = f

or

(B) u− εu′′ = f

with ε → 0 in the case of the Dirichlet or Newman boundary conditions, where the
function u′′ denotes the second derivative of u with respect to the space variable x.
We consider the Dirac function in the interval I =]0, 1[ and we introduce the Sobolev
space denoted by H1

0 (I) and equipped for the norm

|u|1 =

⎡
⎣∫

I

u′2dx

⎤
⎦

1/2

(1)
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H1
0

{
v|v ∈ L2(I); v′ ∈ L2(I)|v(0) = v(1) = 0

}
|v|21 =

∫
I

v′2dx,

while we note

|u| =

⎡
⎣∫

I

u2dx

⎤
⎦

1/2

.(2)

A.I. Dirichlet problem

We want to show that it exists a unique wε ∈ H1
0 for ε > 0, so that

ε

∫
I

wεvdx +
∫
I

w′
εv

′dz =
∫
I

fvdx.(3)

In this purpose we introduce a continuous bilinear form aε(u, v) which is coercive
on H1

0 and it satisfies the definition

aε(u, v) = ε

∫
I

uvdx+
∫
I

u′v′dx.(4)

We assume that C is the Poincaré constant. Then

|a(u, v)| ≤ (C2ε+ 1
) |u|1|v|1,(5)

aε(u, v) ≥ |u1| |v1|.(6)

Next, we take into account the function v → ∫
I
fvdx which is also a continuous

bilinear form on H1
0 . Then, the Lax-Milgram theorem reads

∀v ∈ H1
0 : aε (wε, v) =

∫
fvdx,(7)

and it allows us to state that wε → w0 on H1
0 with

∀v ∈ H1
0 :
∫
I

w′
0v

′dx =
∫
I

fvdx,(8)

where wε is bounded in H1
0 . Taking v = wε in (4) we get

|wε|21 < aε(wε, wε) =
∫
I

fwεdx ≤ |f | |wε| ≤ |f | |wε|1 × C(9)

with

|wε|1 ≤ C|f |(10)

for ∀v ∈ H1
0 , hence

∀v ∈ H1
0 : ε

∫
I

wεvdx +
∫
I

w′
εv

′dx =
∫
fvdx,(11)
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fIw
′
0v

′dx =
∫
I

fvdx.

Taking into account the test function v = wε − w0 we get

ε

∫
I

wε(wε − w0)dx +
∫
I

(w′
ε − w′

0)2 dx = 0(12)

or, with (10), we can write∫
I

(w′
ε − w′

0)2 dx ≤ |wε| |wε − w0| × ε,(13)

where
|w′

ε − w′
0|21 ≤ C2ε|f | |wε − w0|1

and
|wε − w0|1 ≤ C2ε|f | → 0 when ε→ 0.

A.II. Newman problem

Define H1 = H1(I) equiped with the norm

v → ‖v‖ = |v| + |v|1.(14)

We want to show how to find wε ∈ H1 so that

ε

∫
I

wεvdx+
∫
I

w′
εv

′dx =
∫
I

fvdx.(15)

The existence and the unicity of the problem is given by Lax-Milgram theorem and
we see that the constant of coercivity tends to 0 with ε. Take v = 1 in (15) we
obtain:

ε

∫
I

wεdx =
∫
I

fdx,(16)

and if
∫

I
fdx �= 0 we have | ∫

I
wεdx| → +∞. The sequence wε is not bounded in

this case in Lp, p ∈]1,∞[ and we cannot get the convergence (weak or strong) in this
kind of space.

Consider now the sequence

w̃ε = wε −
∫

I fdx

ε
.(17)

We have ∫
I

w̃εdx = 0(18)

for which we can use the Poincare-Wirtinger inequality:

w̃ε ≤ |wε|1.(19)
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We have

∀v ∈ H1 : ε
∫
I

w̃εvdx +
∫
I

w̃′
εv

′dx =
∫
I

fvdx−
∫
I

fdx×
∫
I

vdx(20)

where w̃ε is bounded in H1 (take v = w̃ε in (20)). We consider a strong convergence
in H1 for which the solution is of the form

∀vεH1 :
∫
I

w′
0v

′dx =
∫
I

fvdx−
∫
I

fdx×
∫
I

vdx,(21)

for ε→ 0, and then ωε → ωo. When f has its average equal to zero∫
I

fdx = 0(22)

we get the same results as in the case of H1
0 .

B.I. Dirichlet problem

Define a new bilinear form

aε(u, v) =
∫
I

uvdx+ ε

∫
I

u′v′dx(23)

in the space H1
0 for C being the Poincaré constant, we obtain:

|aε(u, v)| ≤ |u| |v| + ε|u|1|v|1 ≤ (C2 + ε)|u|1|v|1.(24)

The coercivity gives ∀u ∈ H1
0 where

aε(u, u) ≥ ε|u1|2.(25)

The Lax-Milgram theorem gives ∃uε∀v ∈ H1
0 that

aε(u, v) =
∫
I

fudx.(26)

Taking v = uε in (26) we get∫
I

u2
εdx =

∫
I

fuεdx− ε

∫
I

|u′ε|2dx ≤
∫
I

fuεdx(27)

and

|uε| ≤ |f | for every ε > 0.

Take a test function ϕ = C∞
c (I) (space of infinitely, derivable functions having a

compact support in I), we obtain

ϕ′ =
dϕ

dx
∈ H1

0
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and the integration by parts leads to the result:∫
I

uεϕ
′dx = −

∫
I

uεϕ
′′dx(28)

and ∣∣∣∣∣∣
∫
I

u′εϕ
′dx

∣∣∣∣∣∣ ≤ |uε| |ϕ′′| ≤ |f | |ϕ′′|(29)

for every ϕ ∈ C∞
c (i), hence we have∫

I

uεϕdx + ε

∫
I

u′εϕ
′dx =

∫
I

fϕdx(30)

by the use of (29)

lim
ε→0

∫
I

uεϕdx =
∫
I

fϕdx.(31)

The sequence uε is bounded in L2 and C∞
c is dense in L2 (L2 is the dual space

of L2). We get the weak convergence of uε to f in L2. As uε converges weakly to f
in L2, we get

|f | ≤ lim inf|uε|(32)

and we have

|uε| ≤ |f | ⇒ lim sup |uε| ≤ |f |(33)

and

uε → f as ε→ 0(34)

in L2(I).

B.II. Newman problem

The crossing fromH1
0 to H1 does not modify the steps and the results. The coercivity

constant associated to the bilinear form

aε(u, v) =
∫
I

uvdx+ ε

∫
I

u′v′dx(35)

tends to 0 as ε → 0 as in the case of H1
0 . We have the same walk as in H1

0 till the
strong convergence of uε to f in L2.
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C. Unit force the Dirichlet problem solution

We consider the functional∫
I

uεvdx+
∫
I

εu′εv
′dx = v

(
1
2

)
for ∀v ∈ H1

0(36)

for which we assume the value α = 1/2.
The space H1

0 is continuously embedded in C(I) (space of continuous functions)
equipped with the norm of uniform convergence. We assume

v → v(α)(37)

is a linear continuous form on H1
0 .

In this case the Lax-Milgram theorem insures the existence and the unicity of
uε ∈ H1

0 so that

∀v ∈ H1
0(38) ∫

I

uεvdx+ ε

∫
I

u′εv
′dx = v(α).

Taking a test function ϕ ∈ C1
c (]0, 1

2 [) we have∫
I

u′εϕ
′dx = −

∫
I

uεϕ
′′dx(39)

and

u′ε ∈ H1

(]
0,

1
2

[)
(40)

whose derivative is u′′ε , so that

uε − εu′′ε = 0.(41)

The walk is the same for x belonging to the intervals ]0, 1/2[ and ]1/2, 1[. We
consider now a test function which do not cancel necessarily for x = 1/2. In terms
of the variational formulation we write:

∀v ∈ H1
0

∫
I

uεvdx+ ε

∫
]0, 1

2 [

u′εv
′dx+ ε

∫
] 12 ,1[

u′εv
′dx = v(α)(42)

with (40) and (41). The restriction of u′′ε is determined to each interval open in L2.
We can integrate by parts each integral having u′ε, and we get∫

]0, 1
2 [

(u− εu′′ε ) vdx+
∫

] 12 ,1[

(u− εu′′ε ) vdx(43)

+ εv(α)
[
u′ε(α−) − u′ε(α+)

]
= v(α).
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The first two integrals are cancelled by (41). We get

u′ε

(
1
2

−)
− u′ε

(
1
2

+)
=

1
ε
.(44)

Let us define

w(x) = uε(x) − uε(1 − x)(45)

where x ∈]0, 1
2 [ while w(x) belongs to H2(]0, 1/2[). We obtain

w − εw′′ = 0(46)

by continuity of uε in I, we can write

w(0) = 0, w

(
1
2

)
= 0(47)

where w is the unique function solution of

u− εu′′ = 0 for x ∈
]
0,

1
2

[
(48)

with cancelled values for x = 0, and x = 1/2 while uε(x) = uε(1 − x) on ]1/2, 1[,
]0, 1/2[, uε is the classical solution of

u′′ε =
u

ε
.(49)

As uε(0) = 0, uε is bounded by β ∈ R, namely

με(x) = β sinh
(
x√
ε

)
(50)

and

u′ε

(
1
2

−)
=

β√
ε

cosh
(

1
2
√
ε

)
.(51)

By the symetry, introduced in (45), we obtain

u′ε

(
1
2

+)
= − β√

ε
cosh

(
1

2
√
ε

)
,(52)

and with (44), we get ∀ ∈]0, 1/2[

β =
1

2
√
ε

sinh
x√
ε

1

cosh
(

1
2
√

ε

) .
Next, we obtain the expression on the interval ]1/2, 1[ by the use

uε(x) = uε(1 − x).

Every compact K of ]0, 1/2[, ]1/2, 1[ is at a positive distance from x = 1/2 and is
included in a set of type:

(]0, η[ ∪ ]1 − η, 1[) with η ∈
]
0,

1
2

[
.(53)
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For every x ∈ K̂, we have 0 ≤ η ≤ 1
2 :

0 ≤ uε(x) ≤ 1
2
√
ε

sinh
(
η√
ε

)
1

cosh
(

1
2
√

ε

) ≤ 1
2
√
ε
e

η− 1
2√

ε(54)

with the left-hand side of (54) tending to zero as ε → 0. We consider a uniform
convergence on K. We have

∫
I

uεdx= 2

1/2∫
0

uεdx =
1

√
ε cosh

(
1

2
√

ε

)
1/2∫
0

sinh
(
x√
ε

)
dx(55)

=
1

cosh
(

1
2
√

ε

) [cosh
(

1
2
√
ε

)
− 1
]

and ∫
I

uεdx→ 1 if ε→ 0.

Addendum

We use the Poincaré-Wirtinger inequality for a bounded interval ω ∈ H . We intro-
duce then the avarage of v on ω, namely:

m(v) =

∫
w vdx

|ω| .

We have

v(y) − v(x) =

y∫
x

v′(t)dt.

Hence the average with respect to x on ω

|v(y) −m(v)| ≤ 1
ω

∫
ω

dx

y∫
x

v′(t)dt ≤ |v′|
w

∫
w

dx = |v′|(56)

where
|v −m(v)|L∞ ≤ |v′|

and
|v| ≤ m(v) + |v′|.

Take ϕ ∈ C0(I) (space of continuous functions on I). By continuity of ϕ at
x = 1/2, we can see ∀ϕ > 0 it exists η ∈]0, 1/2[ so that∣∣∣∣ϕ(x) − ϕ

(
1
2

)∣∣∣∣ < ρ for ∀x ∈ |1, 1 − η|.(57)

Using (54) and (55), we can see that, it exists ερ which below uε is overestimated
in absolute value by ρ on the compact K =]0, η[∪]1 − η, 1[ and so that
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1−η∫
η

uεdx− 1 < ρ

we have ∀ε < ερ ∣∣∣∣∣∣
∫
I

uεϕdx − ϕ

(
1
2

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

1−η∫
η

uε

[
ϕ− ϕ

(
1
2

)]
dx

∣∣∣∣∣∣(58)

+

∣∣∣∣∣∣ϕ
(

1
2

)⎡⎣ 1−η∫
η

(uε − 1)dx

⎤
⎦
∣∣∣∣∣∣+
∫
K

uεϕdx

and

lim
ε→0

∫
I

uεϕdx = ϕ

(
1
2

)
.(59)

Conclusions

The pertutbated term for tending to zero is approximated by the different limits.
The perturbation affects particularly the term of the high derivative of the function
u. The application of the Lax-Milgram theorem is governed by the higher derivative
of the function in the elliptic equations. In the considered cases for the Dirichlet
or Newman perturbated problems, the computing techniques can be applied in the
same manner.

References
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PROBLEM OSOBLIWOŚCI W RACHUNKU ZABURZEŃ.
JAK PRZYBLIŻYĆ FUNKCJȨ DIRACA

S t r e s z c z e n i e
W niniejszej pracy rozważamy zachowanie siȩ równań eliptycznych typu εu − u′′ = f

oraz u− εu′′ = f z warunkami brzegowymi Dirichleta lub Newmana w przedziale I =]0, 1[.
Drugim przyk�ladem jest problem graniczny dla ε = 0 niższego uporza̧dkowania dla ε > 0.
Definiujemy funkcjȩ Diraca w punkcie x = 1/2 i próbujemy przybliżać ten rodzaj si�ly
jako skok funkcji Diraca o charakterze funkcji cia̧g�lej używaja̧c równania drugiego typu
u − εu′′ = f , którego rozwia̧zanie klasyczne jest dane przez sinus hiperboliczny z si�la̧
punktowa̧ przy�lożona̧ w punkcie x = 1/2 [1–3].
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DE BRANGES THEOREM AND GENERALIZED
HYPERGEOMETRIC FUNCTIONS I
BIEBERBACH CONJECTURE AND MILIN FUNCTIONAL

Summary
We are going to report the most remarkable mathematical discovery of the previous

century. The conjecture stated in 1916 by Ludwig Bieberbach was affirmed in 1984 by
Louis de Branges, after 68 years of intensive research by top mathematicians.

0. Foreword

0.1. Editor’s foreword

The editor highly recommends reading of the present memoir consisting of three
parts. The exposition is entirely different from that of [Skw 09a, b]. First, it takes
into account that the de Branges discovery was a part of a larger attempt toward
the Riemann Hypothesis. Second, it is remarkably original by distinguishing con-
siderations on the Bieberbach conjecture in relation with the Milin functional, de
Branges functional vs. the hypergeometric equation, and basic properties of the
Branges functions.

0.2. Author’s foreword

Recently I got interested in early comments made in connection with the result of
Luigi de Branges (1984). In the first place I should mention here articles of FitzGer-
ald and Pommerenke (1985), Korevaar (1986), Kazarinoff (1988), and Grinshpan
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(1999). The early version of my memoir was presented at the XV-th Conference on
Analytic Functions and Related Topics (Che�lm, July 5–9, 2009). The attention was
focused on the work of N. Kazarinoff who unveiled the importance of generalized hy-
pergeometric functions for de Branges reasoning. Kazarinoff points to the Clausen
identity, Gegenbauer formula and Rainville integral as main ingredients in the final
part of de Branges proof. The Bieberbach conjecture stated in 1916 was affirmed in
the famous paper of de Branges (1984, [Brn 85]).

Besides the above articles I was helped by some books in which de Branges
result has been discussed. See the trilogy by Henrici 1986 (third volume dedicated
to S. Bergman), Conway 1995 and Gong 1999. The present small monograph attemts
to report the general reception of [Brn 85] as of 2009.

In order to round off the general picture I offered two articles [Skw 09a,b] dealing
with functions 2F 1, 3F 2. In the first Clausen identity is derived using direct com-
putation and rudimentary properties of Fuchsian singularity. In the second Watson
lemma is used to verify initial conditions in the solution to de Branges differential
system.

Quite recently A. K. Rathie and R. B. Paris have published [R,P] a new beautiful
proof of Watson summation theorem (which implies Watson lemma). The present
text reflects all these developments. The author hopes that the importance of the
subject and some originality in the arrangement of topics will prevail over the re-
maining insufficiency.

0.3. Initial remark

Acronyms below usually consist of first three consonants of author’s name, followed
by the year of publication. List of references is constructed alphabetically according
to letters in the acronym. When no ambiquity results acronyms on this list appear
without the year of publication.

In Section 2 we shall discuss Löwner parametric method which in 1923 led him
to the proof of inequality |a3| ≤ 3 and plays a fundamental role in the affirmation
of Bieberbach conjecture. Carathéodory convergence is used in deriving analytic
conclusions with this method.

1. Bieberbach conjecture. Distorsion lemma.
Carathéodory theorem

1.1. Univalent functions and Bieberbach conjecture

According to the well known Riemann mapping theorem every simply connected
domain D ⊂ C, with exception of ∅,C, can be mapped conformally onto the unit
disc Δ. Note that the inverse mapping f : Δ → D is conformal. In general any
function f which maps conformally Δ onto f(Δ) ⊂ C is called univalent or schlicht.
The Bieberbach class S consists of univalent functions f(z), z ∈ Δ which satisfy
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f(0) = 0, f ′(0) = 1. Bieberbach proved (1916) [Bbr] (his portrait is presented in
[B,D,D,M]) that for every f ∈ S the power development

f(z) = z + a2z
2 + a3z

3 + a4z
4 + . . . , z ∈ Δ(1)

satisfies |a2| ≤ 2; moreover |a2 = 2 if and only if f (up to rotation) is the Koebe
function

K(z) :=
z

(1 − z)2
= z + 2z2 + 3z3 + . . . .(2)

In a footnote (vielleicht uberhaupt...) Bieberbach expressed an expectation that
|an| ≤ n for every n = 2, 3, . . . . In 1984 this Bieberbach conjecture was finally
affirmed, Monographs [Drn], [Gdz] were published too early to mention this achieve-
ment. But in subsequent years many authors took up the subject. Their work is of
definite interest. Since famous proofs usually evolve with time, critical remarks are
welcomed by textbook authors. The present text was inspired (above all) by [F,P 85],
[Krv 86], [Kzr 88], [Grn 99].

1.2. Distorsion of absolute value in S

Distortion lemma follows from Bieberbach inequality |a2| ≤ 2. We need it to prove
the Carathéodory (his portrait is presented in Wikipedia: http://pl.wikipedia.org
/wiki/Constantin Catheodory) convergence theorem. It plays an eminent role in de
Branges (his portrait is presented in [B,D,D,M]) proof of |an| ≤ n, n = 3, 4, . . . .

(1) Distorsion Lemma (cf. [Ahl], pp. 84–85). All functions f ∈ S satisfy inequal-
ities

1 − r

(1 + r)3
≤ |f ′(z)| ≤ 1 + r

(1 − r)3
, 0 < r = |z| < 1,(3)

r

(1 + r)2
≤ |f(z)| ≤ r

(1 − r)2
, 0 < r = |z| < 1.(4)

Proof. The reasoning consists of three steps
1. A composition of conformal automorphism γ : Δ → Δ with f ∈ S has devel-

opment

(f ◦ γ)(z) = (f ◦ γ)(0) + (f ◦ γ)′(0)z + +(1/2)(f ◦ γ)′′(0)z2 + . . . .(5)

Composition (5) is conformal. It becomes an element of S but after suitable normal-
ization. This, together with Bieberbach inequality, yields∣∣∣∣12 (f ◦ γ)′′(0)

(f ◦ γ)′(0)

∣∣∣∣ ≤ 2.(6)

Take arbitrary point ξ ∈ Δ and choose automorphism γ : Δ → Δ which maps 0
onto ξ

γ(z) :=
z + ξ

1 + ξ̄z
, z ∈ Δ.(7)
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By immediate computation

γ′(z) =
1 − |ξ2|

(1 + ξ̄z)2
, γ′(0) = 1 − |ξ|2,(8)

γ′′(z) = (1 − |ξ|2)
−2ξ̄

(1 + ξ̄z)3
, γ′′(0) = (−2ξ̄)(1 − |ξ|2).(9)

As a consequence

(f ◦ γ)′(z) = f ′(γ(z)γ′(z)),(10)

(f ◦ γ)′′(z) = f ′′(γ(z))(γ′(z))2 + f ′(γ(z))γ′′(z),

(f ◦ γ)′(0) = f ′(ξ)(1 − |ξ|)2,(11)

(f ◦ γ)′′(0) = f ′′(ξ)(1 − |ξ|2)2 + f ′(ξ)(−2ξ̄)(1 − |ξ|2).

Hence inequality (6), divided by 1 − |ξ|2 takes the form∣∣∣∣
(
f ′′(ξ)
f ′(ξ)

− 2ξ̄
1 − |ξ|2

)∣∣∣∣ ≤ 4
1 − |ξ2| .(12)

2. Absolute value of Cauchy integral does not exceed the integral of absolute
value with respect to arc length. In view of (12) its integration over [0, z], z ∈ Δ
yields

∣∣∣∣∣∣∣
∫

[0,z]

(
f ′′(ξ)
f ′(ξ)

− 2ξ̄
1 − |ξ|2

)
dξ

∣∣∣∣∣∣∣ ≤
∫

[0,z]

4
1 − |ξ|2 |dξ|.(13)

By immediate calculation∫
[0,z]

f ′′(ξ)
f ′(ξ)

dξ = ln f ′(ξ)
∣∣∣∣
ξ=z

ξ=0

= ln f ′(z).(14)

Moreover, with parametrization ξ(s) = sz, s ∈ [0, 1]

∫
[0,z]

(
2ξ̄

1 − |ξ|2
)
dξ =

1∫
0

2s|z|2
1 − s2|z|2dm(s) = − ln(1 − s2|z|2)

∣∣s=1

s=0
= − ln(1 − |z|2).

(15)

The same parametrization is used to compute the right-hand side in (13). Namely
∫

[0,z]

4
1 − |ξ|2 |dξ| = 2|z|

1∫
0

(
1

1 + s|z| +
1

1 − s|z|
)
dm(s)(16)

= 2|z|
(

1
|z| ln(1 + s|z|) − 1

|z| ln(1 − s|z|)
)∣∣s=1

s=0
= 2 ln

1 + |z|
1 − |z| .
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In view of (14), (15), (16) inequality (13) is rewritten as∣∣ ln f ′(z) + ln(1 − |z|2)
∣∣ ≤ 2 ln

1 + |z|
1 − |z| .(17)

On the left-hand side the expression under absolute value can be replaced by its real
part. This results in double inequality

ln
1

1 − |z|2 − 2 ln
1 + |z|
1 − |z| ≤ ln |f ′(z)| ≤ ln

1
1 − |z|2 + 2 ln

1 + |z|
1 − |z|(18)

and exponentiation yields the desired inequality (3).

3. In the last step we prove the double inequality (4). Estimate from above follows
easily from (3). Indeed, direct computation with parametrization ξ(s) = sz, s ∈ [0, 1]
yields

|f(z)|=

∣∣∣∣∣∣∣
∫

[0,z]

f ′(ξ)dξ

∣∣∣∣∣∣∣ ≤
∫

[0,z]

1 + |ξ|
(1 − |ξ|)3 |dξ|(19)

= |z|
1∫

0

1 + s|z|
(1 − z|z|)3dm(s) ≤ |z|

1∫
0

1 + |z|
(1 + |z|)3 dm(s) =

|z|
(1 + |z|)2 .

It the following we are concerned with the estimate from below. For z ∈ Δ, r := |z|
consider the circle

Cr := {ξ ∈ Δ; |ξ| = r}(20)

and denote m(r) = |w| where w ∈ f(Cr) = {f(ξ); |ξ| = r} is any point with the
smallest distance to f(0) = 0. The segment in Δ joining 0 with w can be thought
of as an image of a smooth curve L ⊂ Δ under the conformal mapping f , see Fig. 1
below.

Fig. 1: The line L ⊂ Δ corresponds to the segment f(L) = [0, w] of length m(r).
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Conformal mapping f distorts length at ξ ∈ Δ multiplying it by |f ′(ξ)|. The
length of f(L) is expressed by an integral with respect to arc length of L. Therefore

|f(z)| ≥ m(r) = length of f(L) =
∫
L

|f ′(ξ)| |dξ| ≥
∫
L

1 − |ξ|
(1 + |ξ|)3 |dξ|.(21)

In the end the inequality (3) was used. We want to show that

∫
L

1 − |ξ|
(1 + |ξ|)3 |dξ| ≥

r∫
0

1 − ρ

(1 + ρ)3
dρ =

( −1
(1 + ρ)2

+
1

1 + ρ

) ∣∣∣∣
r

0

=
r

(1 + r)2
.(22)

In (22) the first inequality requires an explanation. Consider the integral over [0, r]
and let σ be the lower riemannian sum related to the division 0 = ρ0 < ρ1 < . . . <

ρs = r.
By definition

σ :=
s−1∑
i=0

mi(ρi+1 − ρi) where mi := inf
{

1 − ρ

(1 + ρ)3
; ρ ∈ [ρi, ρi+1]

}
.(23)

Let Li be arbitrarily chosen segment on L beginning at ξi and ending at ξi+1 where
|ξi| = ρi, |ξi+1| = ρi+1. Replacing it by a subsegment (if necessary) we may assume,
that all inner points of Li lie in the open annulus σi < |z| < σi+1. Hence different
segments Li have disjoint interiors. In general the segments Li do not sum up to L,
so we have an inequality∫

L

1 − |ξ|
(1 + |ξ|)3 |dξ| ≥

∑
i

1 − |ξ|
(1 + |ξ|)3 |dξ|.(24)

Obviously |ξi+1 − ξi| ≥ ρi+1 − ρi. Moreover, by definition of mi,∑
i

∫
Li

1 − |ξ|
(1 + |ξ|)3 |dξ| ≥

∑∫
Li

mi|dξ| =
∑

i

mi (length of Li)(25)

≥
∑

i

mi|ξi+1 − ξi| ≥
∑

i

mi(ρi+1 − ρi) = σ.

In the inequality which follows from (24), (25) we pass to the limit when tolerance
of relevant division goes to 0. Then σ converges to the second integral in (22). With
(21) and (22) the desired estimate from below in (4) is established. �

(2) Corollary (Bieberbach). For every f ∈ S the image f(Δ) contains the disc
with center 0 and radius 1/4.

Proof. When r → 1 the lower limit of m(r) is not smaller than 1/4 in view of (4). �

(3) Remark. The number 1/4 in this corollary cannot be improved. It is called Koebe
constant, see p. 65.
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1.3. The kernel of a sequence of domains

Carathéodory’s result on sequences of univalent mappings fm : Δ → fm(Δ) occupies
central place in the theory of univalent functions. A detailed proof of this theorem
is presented in the next section. We need two important notions.

(4) Definition. Let Gm ⊂ C, m = 1, 2, . . . be a sequence of domains which are simply
connected and contain a fixed point w0. We consider two possible cases

1. There is a neighbourhood of w0 contained in every Gm. Denote by G the set
of all points in C which, together with some neighbourhood, are included in Gm for
all sufficiently large m. Obviously G is open and nonvoid (note that w0 ∈ G). The
point w0 belongs to (unique) component Gw0 of G. We call Gw0 the kernel of Gm

with respect to w0.
2. In the opposite case, when no neighbourhood of w0 is contained in all Gm, we

declare the kernel of Gm w.r.t. w0 equal to {w0}.

(5) Remark. See [Glz 52], p. 62, [Mrk 68], vol. 2, pp. 37–38, and [Gng 99], p. 36. The
definition in [Crt 32], p. 91, is more general.

(6) Definition. LetGm ⊂ C,m = 1, 2, . . . be a sequence of simply connected domains
with kernel G0. If every subsequence Gmk

, k = 1, 2, . . . , has G0 as its kernel, we say
that Gm is kernel convergent (briefly: k-convergent) to G0. Symbolically,

Gn
k−→ G0.(26)

(7) Examples (from [Mrk 68] p. 38).
(a) Fig. 2 shows fixed disjoint rectangles Q′, Q′′ joined by a horizontal rectangle

Qm of height 1/m. Choose fixed points w′ ∈ Q′, w′′ ∈ Q′′. Let Gm := Q′ ∪Qm ∪Q′′.
Then Gw′ = Q′, Gw′′ = Q′′. It is easy to see that Gm is k-convergent both to Gw′

and Gw′′ .

Fig. 2: Sequence Gm is k-convergent to Gw′ = Q′, Gw′′ = Q′′.

(b) Fig. 3 shows fixed rectangles Q′, Q′′ overlapping along the rectangle Q =
Q′ ∩ Q′′. Choose fixed point w0 ∈ Q. Define Gm = Q′ for m = 2k − 1 and for
m = 2k. Obviously Gw0 = Q. Since the kernel of G2k−1 with respect to w0 is Q′ and
the kernel of G2k with respect to w0 is Q′′, the sequence Gm is not k-convergent to
Gw0 .
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Fig. 3: Sequence Q′, Q′′, Q′, . . . is not k-convergent to Q = Q′ ∩ Q′′ w.r.t. w0.

1.4. Carathéodory convergence theorem

The famous Carathéodory monograph [Crt 32] deals with mappings which are only
locally conformal. For our purpose this less general result is sufficient. Since it plays
a fundamental role in de Branges reasoning we supply the relevant proof (see also
[Glz 52], pp. 62–67, and [Gng 99], pp. 36–37).

(8) Carathéodory convergence theorem. Consider a sequence fm : Δ → Dm

of conformal mappings, normalized by fm(0) = 0, f ′
m(0) > 0. Note that 0 ∈ Dm =

fm(Δ) for all m. The sequence fm converges locally uniformly to f if and only if D0,
the kernel w.r.t. 0 of Dm, is different from C and Dm

k−→ D0. These (equivalent)
conditions imply that f(Δ) = D0. Under the additional assumption D0 �= {0} the
mapping f is conformal, its image D0 is simply connected and the sequence of inverse
mappings f−1

m : Dm → Δ converges locally uniformly to f−1 : D0 → Δ.

Proof. We prove the main equivalence. (Remaining claims should become obvious
in view of supplied arguments). The proof consists of two parts, concerned with
necessity and sufficiency, respectively.

Part I. Assume that fm converges locally uniformly to f . By Weierstrass’ theorem
f is holomorphic. Hence fm : Δ → C is locally bounded. There are two possibilities.

1) The case f = const. Then f ≡ 0. We shall prove that f(Δ) = {0} is the
kernel of Dm, m = 1, 2, . . . , w.r.t. 0. Assume, to the contrary, that D0 �= {0}. By
Definition (3) there is a disc |w| < ρ contained in each of Dm = fm(Δ). Schwarz
lemma applied to f−1

m yields (f−1
m )′(0) ≤ 1/ρ, and hence f ′

m(0) ≥ ρ. Since, by the
Weierstrass theorem, f ′

m → (0)′ = 0, we have a contradiction. Hence D0 = {0} as
claimed. The above reasoning applies to any subsequence of fm. It follows that Dm

is k-convergent to {0}.
2) The case f �= const. Then, by the Hurwitz theorem, the limit f : Δ → f(Δ)

is conformal. Our reasoning in this case consists of four steps.

1. We shall show first that f(Δ) ⊂ D0. Since f(Δ) is connected it suffices to
prove that every point b = f(a), where a ∈ Δ, has a neighbourhood contained
in every Dm with m large enough. To this aim we shall apply the Rouché
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theorem. Choose discs U, V with radii r, 2r, common centre a and closures
contained in Δ. For z ∈ U the function f(ξ) − f(z) has in V exactly one
zero (attained at ξ = z) and is bounded away from 0 on bV . Since on bV
the sequence fm(ξ) − f(z) converges uniformly to f(ξ) − f(z), we have the
inequality

|(fm(ξ) − f(z)) − (f(ξ) − f(z))| < |f(ξ) − f(z)|, ξ ∈ bV(27)

for m large enough. Note the identity

fm(ξ) − f(z) = [f(ξ) − f(z)] + [(fm(ξ) − f(z)) − (f(ξ) − f(z))].(28)

In view of (28) and (27), for m large enough, both fm(ξ)−f(z) and f(ξ)−f(z)
have the same number of zeros in V (Rouché’s theorem). Hence the value
f(z) is attained by fm(ξ), ξ ∈ V iff it is attained by f(ξ), ξ ∈ V . Since
z ∈ U the latter means that f(z) is attained by f(ξ), ξ ∈ U . It follows that
f(U) = fm(V ) ⊂ Dm. Note that f(U) is a neighbourhood of b (independent
of m) contained in Dm for all m large enough. Since b was chosen arbitrarily,
we have f(Δ) ⊂ D0, as claimed.

2. We show the reverse inclusion D0 ⊂ f(Δ). Consider arbitrary w0 ∈ D0. It
belongs to a domain W such that W ⊂ Dm for sufficiently large m. We may
assume that W contains 0. For sufficiently large m the domain W is mapped
conformally by ϕm := f−1

m and ϕm(W ) ⊂ Δ. Hence there exists a subsequence
ϕmk

which converges locally uniformly in W to a holomorphic function ϕ. Note
that

ϕ′(0) = lim
k→∞

ϕ′
mk

(0) = lim
k→∞

1
f ′

mk
(0)

=
1

f ′(0)
�= 0.(29)

This shows that ϕ is nonconstant, hence (by Hurwitz’s theorem) it maps con-
formally W onto ϕ(W ) ⊂ Δ. It follows that

ϕmk
(w0) → ϕ(w0) ∈ Δ(30)

and, by composing (30) with f ,

f(ϕ(w0)) = lim
k→∞

f(ϕmk
(w0)) = lim

k→∞
fmk

(ϕmk
(w0)) = lim

k→∞
w0 = w0.(31)

Since w0 ∈ D0 was chosen arbitrarily this yields D0 ⊂ f(Δ) as claimed. The
converse inclusion has been proven in Step 1, and hence G0 = f(Δ). One
cannot map conformally Δ onto C, so D0 �= C. In addition (31) implies that
ϕ = f−1.

3. The reasoning in Step 2 can be applied to any subsequence fmk
of fm. Since

such a subsequence converges locally uniformly to f �= const we conclude that
Dmk

has f(Δ) = D0 as its kernel. Hence Dm is k-convergent to D0 as claimed.
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4. The reasoning in Step 2 can be applied to any subsequence ϕmk
which is

convergent in W . Such a subsequence ϕmk
converges in W to the limit ϕ = f−1

(independent of mk). It follows that ϕm itself converges in W to ϕ = f−1. By
the Vitali theorem the sequence ϕm : Dm → Δ converges locally uniformly in
D0 to ϕ = f−1 as claimed.

Part II. Assume that Gm := fm(Δ) is k-convergent to G0 �= C. We shall show that
fm converges locally uniformly in Δ. Distortion lemma applied to fm yields

|fm(z)| ≤ |f ′
m(0)| |z|

(1 − |z|)2 , z ∈ Δ.(32)

There are two possibilities.
1) The case of D0 = {0}. Then we have f ′

m(0) → 0. Indeed, assume to the
contrary that there is the subsequence f ′

mk
(0) bounded away from 0. By Corollary

(2) there is a neighbourhood of 0 contained in all Dmk
. Hence Dmk

has kernel
different from {0} contradicting the assumption that Dm is k-convergent to {0}.

Since |f ′
m(0)| → 0, inequality (32) implies that the sequence fm converges to the

constant 0 locally uniformly in Δ, as claimed.
2) The case D0 �= {0},C. Then the sequence f ′

m(0) is bounded. Indeed, assume
the opposite. Then some subsequence f ′

mk
(0) diverges to ∞. Hence, by Koebe 1/4

theorem the kernel of Dmk
equals C contrary to the assumption that D0 �= {0}.

Since f ′
m(0) is bounded the inequality (32) implies that the sequence fm is locally

bounded in Δ. By part I, the limit f of any convergent subsequence fmk
maps Δ

onto D0, the kernel of Dmk
. The case D0 = {0} was excluded, f �= const is the

normalized conformal mapping of Δ onto D0. This mapping is independent of mk

and hence the sequence fm converges locally uniformly to f according to the claim.
�

2. Löwner chain. Löwner equation. Milin functional

2.1. Löwner chain

This section splits into four steps.
1. For f ∈ S and every r ∈ (0, 1) the function r−1f(rz), z ∈ Δ, is holomorphic

and invertible in some neighbourhood of the closed unit disc. Note that r → 1
implies that r−1f(rz) → f(z) locally uniformly in Δ. Therefore we may assume
(without loss of generality) that the original function f maps biholomorphically a
neighbourhood of clΔ. As a consequence, f maps the unit disc Δ onto a domain D

bounded by an analytic Jordan curve C, see Fig. 4.
2. Since 0 ∈ D there is the halfline (−∞, wC) ⊂ (−∞, 0) ∩ (C \ D) such that

wC ∈ C = f(bΔ); see Fig. 5.
3. Fig. 6 below shows the Jordan arc Lm which consists of interval (−∞, wC ]

followed by a part of C from wC to a point wm on C. For a slit domainDm := C\clLm

let fm : Δ → Dm be the Riemann mapping, normalized by fm(0) = 0, f ′
m(0) > 0.
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Following a remarkable paper of de Branges [Brn 86] we take the liberty to apply
the term Riemann mapping not only to a mapping onto Δ, but also. The intended
meaning is visible from the context.

Assume that the arcs L1, L2, . . . are increasing and wm → wC when m → +∞.
The exterior of ∪Lm is disconnected. Its component D, determined by 0 = f(0),
equals f(Δ). By Carathéodory’s convergence theorem the sequence fm : Δ → Dm

converges locally uniformly in Δ to f : Δ → D. Hence f ′
m(0) → f ′(0) = 1 and

fm/f
′
m(0) → f . It is therefore enough to prove the Bieberbach conjecture for suitable

normalized mappings of Δ onto the slited plane Dm.

Fig. 4: Jordan curve C = f(bΔ).

Fig. 5: The halfline (−∞, wC).

Fig. 6: Slited plane Dm = fm(Δ).

Fig. 7: After reparametrization. Increasing family D(t) t ∈ (0, +∞).
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4. Finally we modify previous considerations by replacing countable the family
Lm with the continuous family L(t) t ∈ (−∞, 0), where the arc L(t) joins −∞ with a
point w(t) on the slit. Consider the Jordan arc L parametrized by w(t), t ∈ (0,+∞),
and denote by D(t) the complement of clL(t). We note that D(t) decreases when t

increases and k-converges to D when t → 0. After suitable reparametrization (the
new parameter again denoted by t) which changes the orientation of L, we obtain an
increasing family D(t), t ∈ (0,+∞). Note that D(t) approaches C when t → +∞;
see Fig. 7.

Consider now the Riemann mapping ft : Δ → D(t) with the Taylor development

ft(z) = a(t)z + . . . a(t) > 0.(33)

When 0 < s < t < +∞, the composition f−1
t ◦ fs maps Δ into Δ and Schwarz’s

lemma yields

|(f−1
t ◦ fs)′(0)| < 1.(34)

In view of fs(0) = 0 it follows that f ′
s(0) < f ′

t(0). Equivalently,

a(s) < a(t).(35)

Thus the first coefficient a(t) in (33) increases from 1 to +∞ with t ∈ (0,+∞). Its
logarithm varies from 0 to +∞ and can be taken as a new parameter. There is no
loss of generality to assume that

ft(z) = etz + a2(t)z2 + a3(t)z3 + . . .(36)

with D(t) := ft(Δ), t ∈ (0,+∞), increasing. Note that in the limit, D(0) = D,
D(+∞) = C. The function of two variables

f(z, t) := ft(z), z ∈ Δ, t ∈ (0,+∞),(37)

is caled the Löwner chain (the portrait of Ch. Löwner is presented in Wikipedia:
http://en.wikipedia.org/wiki/Charles Loewner). For t = 0 it reduces to f ∈ S while
for sufficiently large t it reduces to the Riemann mapping onto the plane slited along
a negative ray.

2.2. Löwner equation

A Löwner chain f(z, t) satisfies the Löwner equation
∂f

∂f
= ·p(z, t)

(
z
∂f

∂z

)
,(38)

where p(z, t) is holomorphic in z and

Re p(z, t) > 0, p(0, t) = 1.(39)

The original proof in [Lwn 23] is difficult. The reasoning below follows from
[Drn 83], [Krv 86], [Ahl 73]. For s < t consider the composition f−1

t ◦fs : Δ → Δ; see
Fig. 8. Recall that D(t) ⊃ D(s). Denote by Γst the part of the arcL between w(t)
and w(s). Note that f−1

t maps D(s) onto Δ without f−1
t (D(t) \D(s)). From known

results on boundary correspondence follows that f−1
t maps D(s) onto the disc Δ
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slited along an arc f−1
t (Γst). The begining γ(t) of this slit lies on bΔ as the image of

w(t) under f−1
t . The end lies inside Δ as the image of w(s) ∈ D(t) under f−1

t . The
map γ : (0,+∞) → bΔ (independent of s) is continuous, as proven in [Drn 83], p. 85.
In view of (36) f−1

t ◦ fs has the Taylor development

ϕ(z) := f−1
t (fs(z)) = es−tz + . . . z ∈ Δ.(40)

Let us eliminate the only zero in (40) and take the branch of logarithm. This yields

Φ(z) := ln
(f−1

t ◦ fs)(z)
z

= ln
es−tz + . . .

z
= ln(es−t + . . . ), z ∈ Δ,(41)

where Φ(0) = s− t.

Fig. 8: Composition f−1
t ◦ fs : Δ → Δ. Note that D(t) ⊃ D(s).

As shown in Fig. 8 the arc on bΔ (between eiα and eiβ) goes under fs onto Γst,
and is mapped by f−1

t ◦ fs into the interior of Δ. Other points of bΔ are mapped
under f−1

t ◦ fs into bΔ. This has important consequences. The harmonic function

Re Φ(z) = ln
∣∣∣∣(f−1

t ◦ fs)(z)
z

∣∣∣∣ = ln |(f−1
t ◦ fs)(z)|, z ∈ Δ,(42)

considered on bΔ is negative on the arc between eia and eib and is zero at other
points of bΔ. Let us recall the Poisson kernel for Δ:

P (z, λ) = Re
λ+ z

λ− z
, z ∈ Δ, λ ∈ bΔ.(43)

A function holomorphic in Δ is determined by its real part up to imaginary constant.
The relevant integral formula is known as the Schwarz-Poisson representation. For
Φ(z) this representation yields
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Φ(z) =
1

2π

2π∫
0

[
ReΦ(eiθ)

] eiθ + z

eiθ − z
dm(θ)(44)

=
1

2π

β∫
α

ln
∣∣(f−1

t ◦ fs)(eiθ)
∣∣eiθ + z

eiθ − z
dm(θ).

There is no additional constant since at z = 0 all expressions in (44) are real in
view of definition (41). Since Φ(0) = s− t, (44) yields

s− t =
1

2π

β∫
α

ln
∣∣(f−1

t ◦ fs)(eiθ)
∣∣dm(θ).(45)

More generally, for fixed z = f−1
s (w) we have by (41)

Φ(z) = ln
(f−1

t ◦ fs)(z)
z

= ln
f−1

t (w)
f−1

s (w)
(46)

and (44) yields

ln
f−1

t (w)
f−1

s (w)
=

1
2π

β∫
α

ln
∣∣(f−1

t ◦ fs)(eiθ)
∣∣eiθ + f−1

s (w)
eiθ − f−1

s (w)
dm(θ).(47)

We divide both sides of (47) by s−t and consider the limit when s→ t. The quotient
on the left-hand side converges to the derivative −(∂/∂t) ln f−1

t (w). With s→ t the
slit in Δ reduces to the single point λ(t) ∈ bΔ and the second factor under integral
sign in (47) converges to a constant

λ(t) + f−1
t (w)

λ(t) − f−1
t (w)

.(48)

In view of (45) the integral of the first factor under the integral sign in (47) equals
s− t. These observations lead to the equality

∂

∂t
ln f−1

t (w) = −λ(t) + f−1
t (w)

λ(t) − f−1
t (w)

.(49)

In the final part we follow [Ahl 73] on p. 96. Formula (49) can be rewritten as
p.d.e. satisfied by ft(z). Note that for fixed z

f−1
t (w) = z.(50)

We differentiate both sides of latter equality with respect to t. The right-hand side
yields 0. Since, by the inverse function theorem, the left-hand side of (50) has deriva-
tive with respect to w; the desired derivative with respect to t can be computed with
the chain rule for functions of two variables. Since ∂w/∂t = ∂ft(z)/∂t, the result is

∂f−1
t (w)
∂t

+
∂f−1

t (w)
∂w

∂ft(z)
∂t

= 0.(51)
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We now use (51) to calculate the left-hand side of (49). It follows that

∂f−1
t (w)
∂t

= −z λ(t) + z

λ(t) − z
.(52)

Substituting (52) into (51) and dividing by ∂f−1
t (w)/∂w or (what is the same) by

1 : ∂ft(z)/∂z yields

∂ft(z)
∂t

= z
λ(t) + z

λ(t) − z

∂ft(z)
∂z

= zp(z, t)
∂ft(z)
∂z

.(53)

This is the famous Loewner equation (38).
It is easy to verify that for z ∈ Δ, t ∈ [0,+∞), the factor p(z, t) has positive real

part (belongs to the right halfplane). Since |λ(t)| = 1, we have

2Re p(z, t) =
λ+ z

λ− z
+
λ̄+ z̄

λ̄− z̄
= 2

|λ|2 − |z|2
|λ− z|2 > 0.(54)

�
Some geometric interpretation follows. Löwner’s equation (38) describes dynam-

ics of the family ft : Δ → Dt. At z ∈ bΔr vector z is orthogonal to bΔr. Under
variable t the point ft(z) describes “trajectory” of the point z. The partial deriva-
tive ∂ft(z)/∂t ∈ C describes the vector tangent to this trajectory. The differential
of conformal mapping ft(z) amounts to multiplication by ∂ft(z)/∂z. The latter op-
erator preserves angles, and hence (at ft(z)) the vector (∂ft(z)/∂z) · z is orthogonal
to bf(Δr). Since p(z, t) belongs to the right halfplane, its argument has absolute
value smaller than π/2. Therefore the Löwner equation (38) indicates that at ft(z)
the trajectory goes out of ft(Δr). Loosely speaking, Löwner chain ft(z) = f(z, t)
describes “an expanding flow”. Since |λ(t)| = 1 we may write

p(z, t) =
∂(t) + z

∂(t) − z
=

1 + κ(t)z
1 − κ(t)z

, where κ(t) := λ(t).(55)

2.3. Robertson inequalities

Another conjecture, apparently more complicated, brought an important progress
to the Bieberbach problem. In 1936 M. S. Robertson (his portrait is presented in
[B,D,D,M]) expressed expectation that for every function f(z) = z+a2z

2+a3z
3+. . .

in S the odd function

√
f(z2) =

√
z2

√
1 + a2z2 + a3z4 + . . . = z + b3z

3 + b5z
5 + . . . ∈ S, b1 = 1,

(56)

satisfies
n∑

k=1

∣∣b2k−1

∣∣2 ≤ n, n = 2, 3, . . . .(57)

This is the Robertson conjecture stated in terms of Robertson inequalities (57).
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Since an in the development of f(z2) appears at z2n, comparison with coefficients
in (z + b3z

3 + b5z
5 + . . . )2 yields

an = b1b2n−1 + b3b2n−3 + . . .+ b2n−1b1.(58)

Hence, by applying the Schwarz inequality to (58), conditions (57) give

|an| ≤
√√√√ n∑

k=1

|b2k−1|2 ·
√√√√ n∑

k=1

|b2k−1|2 ≤ (√
n
)2 = n, n = 2, 3, . . . .(59)

Therefore the Robertson conjecture implies Bieberbach conjecture, see See [Rbr 36].

2.4. Exponentiating a power series

After 1950 Lebedev and Milin (the portrait of I. M. Milin is presented in [B,D,D,M],
but confused there with that of Ch. Löwner) began systematic investigation of expo-
nentiation. This resulted in a number of general L-M inequalities. In the next section
we shall use the inequality

n∑
k=0

|βk|2 ≤ (n+ 1) exp

{
1

n+ 1

n∑
k+1

(n+ 1 − k)
(
k|αk|2 − 1

k

)}
(60)

which connects coefficients in ϕ(z) = α1z+α2z
2 + . . . and in expϕ(z) = β0 + β1z+

β2z
2 + . . . . Both sides of (60) contain coefficients at zk where k ≤ n, but summation

starts with k = 0 for expϕ and with k = 1 for ϕ.
In the present section, following Chapter 5 of [Drn 83], we recall a remarkable

proof of (60) due to D. Aharonov. Denote

An :=
n∑

k=1

k2|αk|2, Bn :=
n∑

k=0

|βk|2.(61)

Differentiation of eϕ(z) yields eϕ(z)ϕ′(z). Therefore

(β0 + β1z + β2z
2 + . . . )′ = (β0 + β1z + β2z

2 + . . . ) (α1z + α2z
2 + . . . )′.(62)

Calculating the Cauchy product on the right-hand side of (62) and comparing coef-
ficients at zn−1 yields

nβn =
n∑

k=1

kαkβn−k, β0 = 1.(63)

Hence, by Schwarz’s inequality,

n2|βn|2 ≤
(

n∑
k=1

k2|αk|2
)(

n−1∑
k=0

|βk|2
)

= AnBn−1.(64)

We use (64) to estimate |βn|2. It follows that

Bn =Bn−1 + |βn|2 ≤ Bn−1 +
1
n2
AnBn−1 =

(
1 +

1
n2
An

)
Bn−1(65)

=
n+ 1
n

(
1 +

An − n

n(n+ 1)

)
Bn−1 ≤ n+ 1

n
Bn−1 exp

(
An − n

n(n+ 1)

)
.
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In the latter line the elementary estimation 1+x ≤ ex, valid for all x ∈ R, was used.
From (65) and analogous estimates for Bn−1, Bn−2, . . . we infer the inequality

Bn ≤ (n+ 1) exp

(
n∑

k=1

Ak − k

k(k + 1)

)
.(66)

Since
n∑

k=1

1
k + 1

+
n+1∑
k=2

+ − 1 +
n+1∑
k=1

1
k
,(67)

we may rewrite (66) as

Bn ≤ (n+ 1) exp

⎧⎪⎪⎨
⎪⎪⎩

n∑
k=1

Ak

k(k + 1) −
n∑

k=1

1
k+1

⎫⎪⎪⎬
⎪⎪⎭ .(68)

We now come to the central part of the reasoning. In view of

sn :=
n∑

k=1

1
k(k + 1)

= 1 − 1
n+ 1

, n = 1, 2, . . .(69)

and s0 = 0, summation by parts yields
n∑

k=1

Ak
1

k(k + 1)
=

n∑
k=1

Ak(sk − sk−1)(70)

= (Ansn −Ansn−1) + (An−1sn−1 −An−1sn−2) + . . .+A2(s2 − s1) +A1s1

=Ansn − (An −An−1)sn−1 − . . .− (A2 −A1)s1

=Ansn −
n∑

k=1

(Ak −Ak−1)sk−1

=
n∑

k=1

k2|αk|2
(

1 − 1
n+ 1

)
−

n∑
k=1

k2|αk|2
(

1 − 1
k

)

=
1
k

n∑
k=1

k2|αk|2 − 1
n+ 1

n∑
k=1

k2|αk|2.

After substituting (70) into (68) we see that the claim (60) follows from (68)
provided that

n∑
k=1

k|αk|2 − 1
n+ 1

n∑
k=1

k2|αk|2 −
n∑

k=1

1
k + 1

(71)

=
1

n+ 1

n∑
k=1

(n+ 1 − k)
(
k|αk|2 − 1

k

)
.
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In order to establish (71) note that the central term on the left cancels easily, so we
need only to verify that

n∑
k=1

k|αk|2 −
n∑

k=1

1
k + 1

=
1

n+ 1

n∑
k=1

(n+ 1)
(
k|αk|2 − 1

k

)
+

1
n+ 1

n∑
k=1

1.(72)

Now the first term on the left cancels and we are left with an obvious identity

−
n+1∑
k=2

1
k

=

(
−

n∑
k=1

1
k

)
+
(

1 − 1
n+ 1

)
.(73)

Hence (L-M) inequality (60) has been proved. �

2.5. Logarithmic coefficients and Milin conjecture

I. M. Milin (1919–1992) was a mathematician from Leningrad (now again St. Pe-
tersburg). In 1971 he formulated a new conjecture, which implied the Robertson
conjecture and (as a consequence) the Bieberbach conjecture). The concern was
with logarithmic coefficients of f ∈ S. See [Mln 71], remarks before Theorem 3.2.

Recall that for f ∈ S the quotient f(z)/z z ∈ Δ is holomorphic and does not
admit value 0. Consider the branch ln(f(z)/z) which vanishes at z = 0 and its Taylor
development

ln(f(z)/z) = c1z + c2z
2 + . . . .(74)

Numbers ck, k = 1, 2, . . . are called logarithmic coefficients of f . I. M. Milin expressed
expectation that every f(z) = z + a2z

2 + . . . ∈ S satisfies

In[f ] ≤ 0, n = 2, 3, . . .(75)

where

In[f ] :=
n−1∑
k=1

(n− k)
(
k
∣∣ck∣∣2 − 4

k

)
.(76)

This is Milin conjecture stated in terms of Milin inequalities (75). Note that Milin
functional In[f ] in (76) consists of n− 1 terms. We are going to present

(9) Theorem. Milin conjecture implies Bieberbach conjecture.

Proof. For f ∈ S consider the odd function√
f(z2) = b1z + b3z

3 + b5z
5 + . . . , b1 = 1.(77)

It follows that √
f(z2)
z2

=
1
z

√
f(z2) = b1 + b3z

2 + b5z
4 + . . . .(78)

Recall that the main branch of square root can be expressed by the main branch of
logarithm. Therefore
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√
f(z2)
z2

= exp
[

1
2

ln
f(z2)
z2

]
= exp

(c1
2
z2 +

c2
2
z4 + . . .

)
.(79)

With the abbreviation w := z2 we infer from (78), (73) that

b1 + b3w + b5w
2 + . . . = exp

(c1
2
w +

c2
2
w2 + . . .

)
.(80)

In the next step we apply the second (L-M) inequality (cf. Sect. 2.4):
n∑

k=0

|βk|2 ≤ (n+ 1) exp

{
1

n+ 1

n∑
k=1

(n+ 1 − k)
(
k|αk|2 − 1

k

)}
(81)

to powers wm, m ≤ n− 1 in (80). It follows that

|b1|2 + |b3|2 + . . .+ |b2n−1|2 ≤ n exp

{
1
n

n−1∑
k=1

(n− k)

(
k

∣∣∣∣ck2
∣∣∣∣
2

− 1
k

)}
(82)

= n exp
(
In[f ]
4n

)
.

The assumed Milin’s conjecture implies In[f ] ≤ 0 for n = 2, 3, . . . , and hence the
right-hand side is not greater than n. In view of (82) Robertson inequalities (57)
hold for every f ∈ S. It suffices now to recall that Robertson conjecture implies
Bieberbach conjecture.

2.6. Milin’s functional vanishes on the Koebe function

We have seen that Milin conjecture implies Bieberbach conjecture. Indeed, in order
to prove inequalities |an| ≤ n for a given f ∈ S it suffices to verify the inequalities
In[f ] ≤ 0. Already Bieberbach knew that the Koebe function

K(z) :=
z

(1 − z)2
= z + 2z2 + 3z3 + . . . z ∈ Δ(83)

is (up to rotation) the only function in S with |a2| = 2. The Koebe function was
intensively investigated in the context of Bieberbach conjecture. The following con-
siderations will help to motivate the de Branges construction, although, from the
formal point of view, the latter is rather independent. We have seen in Section 1
that

K(z) =
1
4

{(
1 + z

1 − z

)2

− 1

}
, z ∈ Δ,(84)

maps Δ onto the slited plane C \ (−∞,−1/4), see Fig. 9.
We shall now calculate logarithmic coefficients of K. The development

ln
K(z)
z

= −2 ln(1 − z) = 2
(
z +

1
2
z2 +

1
3
z3 + . . .

)
(85)

yields ck = 2
k , k = 1, 2, . . . . Hence k(2/k)2 − 4/k = 0. As a consequence we have
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In[K] :=
n−1∑
m=1

(n−m)
(
m|c2m − 4

m

)
= 0.(86)

Fig. 9: The image of K(z), z ∈ Δ.

(10) Remark (important). For (regular) f ∈ S consider the Löwner chain f(z, t),
t ∈ (0,+∞), and normalized Riemann mappings

gt(z) :=
f(z, t)
et

∈ S, t ∈ (0,+∞),(87)

(see the beginning of this chapter). For sufficiently large t the function gt(z), z ∈ Δ,
maps the unit disc onto the complement of a subray of the negative halfaxis. The
original mapping ft(z) = f(z, t), up to a multiplicative constant, equals K and
normalization brings it again to gt(z) = K(z). We see that In(t) := In[gt] = In[K] =
0 for n = 1, 2, . . . . Moreover In(0) := In[g0] = In[f ]. From an additional hypothetical
assumption, that In(t), t ∈ (0,+∞), is nondecreasing it follows that In(0) ≤ 0.
But the latter is Milin’s inequality In[f ] ≤ 0. Hence, to prove Milin inequalities for
(regular) f ∈ S it suffices to show that

I ′n(t) ≥ 0, t ∈ (0,+∞).(88)

(11) Remark (important). A similar idea motivates de Branges proof of Milin in-
equalities. But de Branges reasoning is “more flexible”. He is not considering In(t) =
In[gt] but instead introduces and investigates another functional Ωn(t) := Ωn[gt]. For
details see the next chapter.
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TWIERDZENIE DE BRANGES’A A UOGÓLNIONE FUNKCJE
HIPERGEOMETRYCZNE I
HIPOTEZA BIEBERBACHA I FUNKCJONA�L MILINA

S t r e s z c z e n i e
Przedstawiamy najbardziej zaskakuja̧ce matematyczne odkrycie ubieg�lego stulecia –

dowód twierdzenia de Branges’a nawia̧zuja̧cy do w�lasności uogólnionych funkcji hiper-
geometrycznych. Twierdzenie wypowiedziane jako hipoteza w roku 1916 przez Ludwiga
Bieberbacha zosta�lo udowodnione w roku 1984 przez Louisa de Branges’a po 68 latach
intensywnych badań najwybitniejszych matematyków.

W paragrafie 2 analizujemy metoda̧ parametryczna̧ Löwnera, która w roku 1923 do-
prowadzi�la go do dowodu nierówności |a3| ≤ 3 i pe�lni podstawowa̧ rolȩ w potwierdze-
niu s�luszności hipotezy Bieberbacha. Do wyprowadzenia analitycznych wniosków z metody
użyta jest zbieżność w sensie Carathéodory’ego.
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DE BRANGES THEOREM AND GENERALIZED
HYPERGEOMETRIC FUNCTIONS II
DE BRANGES FUNCTIONAL AND HYPERGEOMETRIC EQUATION

Summary
Original article [Brn 84] contains the key explanation: ... the problem is to propagate

information by means of a differential equation. For this purpose information has to be coded
in a convenient form and then carried over from one end of an interval to the another.

In other words: Löwner differential equation affects propagation of logarithmic coef-
ficients. Soon enough the general insight of de Branges gained wider acceptance. Carl
FitzGerald and Christian Pommerenke in [F,P 85] offered their own variant. Still another
report was presented in [Krv 86] (see especially pp. 511–513. Korevaar’s article was awarsed
Chauvenet prize for mathematical exposition). The present chapter attempts to indicate
the general plan of de Branges proof.

The time has come to discuss the role of Gauss hypergeometric function 2F1 and its
generalizations. Simplest of such generalizations, the Clausen function 3F2 plays an eminent
role in the final part of de Branges proof. We present two proofs of Clausen identity: one
very short and one much longer. With such preparation we will derive in the next chapter
the inequality τ ′ ≤ 0, thereby clearing the condition (2).

0. Initial remark

Formulae numbers (1) etc. and statement numbers (1) etc. referring to Part I of the
memoir are quoted as (I.1) etc. and (I.1) etc., respectively. Acronyms below [Brn 84]
etc. usually consist of first three consonants of author’s name, followed by the year
of publication. List of references is constructed alphabetically according to letters of
the acronym. When no ambiguity results acronyms of this list appear without the
year of publication.
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1. De Branges functional. De Branges differential system

1.1. Derivative of logarithmic coefficient in a Löwner chain

Consider f ∈ S, its Löwner chain f(z, t), z ∈ Δ, t ∈ (0,+∞), and the logarithmic
coefficients ck(t) of normalized function gt(z) := f(z, t)/e′ ∈ S. By definition

ln
f(z, t)
etz

=
∑

k

ck(t)zk.(1)

Recall that in the Löwner equation

∂f(z, t)
∂t

= zp(z, t)
∂f(z, t)
∂z

(2)

the factor p(z, t) has positive real part. From (I.59) follows Taylor development

p(z, t) =
1 + κ(t)z
1 − κ(t)z

= [1 + κ(t)z]
∞∑

k=0

[κ(t)z]k = 1 + 2
∞∑

k=1

κ(t)kzk.(3)

Let us differentiate, with respect to t, both sides in (1). The logarithmic derivative
of etz is 1 hence

1
f(z, t)

∂

∂t
f(z, t) = 1 +

∞∑
k=1

c′k(t)zk.(4)

After replacing (∂/∂t) f(z, t) by the right-hand side of (2) we find that

p(z, t)z
1

f(z, t)
∂

∂t
f(z, t) = 1 +

∞∑
k=1

c′k(t)zk.(5)

Now differentiate again both sides in (1), this time with respect to z. The logarithmic
derivative of etz is now 1/z, hence

1
f(z, t)

∂

∂z
f(z, t) =

1
z

+
∞∑

k=1

kck(t)zk−1,(6)

z

f(z, t)
∂

∂z
f(z, t) = 1 +

∞∑
k=1

kck(t)zk.(7)

Substituting (3) and (7) for (5) we get power series equality(
1 + 2

∞∑
k=1

κ(t)kzk

)(
1 +

∞∑
k=1

kck(t)zk

)
= 1 +

∞∑
k=1

c′k(t)zk.(8)

Finally, comparing coefficients on both sides of (8) yields

c′k(t) = kck(t) + 2κ(t)k + 2
k−1∑
j=1

jcj(t)κ(t)k−j .(9)
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With abbreviations

σ0(t) := 0, σk(t) :=
k∑

j=1

jcj(t)κ(t)−j , k = 1, 2, . . . ,(10)

we rewrite (9) as

c′k(t) = 2κ(t)k +
k−1∑
j=1

jcj(t)κ(t)k−j +
k∑

j=1

jcj(t)κ(t)k−j = κ(t)k [2 + σk−1(t) + σk(t)] .

(11)

1.2. De Branges differential system

For n fixed de Branges defined Ωn(t) by replacing factors n − k, k = 1, . . . , n − 1,
in the Milin functional (I.76) with conveniently chosen weights τk(t), see def. (1)
below. Symbolically

Ωn(t) :=
n−1∑
k=1

{
k|ck(t)|2 − 4

k

}
τk(t), t ∈ [0,+∞).(12)

(The dependence of τk on n = 2, 3, . . . is suppressed in order not to overload the
notation).

(1) Definition. De Branges weights τk(t), k = 1, . . . , n− 1 are defined as follows:

τk(t) := k

n−k−1∑
ν=0

(−1)ν (2k + ν + 1)ν · (2k + 2ν + 2)n−k−1−ν

(k + ν) · ν! · (n− k − ν − 1)!
e−νt−kt,(13)

k = 1, . . . , n− 1,

with the usual meaning of the Pochhammer symbol:

(γ)0 := 1, (γ)ν := γ(γ + 1)(γ + 2) . . . (γ + ν − 1), ν ∈ N.(14)

(2) Remark (de Branges differential system). W shall see later that τk, k = 1, . . . , n−
1, are characterized as the unique solution in (0,+∞) to the system of ordinary
differential equations (with τn :≡ 0):

τk − τk+1 = −
(
τ ′k
k

+
τ ′k+1

k + 1

)
, k = 1, . . . , n− 1,(15)

subject to initial conditions

τk(0) = n− k, k = 1, . . . , n− 1.(16)

Note that conditions (16) imply Ωn(0) = In(0). This system can be solved succes-
sively. Unknown τn−1 is determined first, τn−2 next, and so forth ending with τ1.
At each step one meets a linear equation (of the first order) with one unknown and
constant coefficients.
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1.3. Unexpected change in notation

The area related to the de Branges theorem is so vast that we have to change notation
in the midst of a reasoning. The change is small and easy to control. But anyway, a
clear explanation is in order.

Inequalities which appear in Bieberbach problem are like rooms in the Hilbert
hotel. They can be numbered either by n = 2, 3, 4, . . . or by n = 1, 2, 3, . . . . The first
way was appropriate at the early stage of investigations, when attention was centered
on individual results (Bieberbach for a2, Löwner for a3, Charzyński and Schiffer
for a4). Situation is different in the case of de Branges proof, where all coefficient
inequalities are treated at once and generalized hypergeometric functions enter the
picture. It is more convenient to assume that n runs through the numbers 1, 2, . . . .
As a consequence in each individual formula index n pertains to |an+1| ≤ n+ 1, not
to |an| ≤ n.

For example, replacing n by n+ 1 in the formula (13) we now write

τk(t) := k

n−k∑
ν=0

(−1)ν (2k + ν + 1)ν · (2k + 2ν + 2)n−k−ν

(k + ν) · ν! · (n− k − ν)!
e−νt−kt,(17)

k = 1, 2, . . . n.

To avoid collision we shall reserve the name de Branges weights for (13) and call (17)
de Branges functions. The latter satisfy the system of equations (with τn+1 :≡ 0)

τk − τk+1 = −
(
τ ′k
k

+
τ ′k+1

k + 1

)
, k = 1, . . . , n,(18)

subject to initial conditions

τk(0) = n− k + 1, k = 1, . . . , n.(19)

Moreover, the relevant expression for de Branges functional becomes

Ωn(t) :=
n∑

k=1

{
k|ck(t)|2 − 4

k

}
τk(t).(20)

Note that from (17) by direct differentiation follows

−τ ′k(t) = k

n−k∑
ν=0

(−1)ν (2k + ν + 1)ν · (2k + 2ν + 2)n−k−ν

ν! · (n− k − ν)!
e−νt−kt,(21)

n = 1, 2, . . . .

1.4. What lies ahead

It is the proper moment to present a precise plan for remaining reasoning. The
general idea is to establish for Ωn(t) the properties desired of In(t) and then to use
Ωn(t), n = 1, 2, . . . , instead of In(t), n = 2, 3, . . . . To be specific, we want to establish
inequality Ω′

n(t) ≥ 0, t ∈ (0,+∞) and the limits Ωn(+∞) = 0, Ωn(0) = In(0). To
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achieve this we need to investigate the functions τk and their derivatives τ ′k, defined
by (17) and (21), respectively. We shall prove key conditions

(1) τk satisfy equations (18) (elementary),
(2) τk satisfy inequality τ ′k ≤ 0 (nontrivial),
(3) τk satisfy condition τk(+∞) = 0 (elementary),
(4) τk satisfy initial conditions (19) (nontrivial).

Meanwhile the desired properties of Ωn(t) will appear as corollaries. Note that (1),
(4) justify characterization τk in terms of de Branges differential system. The present
chapter establishes contitions (1), (3) (see Lemmas (3) and (5) below) and reduces
everything else to (2), (4). Proofs of (2), (4) rely on g.h.f. (generalized hypergeomet-
ric functions) and will be given later. The Clausen identity (see chapter 5) will be
used in chapter 6 to prove condition (2). In final chapter 7 we shall prove condition
(4) using Watson’s summation lemma.

1.5. De Branges functional vanishes at infinity

(3) Lemma to establish condition (3). For fixed n ∈ N functions τk, k = 1, . . . , n,
satisfy τk(+∞) = 0.

Proof. The (finite) sum in (17) is a linear combination of exponentials

e−(ν+k)tt, ν = 0, 1, . . . , n− k,(22)

and hence converges to 0 when t→ +∞. �

(4) Corollary. De Branges functional Ωn(t) satisfies Ωn(+∞) = 0.

Proof. Folows from (20) since τk → 0 and ck → 2/k. �

1.6. Derivative of the de Branges functional

(5) Lemma to establish (1). For fixed n ∈ N de Branges functions (17) satisfy
equations (18). of de Branges differential system.

Proof. With τn+1 ≡ 0 equations (18) can be written as

τk +
τ ′k
k

= τk+1 +
τ ′k+1

k + 1
, k = 1, . . . , n.(23)

We shall directly verify (23). From

τk(t) := k

n−k∑
ν=0

(−1)ν (2k + ν + 1)ν · (2k + 2ν + 2)n−k−ν

(k + ν) · ν! · (n− k − ν)!
e−νt−kt(24)

and

−τ ′k(t) = k

n−k∑
ν=0

(−1)ν (2k + ν + 1)ν · (2k + 2ν + 2)n−k−ν

ν! · (n− k − ν)!
e−νt−kt(25)
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we have(τk
k

)′
=

(
n−k∑
ν=0

(−1)ν (2k + ν + 1)ν · (2k + 2ν + 2)n=k−ν

(k + ν) · ν! · (n− k − ν)!
e−νt−kt

)′

= −τk(26)

and, after replacing k with k + 1, we can see that both sides of (23) vanish.

We now come to the very important result obtained by C. FitzGerald and
Ch. Pommerenke in [F,P 85]. The paper was instrumental for general recognition
of de Branges theorem. It offers explicit formulae which relate derivatives of loga-
rithmic coefficients to the derivative of de Branges functional. Recall that formula
(11) for derivatives of logarithmic coefficients involves functions σk related to the
Löwner equation. In fact this is the only place where the de Branges construction
makes essential use of the Löwner equation.

(6) FitzGerald-Pommerenke Lemma. The derivative of de Branges functional

Ωn(t) :=
n∑

k=1

{
k|ck(t)|2 − 4

k

}
τk(t), n = 1, 2, . . . ,(27)

satisfies

Ω′
n(t) = −

n∑
k=1

|σk−1(t) + σk(t) + 2|2 τ
′
k(t)
k

, n = 1, 2, . . . .(28)

Proof. We follow [F,P], p. 686. For brevity we shall suppress t, n. First of all, from
Definition (10) of σk it follows that

(σk − σk−1)κk

⎛
⎝ k∑

j=1

jcjκ
−1 −

k−1∑
j=1

jcj(t)κ−j

⎞
⎠κk = (kckκ−k)κk = kck.(29)

We now differentiate (27) substituting (29) for kck and (11) for c′k. This yields

Ω′ =
n∑

k=1

(
kck c̄k − 4

k

)′
τk +

n∑
k=1

(
kck c̄k − 4

k

)
τ ′k(30)

=
n∑

k=1

(kc′k c̄k + kck c̄
′
k) τk +

n∑
k=1

(kckkc̄k − 4)
τ ′k
k

=
n∑

k=1

[2Re (kck c̄′k)] τk +
n∑

k=1

(kckkc̄k − 4)
τ ′k
k

= 2
n∑

k=1

[Re ((σk + σk−1 + 2)(σ̄k − σ̄k−1))] τk

+
n∑

k=1

((σk − σk−1)(σ̄k − σ̄k−1) − 4)
τ ′k
k
.

In the latter line κκ̄ = |κ|2 = 1 was used.
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In order to obtain (28) the first sum on the right side of (30) is transformed by
parts. Since

Re [(σk + σk−1 + 2)(σ̄k − σ̄k−1)](31)

= Re
[|σk|2 − σkσ̄k−1 + σk−1σ̄k − |σk−1|2 + 2σ̄k − 2σ̄k−1

]
=
(|σk|2 + 2Reσk

)− (|σk−1|2 + 2Reσk−1

)
,

we have (using σ0 = 0, τn+1 = 0):

2
n∑

k=1

[Re(σk + σk−1 + 2)(σ̄k − σ̄k−1)] τk(32)

= 2
n−1∑
k=0

(|σk|2 + 2Reσk

)− 2
n−1∑
k=0

(|σk−1|2 + 2Reσk−1

)
τk

= 2
n∑

k=1

(|σk|2 + 2Reσk

)
τk − 2

n∑
k=1

(|σk|2 + 2Reσk

)
τk+1

= 2
n∑

k=1

(|σk|2 + 2�σk

)
(τk − τk+1)

= 2
n∑

k=1

(|σk|2 + 2Reσk

) τ ′k
k

− 2
n∑

k=1

(|σk|2 + 2Reσk

) τ ′k+1

k + 1

= −2
n∑

k=1

(|σk|2 + 2Reσk + |σk−1|2 + 2Reσk−1

) τ ′k
k
.

The next to last line was obtained with Lemma (5).
Returning to (30) we find

Ω′ = −2
n∑

k=1

(|σk|2 + 2Reσk + |σk−1|2 + 2Reσk−1

) τ ′k
k

(33)

+
n∑

k=1

[(σk − σk−1)(σ̄k − σ̄k−1) − 4]
τ ′k
k

=
n∑

k=1

[−2σkσ̄k − 2(σk + σ̄k) − 2σk−1σ̄k−1 − 2(σk−1 + σ̄k−1) − 4]
τ ′k
k
.

On the other hand, we rewrite the right-hand side of (28) as follows:

−
n∑

k=1

|σk−1 + σk + 2|2 τ
′
k

k
(34)

=
n∑

k=1

(−σk−1σ̄k−1 − σk−1σ̄k − 2σk−1 − σkσ̄k−1 − σk−1σ̄k − 2σk − 2σk−1 − 4)
τ ′k
k
.
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Right-hand sides of (34), (23) are equal, and hence left-hand sides are equal as well,
thus proving (28).

(7) Remark. In the above proof Lemma (5) has intervined, but explicit form (17)
was not used in other way. (For deeper properties (2) and (4) of τk we shall use (17)
directly.) The following corollary shows that the condition (2) implies the inequality
Ω′

n ≥ 0 which (by Corollary (4)) implies

Ωn(0) ≤ 0.(35)

(8) Corollary. Assume for every n ∈ N that τ ′k ≤ 0. Then Ω′
n ≥ 0.

Proof. Immediate by inspecting the identity (28) in FitzGerald-Pommerenke
lemma. �

1.7. De Branges functional and Milin inequalities

(9) Lemma. Assume for every n ∈ N that τk(0) = n− k + 1 . Then

Ωn(0) =
n∑

k=1

{
k|ck(0)|2 − 4

k

}
τk(0) = In(0).(36)

It follows that Ωn ≤ 0 implies Milin inequalities.

Proof. Immediate by the definition (4.20) of de Brange functional Ωn(t).

(10) Remark. From Lemma (9) follows that the conditions (2), (4) imply the Milin
conjecture, hence the Robertson conjecture, and hence the Bieberbach conjecture.
Establishing (2), (4) (see the following chapters) concludes de Branges’ proof of the
Bieberbach conjecture.

1.8. Korevaar’s examples

We close this chapter by quoting very attractive examples from [Krv 86], p. 508.

(11) Example (n = 1). Note that τ2 = 0. De Branges system (18), (19) consists of
one equation

τ1 = −τ ′1, τ1(0) = 2 − 1 = 1.(37)

Its solution is τ1(t) = e−t. From (17) with n = 1, k = 1, follows the same result,
namely

τ1(t) = 1 · 1 · (3)0 · (4)0
1 · 1 · 1

e−t·1 = e−t.(38)

This function satisfies key conditions (2), (4) on p. 68 in Part II. This yields the
Milin inequality and, as a consequence, |a2| ≤ 2.
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(12) Example (n = 2). Note that τ3 = 0. De Branges system (18) consists of two
equations

τ1 − τ2 = −
(
τ ′1
1

+
τ ′2
2

)
,(39)

τ2 = −τ
′
2

2

with initial conditions τ1(0) = 3− 1 = 2 and τ2(0) = 3− 2 = 1. The second equation
yields τ2(t) = e−2t. After substituting this into the first equation one finds

τ1 − e−2t = −τ ′1
1
2

(e−2t)′ = −τ ′1 + e−2t.(40)

This yields τ1(t) = 4e−t − 2e−2t. From (17) with n = 2, k = 1 follows the same
result, namely

τ1 = 1 · (3)0 · (4)1
1 · 0! · 1!

e−t·1 − 1 · (4)1 · (6)0
2 · 1! · 0!

e−t·2 = 4e−t − 2e−2t.(41)

Key conditions (2), (4) are obviously satisfied. Hence |a3| ≤ 3 (first proved by
K. Löwner in 1923; see [Lwn 23]).

Remark. Despite of its attractiveness, example (11) cannot be treated as a mathe-
matical proof of Bieberbach inequality |a2| ≤ 2. It relies on de Branges theory which
was derived with Carathéodory’s convergence theorem. Yet, Carathéodory’s conver-
gence theorem rests itself on the inequality |a2| ≤ 2. This remark does not extend to
examples (12), (13) which prove |a3| ≤ 3 with overwhelming ease. Chapeaux bas!

2. A proof of Clausen identity using differential equations

2.1. Generalized hypergeometric functions

Inequality τ ′k ≤ 0 was originally confirmed by D. Askey, who deduced it from the
work [A,G 76] on Jacobi polynamials, written jointly by Askey and Gasper. Follow-
ing N. Kazarinoff we modify this part of reasoning by working directly in terms of
generalized hypergeometric functions (abbreviation: g.h.f.):

w(z) := AFB(a; b; z) = AFB

(
a1, a2, . . . , aA

b1, b2, . . . , bB

∣∣∣∣z
)

:=
+∞∑
ν=0

(a1)ν · · · (aA)ν

(b1)ν · · · (bB)ν

zν

ν!
.(42)

Notation in (1) comes from E. W. Barnes. For typographic reason the expression in
(1) is often written as AFB(a1, . . . , aA; b1, . . . , bB; z). Numbers a1, . . . , aA are called
upper parameters; numbers b1, . . . , bB are called lower parameters. (The order of up-
per parameters is inessential and so is the order of lower parameters.) It is assumed
that none of the lower parameters is zero or negative integer. When an upper param-
eter is zero or a negative integer, the series in (1) terminates (has only finitely many
nonzero terms) and hypergeometric function reduces to a hypergeometric polyno-
mial.
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It is known that (1) satisfies ordinary an differential equation of order max(A,B).
This equation is linear, homogeneous and singular. For A = B + 1 the series in (1)
converges for |z| < 1. For a systematic account see [Slt].

Functions AFB generalize Gauss’ hypergeometric function 2F2(a1, a2; b1; z). In
order to simplify indices, Gauss function is often written as

2F1(a; b; c; z) =
+∞∑
ν=0

(a)ν(b)ν

(c)ν

zν

ν!
.(43)

It satisfies a differential equation of order 2; namely ([Slt], formula (1.2.1) on p. 5):

L[w] := z(1 − z)w′′ + [c− (a+ b+ 1)z]w′ − abw = 0.(44)

Most special functions of mathematical physics are particular cases of (2).
W. Sawyer wrote in 1955: There must be many universities today where 95%, if
not 100% of the functions studied by physics, engeneering, and even mathematics
students, are covered by symbol 2F1.

The above does not mean that other functions pFq should be ignored. The most
simple generalization of Gauss function

w(z) = 3F2(a′, b′, c′; d′, e′; z) =
+∞∑
ν=0

(a′)ν(b′)ν(c′)ν

(d′)ν(e′)ν

zν

ν!
(45)

was investigated by T. Clausen in [Cls] (1828) (his portrait is presented in Wikipedia:
http://en.wikipedia.org/wiki/Thomas Clausen (mathematician)). Clausen function
satisfies a differential equation of the third order:

M [w] := z2(1 − z)w′′′ + [(1 + d′ + e)z − (3 + a′ + b′ + c′)z2]w′′(46)

+[d′e′ − (1 + a′ + b′ + c′ + a′b′ + a′c′ + b′c′)z]w′ − a′b′c′w = 0.

This formula appears in [Gng 99], p. 113, and is slightly misprinted in [Kzr 88]. Letter
c is prone to errors isnce it often appears as the lower parameter in 2F 1 and as the
upper aparameter in 3F 2. We are interested in the case

a′ = 2α, b′ = 2β, c′ = α+ β, d′ = 2(α+ β), e′ = α+ β +
1
2

(see below). Then (46) takes the form

M [w] := z2(1 − z)w′′′ +
[(

3α+ 3β +
3
2

)
z − 3(1 + α+ β)z2

]
w′′

+
[
2(α+ β)

(
α+ β +

1
2

)
− (1 + 3(α+ β) + 4αβ + 2(α+ β)22a′b′

)
z

]
w′(47)

−4αβ(α+ β)w = 0.
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2.2. Generalized hypergeometric equation

Generalized function w(z) = AFB(a; b; z) (Barnes notation) satisfies the generalized
hypergeometric equation (abbreviation: g.h.e.):

θ(θ + b1 − 1) . . . (θ + bB − 1)w = z(θ + a1 . . . (θ + aA)w(48)

where θ := z(d/dz) is the Aronhold differential operator; see [Rnv 60], p. 75. The
Aronhold operator is a cornerstone of the classical theory of algebraic invariants.
We recall a proof offered in [Rnv 60]. Note that operators of the form θ+ c commute
with each other. From θzν = νzν it follows that

(θ + bj − 1)zν = (ν + bj − 1)zν and (θ + ai)zν = (ν + a)zν .

Applying the operator on the left-hand side of (48) to every term in the development
of w results in⎧⎨

⎩θ
q∏

j=1

(θ + bj − 1)

⎫⎬
⎭w =

∞∑
ν=0

1
ν!

∏p
i=1(ai)ν∏q
j=1(bj)ν

⎧⎨
⎩θ

q∏
j=1

(θ + bj − 1)

⎫⎬
⎭ zν(49)

=
∞∑

ν=1

1
ν!

∏p
i=1(ai)ν∏q
j=1(bj)ν

⎛
⎝ν q∏

j=1

(ν + bj − 1)

⎞
⎠ zν

=
∞∑

ν=1

1
(ν − 1)!

p∏
i=1

(ai)ν

⎛
⎝ q∏

j=1

(ν + bj − 1)∏q
j=1(bj)ν

⎞
⎠ zν

=
∞∑

ν=1

∏p
i=1(ai)ν∏q
j=1(bj)ν

zν

(ν − 1)!
.

The right-hand side of (48) is calculated analogously:

z

{
p∏

i=1

(θ + ai)

}
w= z

∞∑
ν=0

1
ν!

∏p
i=1(ai)ν∏q
j=1(bj)ν

{
p∏

i=1

(θ + ai)

}
zν(50)

= z

∞∑
ν=0

1
ν!

∏p
i=1(ai)ν∏q
j=1(bj)ν

(
p∏

i=1

(ν + ai)

)
zν

= z

∞∑
ν=0

1
ν!

∏p
i=1(ai)ν(ν + ai)∏q

j=1(bj)ν
zν

=
∞∑

ν=0

1
ν!

∏p
i=1(ai)ν+1∏q

j=1(bj)ν
zν+1

=
∞∑

ν=1

∏p
i=1(ai)ν∏q

j=1(bj)ν−1

zν

(ν − 1)!
.

Expressions obtained in (49) and (50) are equal as claimed. Simple examples of (48)
are discussed in next two sections.
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2.3. Gauss differential equation

Consider Gauss hypergeometric function 2F1(a, b; c; z). We rewrite (48) as L[w] = 0
with

L :=
1
z
θ(θ + c− 1) − (θ + a)(θ + b).(51)

In view of

θ = z
d

dz
, θ2 = z2 d

2

dz2
+ z

d

dz
,(52)

one finds

1
2
θ(θ + c− 1) = z

d2

dz2
+

d

dz
+ (c− 1)

d

dz
= z

d2

dz2
+ c

d

dz
,(53)

(θ + a)(θ + b) = θ2 + (a+ b)θ + ab = z2 d
2

dz2
+ z(a+ b+ 1)

d

dz
+ ab.(54)

By substracting (54) from (53) we obtain an explicit expression for the operator L:

L[w] = z(1 − z)w′′ + [c− (a+ b+ 1)z]w′ − ab(55)

which agrees with (44).

2.4. Clausen differential equation

In this section we restrict our attention to the Clausen function 3F2(a, b, c; d, e; z).
We write (48) as M [w] = 0, where

M =
1
z
θ(θ + d− 1)(θ + e− 1) − (θ + a)(θ + b)(θ + c).(56)

Using Viéte formulae as well as the identities

θ = z
d

dz
, θ2 = z

(
z
d2

dz2
+

d

dz

)
, θ3 = z

(
z2 d

3

dz3
+ 3z

d2

dz2
+

d

dz

)
,(57)

one rewrites the first product in (56):

1
z
θ3 +

1
z

(d+ e− 2)θ2 +
1
z

(de− d− e+ 1)θ(58)

=
(
z2 d

3

dz3
+ 3z

d2

dz2
+

d

dz

)
+ (d+ e− 2)

(
z
d2

dz2
+

d

dz

)
+ (de− d− e+ 1)

d

dz

= z2 d
3

dz3
+ (d+ e+ 1)z

d2

dz2
+ de

d

dz
.
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Analogously the second product in (56) yields

(θ + a)(θ + b)(θ + c) = θ3 + (a+ b+ c)θ2 + (ab+ ac+ bc)θ + abc

= z

(
z2 d

3

dz3
+ 3z

d2

dz2
+

d

dz

)
+ (a+ b+ c)z

(
z
d2

dz2
+

d

dz

)
(59)

+(ab+ ac+ bc)z
d

dz
+ abc

= z3 d
3

dz3
+ (3 + a+ b+ c)z2 d

2

dz2

+[1 + a+ b+ c+ ab+ ac+ bc]z
d

dz
+ abc.

We get (56) by considering the difference between (58) and (59). Indeed

M = z2(1 − z)
d3

dz3
+ [z(d+ e+ 1) − z2(3 + a+ b+ c)]

d2

dz2
(60)

+[de− z(1 + a+ b+ c+ ab+ ac+ bc)]
d

dz
− abc.

2.5. Derivative τ ′k of de Branges’ function is represented as g.h.f.

As explained in the previous chapter, we are discussing formulae pertaining to

|an+1| ≤ n+ 1, n = 1, 2, . . . .(61)

De Branges functions related to an+1 are defined by

τk(t) = k

n−k∑
ν=0

(−1)ν (2k + ν + 1)ν(2k + 2ν + 2)n−k−ν

ν!(k + ν)(n− k − ν)!
e−t(k+ν),(62)

k = 1, 2, . . . , n,

and initial conditions in de Branges’ differential system are written as

τk(0) = n+ 1 − k, k = 1, 2, . . . n.(63)

From (62) by direct differentiation follows

τ ′k(t) = −ke−kt
n−k∑
ν=0

(−1)ν (2k + ν + 1)ν(2k + 2ν + 2)n−k−ν

ν!(n− k − ν)!
e−νt.(64)

The relevance of g.h.f. to de Branges’ theorem becomes evident after representing
the derivative (62) as the 3F2 series. We follow an elegant reasoning by Henrici
([Hnr 68a], p. 605, vol. dedicated to S. Bergman). For reader’s convenience some sec-
ondary details are offered.

Note the following properties of Pochhammer’s symbol:

(2a)2j = 22j(a)j(a+ 1/2)j,(65)
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n∑
ν=0

(a)ν

ν!
=

(a+ 1)n

n!
,(66)

(a)p(a+ p)r = (a)p+r.(67)

Formula (66) is easily proved by induction with respect to n. By

1
(n− k − ν)!

= (−1)ν (−n+ k)ν

(n− k)!
(68)

and two cases of (67), we get

(2k + 1)ν(2k + ν + 1)ν = (2k + 1)2ν ,

(2k + 2)2ν(2k + 2ν + 2)n−k−ν = (2k + 2)n−k+ν ,

(69)

and may rewrite (64) as

τ ′k(t) =
−k

(n− k)!
e−kt

n−k∑
ν=0

(−n+ k)ν(2k + 1)2ν(2k + 2)n−k−ν

(2k + 1)ν(2k + 2)2ν

e−νt

ν!
.(70)

Now, by (65) and (67),

(2k + 1)2ν = 22ν

(
k +

1
2

)
ν

(k + 1)ν , (2k + 2)2ν = 22ν(k + 1)ν

(
k +

3
2
ν

)
,(71)

(2k + 2)n−k+ν = (2k + 2)n−k(n+ k + 2)ν ,(72)

and from (70), after cancelling 22ν(k + 1)ν , follows

−τ ′k(t) =
k

(n− k)!
e−kt

n−k∑
ν=0

(−n+ k)ν

(
k + 1

2

)
ν

(2k + 2)n−k(n+ k + 2)ν

(2k + 1)ν

(
k + 3

2

)
ν

e−νt

ν!
(73)

= k
(2k + 2)n−k

(n− k)!
e−kt

n−k∑
ν=0

(−n+ k)ν

(
k + 1

2

)
ν

(n+ k + 2)ν

(2k + 1)ν

(
k + 3

2

)
ν

e−νt

ν!

= k
(2k + 2)n−k

(n− k)!
e−kt

3F2

(−n+ k, n+ k + 2, k + 1
2

2k + 1, k + 3
2

∣∣∣∣x
)
, x = e−t.

Therefore, with the abbreviation m := n− k ∈ 0, 1, . . . , n:

−τ ′k(t) = k
(2k + 2)m

m!
e−kt

3F2

( −m,m+ 2k + 2, k + 1
2

2k + 1, k + 3
2

∣∣∣∣x
)
.(74)

In particular, for t = 0 we have x = 1, and hence

−τ ′k(t) = k
(2k + 2)m

m! 3F2

( −m,m+ 2k + 2, k + 1
2

k + 3
2 , 2k + 1

∣∣∣∣1
)
.(75)
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2.6. Clausen identity as a corollary from Cayley-Orr theorem

Functions 2F1 and 3F2 (with special choice of parameters) are related by a remark-
able identity discovered by T. Clausen in 1828:{

2F1

(
α, β

α+ β + 1
2

∣∣∣∣z
)}2

= 3F2

(
2α, 2β, α+ β

2α+ 2β, α+ β + 1
2

∣∣∣∣z
)
.(76)

This identity was used in Askey and Gasper [A,G 76]. Let us recall a short proof of
(76). In 1858 (thirty years after Clausen’s paper) A. Cayley (his portrait is presented
in Wikipedia: http://en.wikipedia.org/wiki/Artur Cayley) stated the following the-
orem: If

(1 − z)α+β−γ
2F1(2α, 2β; 2γ; z) =

∞∑
ν=0

Aνz
ν(77)

then

2F1

(
α, β; γ +

1
2

; z
)
· 2F1

(
γ − α, γ − b; γ +

1
2

; z
)

=
∞∑

ν=0

(γ)ν(
γ + 1

2

)
ν

Aνz
ν .(78)

One may say jokingly that: Cayley’s theorem shows how to multiply Taylor coeffi-
cients Aν in (77) by the ratio (γ)ν/(γ + 1

2 )ν .
In case γ := α + β the left-hand side of (78) becomes much simple (cf. [Bly],

p. 86. The present author thanks Ms. K. Posacka for explicit calculations). Since, by
definition of the Gauss hypergeometric function:

2F1

(
2α, 2β

2α+ 2β

∣∣∣∣z
)

:=
∞∑

ν=0

(2α)ν(2β)ν

(2α+ 2β)ν

zν

ν!
(79)

we have (77) with Aν := [(2α)ν(2β)ν ]/[92α+2β)νν!]. Hence, by the Cayley theorem,
we have (78). In view of γ + α + β the left-hand sides of (76) and (78) are equal.
The right-hand sides of (76) and (78) are also equal:

3F2

(
2α, 2β, α+ β; z

2α+ 2β, α+ β + 1
2

)
=

∞∑
ν=0

(α+ β)ν

(α + β + 1
2ν

(2α)ν(2β)ν

(2α+ 2β)ν

zν

ν!
(80)

=
∞∑

ν=0

(α+ β)ν

(α + β + 1
2ν

Aν .

Hence (76) follows from (78), i.e. one gets the Clausen identity. �

The bad news is that Cayley’s results was originally stated without proof. For
an algebraic proof of the Cayley’s result the reader is referred to [Bly], the basic
monograph on generalized hypergeometric functions.

2.7. A proof of Clausen identity using g.h.e

The idea of another proof comes from differential equations. Clausen was interested
in situations when a function satisfying an equation of second order determines a so-
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lution to an equation of third order. For this reason he was manipulating differential
expressions. His ideas are reflected in [Kzr 88], [Gng 99]. In the beginning we shall
follow these authors. But there is a difference. We plan to check the identity (76)
while ignoring its background. More systematic approach to the Clausen identity
can be found in [Hnr 86b]. This will make our task much easier.

Consider the differential operator M defined by (47). After reordering

M [w] := z2(1 − z)w′′′ +
[(

3α+ 3β +
3
2

)
z − 3(1 + α+ β)z2

]
w′′

+
[
2(α+ β)

(
α+ β +

1
2

)
− (1 + 3(α+ β) + 4αβ + 2(α+ β)2

)
z

]
w′(81)

−4αβ(α+ β)w.

Formula (81) becomes even simpler with abbreviations

s1 := α+ β, s2 = αβ.(82)

Namely

M [w] = z2(1 − z)w′′′ +
[(

3s1 +
3
2

)
z − (3s1 + 3)z2

]
w′′(83)

+
[
s1(2s1 + 1) − (1 + 3s1 + 4s2 + 2s21

)
z
]
w′ − 4s1s2w.

In order to derive M [w2] note that

(w2)′ = 2ww′, (w2)′′ = 2(w′)2 + 2ww′′, (w2)′′′ = 6w′w′′ + 2ww′′′,(84)

and, as a consequence

M [w2] = z2(1 − z)[6w′w′′ + 2ww′′′](85)

+[(6s1 + 3)z − (6s1 + 6)z2] [(w′)2 + ww′′]

+[s1(2s1 + 1) − (1 + 3s1 + 4s2 + 2s21)z]ww′ − 4s1s2w2.

Assume now that L stands for differential operator (44) with a := α, b := β and
c := γ = α+ β + 1

2 . With abbreviations (82):

L[w] := z(1 − z)w′′ +
[
s1 +

1
2
− (s1 + 1)z

]
w′ − s2w(86)

and, as a consequence,

zL[w] = z2(1 − z)w′′ +
[(
s1 +

1
2

)
z − (s1 + 1)z2

]
w′ − s2zw,(87)

(zL[w])′ = z2(1 − z)w′′′ +
[(
s1 +

1
2

)
z − (s1 + 1)z2

]
w′′ − s2zw

′(88)

+(2z − 3z2)w′′ +
[
s1 +

1
2
− (2s1 + 2)z

]
w′ − s2w.
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Consider now auxiliary operators

N1[w] := [(4s1 − 2)w + 6zw′] · L[w](89)

= [(4s1 − 2)w + 6zw′] ·
{
z(1 − z)w′′ +

[(
s1 +

1
2

)
− (s1 + 1)z

]
w′ − s2w

}
,

N2[w] := 2w(zL[w])′(90)

= 2z2(1 − z)ww′′ + [2s1 + 1 − (2s1 + 2)z]ww′ − 2s2w2.

Note that L[w] = 0 implies both N1[w] = 0 and N2[w] = 0. We shall soon prove in
this paper that

M [w2] = N1[w] +N2[w].(91)

Hence L[w] = 0 implies M [w2] = 0. It follows that both sides of Clausen formula
(76) solve the same singular differential equation (47). We shall see later that these
solutions are equal.

Now we give the promised proof of (91). The idea is to treat both sides of (91)
as polynomials in w,w′, w′′, w′′′ and verify that corresponding coefficients are equal.
Indeed, from (87), (89) and (90) follows that on both sides of (91) we have:

1). product f ′f ′′ appears with
6z2(1 − z) = (6z)z(1 − z);

2). product ff ′′′ appears with
2z2(1 − z) = 0 + 2z2(1 − z);

3). square (f ′)2 appears with
(6s1 + 3)z − (6s1 + 6)z2 = 6z

[(
s1 + 1

2

)− (s1 + 1)z
]
;

4). product ff ′′ appears with
(6s1 + 3)z − (6s1 + 6)z2 = (4s1 − 2)(z − z2) + (2s1 + 5)z − (8 + 2s1)z2;

5). product ff ′ appears with
4s1 + 2s1 − (2 + 6s1 + 4s21 + 8s2)z = (2s1 − 1) [(2s1 + 1 − (2 + 2s1)z] − 6s2z
+2s1 + 1 − (4s1 + 2s2 + 4)z;

6). square f2 appears with
−4s1s2 = −s2(4s1 − 2) − 2s2.

Finally we shall show that both solutions u, ν to the Clausen equation (47):

u :=
[
2F1

(
α, β, α+ β +

1
2

; z
)]2

ν := 3F2

(
2α, 2β, α+ β; 2α+ 2β, α+ β +

1
2

; z
)(92)

are identical.
Assume provisionally that in the Clausen equation (47) no integer appears as

lower parameter or as a difference between two lower parameters. Then according the
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theory of singular differential equations, all functions solving (46) and holomorphic
in a neighbourhood of z = 0 form a one dimensional subspace. (For more details
see the next section.) Our provisional assumption is removed by taking into account
that 2F1, 3F2 are holomorphic in parameters (see [Rnv 60], Theorem 19 on p. 56).
It follows that u, ν in (92) belong to the same one dimensional subspace. Since
u(0) = 1 = ν(0) this implies u ≡ ν and the Clausen identity (76) is proved.

2.8. Fuchsian singularity and indicial equation

Consider a linear homogeneous differential equation of order n with meromorphic
coefficients; see [Inc 26], p. 363. It can be written the form

w(n) + p1(z)w(n−1) + . . .+ pn(z)w = 0.(93)

Assume further that

p1(z) =
P1(z)
z

, p2(z) =
P2(z)
z2

, . . . , pn(z) =
Pn(z)
zn

,(94)

where functions P1, P2, . . . , Pn are holomorphic in a neighbourhood of z = 0. In
such situation one says that (93) has Fuchsian singularity at the origin. (Sometimes
regular singularity is used. We propose to avoid this oxymoron.) Consider the alge-
braic equation in which unknown ρ appears via Pochhammer symbols

(ρ)n + (ρ)n−1P1(0) + . . .+ (ρ)1Pn−1(0) + Pn(0).(95)

It is called the indicial equation for (93). Its complex roots ρ1, ρ2, . . . , ρn are essential
to describe the solution space for sigular equation (93). Assume that for k, j ∈
{1, . . . , n}:

(k 	= j) ⇒ (ρk − ρj /∈ Z).(96)

Then (93) has a fundamental system of solutions

zrifi(z), i = 1, . . . , n,(97)

where each fi is holomorphic in a neighbourhood of z = 0 and fi(0) 	= 0; see Forsyth
[Frs 02] vol. IV, p. 95.

Consider now the generalized hypergeometric equation (48), satisfied by AFB

where A = B + 1. As usual, denote lower parameters by b1, b2, . . . bB. According to
[Slt 66] formula 2.1.2.6, p. 43, therelevant indicial equation is

ρ(ρ+ b1 − 1)(ρ+ b2 − 1) . . . (ρ+ bB − 1) = 0(98)

and the zeros of (98) are

0, 1 − b1, 1 − b2, . . . , 1 − bB.(99)

Assumption (96) is satisfied iff no integer appears among the lower parameters or
among differences of lower parameters. In such case (48) has a fundamental solution
system of the form (97). One-dimensional solution subspace associated with the
exponent ρ = 0 contains all solutions which are holomorphic in a neighbourhood of
z = 0.
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2.9. An exceptional situation

A simple second order equation

w′′ − 2
z
w′ +

2
z2

= 0(100)

has Fuchsian singularity at z = 0. The relevant indicial equation

ρ(ρ− 1) − 2ρ+ 2 = 0(101)

has zeros ρ = 1 and ρ = 2. Their difference is an integer; hence the reasoning
described in the previous section does not apply. It is easy to check that solutions

w1(z) := z, w2(z) = z2(102)

form a fundamental system. In this example solutions which are holomorphic in a
neighbourhood of z = 0 form a multidimensional space.

(13) Remark. In the next chapter Clausen identity and Gegenbauer formula will be
used to deduce the inequality τ ′k ≤ 0. By of (75) it suffices to show that

F (x) := 3F2

( −m+ k,m+ 2k + 2, k + 1
2

2k + 1, k + 3
2

∣∣∣∣x
)

≥ 0, x ∈ (0, 1)(103)

for k = 1, . . . , n and m = n− k.
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TWIERDZENIE DE BRANGES’A A UOGÓLNIONE FUNKCJE
HIPERGEOMETRYCZNE II
FUNKCJONA�L DE BRANGES’A I RÓWNANIE HIPERGEOMETRYCZNE

S t r e s z c z e n i e
Oryginalny artyku�l [BRN 84] zawiera kluczowe wyjaśnienie: zagadnienie polega na prze-

kazywaniu informacji za pomoca̧ równania różniczkowego. W tym celu informacja powinna
być zakodowana w dogodnej postaci, a nastȩpnie przekazana z jednego końca przedzia�lu do
drugiego.
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Równanie różniczkowe Löwnera dotyczy propagacji wspó�lczynników logarytnicznych.
Dostatecznie szybko spojrzenie de Branges’a uzyska�lo szersza̧ akceptacjȩ. Carl FitzGerald
i Christian Pommerenke [F,P 85] do�lożyli swoje w�lasne ujȩcie. Jeszcze inne przedstawienie
znajdujemy w artykule [Krv 85] (zob. szczególnie s. 511–513. Artyku�l ten uzyska�l nagrodȩ
Chauveneta za opracowanie matematyczne). W obecnym rozdziale staramy siȩ zaprezen-
tować ogólny plan dowodu de Branges’a.

Przychodzi czas na przedyskutowanie roli funkcji hipergeometrycznej Gaussa 2F 1 i jej
uogólnień. Najprostsze z tych uogólnień to funkcja Clausena 3F 2, która spe�lnia zasad-
nicza̧ rolȩ w końcowej czȩści dowodu de Branges’a. Przedstawiamy dwa dowody tożsamości
Clausena: jeden bardzo krótki, a drugi znacznie d�luższy, lecz chyba bardziej bezpośredni.
Po takim przygotowaniu wyprowadzamy w nastȩpnym rozdziale nierówność r ≤ 0, ska̧d
już �latwo wynika warunek (2).
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DE BRANGES THEOREM AND GENERALIZED
HYPERGEOMETRIC FUNCTIONS III
BASIC PROPERTIES OF DE BRANGES FUNCTIONS

Summary
A look at (II.37) shows that the Clausen identity is applicable to 3F2 when one of the

upper parameters is the arithmetic mean of remaining upper parameters and moreover,
when multiplied by 2 or added to 1/2, yields lower parameters. If Clausen were directly
identity applicable to the function

F (x) := 3F2

( −m,m+ 2k + 2.k + 1
2

2k + 1, k + 3
2

∣∣∣∣x
)
,(1)

the inequality F (x) ≥ 0 would be obvious. Unfortunately this is not the case. Nevertheless
one can prove F (x) ≥ 0 by representing F as a finite sum of terms, to which the Clausen
identity applies. Following Kazarinoff [Kzr 88] one reduces the problem to hypergeometric
functions 2F1 using the Rainville operator and Gegenbauer formula.

In the final chapter we conclude de Branges proof by verifying the condition (II.4).
Required initial conditions τk(0) = n − k + 1 will be derived from a classical result of
G. N. Watson.

0. Initial remark

Formulae numbers (1) etc. and statement numbers (1) etc. referring to part I, II
od the paper are quoted as (I.1), (II.1) etc. and (I.1), (II.1) etc., respectively.
Conditions (1)–(4) on p. 68 in Part II are quoted as (II.1)–(II.4). Acronyms below
[Rnv 60] etc. usually consist of first three consonants of author’s name, followed by
the year of publication. List of references is constructed alphabetically according
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to latters of the acronym. When no ambiguity results acronyms of this list appear
without the year of publication.

1. De Branges functions have negative derivative

1.1. Rainville inegral representation

We begin with

(1) Rainville Theorem. If p ≤ q+1, if Re b1 > Re a1 > 0, if none of b1, b2, . . . , bq
is zero or a negative integer, and if |z| < 1 then

pFq

(
a1, a2, . . . , ap

b1, b2, . . . , bq

∣∣∣∣z
)

(2)

=
Γ(b1)

Γ(a1)Γ(b1 − a1)

1∫
0

ta1−1(1 − t)b1−a1−1
p−1Fq−1

(
a2, . . . , ap

b2, . . . , bq

∣∣∣∣zt
)
dt.

For a proof see [Rnv 60], p. 85.
Denote by R = R(a1; b1) the Rainville integral operator appearing in (2). It

is a generalization of the Pochhammer integral representation; cf. [Slt 66], formula
1.6.6. For connection with fractional integration and the beta integral operator see
Bertram Ross [Rss 75]. In acting on hypergeometric functions p−1Fq−1 it has an
effect of adjoining two parameters: upper a1 and lower b1. Note that it is easy to
represent F = 3F2 in (1) as an image of a suitable G + 2F1 under the Rainville
operator. Namely,

Rk+(1/2);2k+1

[
2F1

( −m,m+ 2k + 2
k + 3

2

∣∣∣∣x
)]

= 3F2

( −m,m+ 2k + 2, k + 1
2

k + 3
2 , 2k + 1

∣∣∣∣x
)
.

(3)

1.2. Gegenbauer formula

This is second (very important) ingredient in the proof of F (x) ≥ 0. Gegenbauer
polynomials Cλ

m(x), m = 0, 1, . . . (of order λ > −1/2) are defined by the relation

(1 − 2xu+ u2)−λ =
∞∑

m=0

Cλ
m(x)um.(4)

Direct calculation yields

(1 − 2xu+ u2)−λ =
∞∑

m=0

(λ)m

m!
(2xu− u2)m =

∞∑
m=0

m∑
j=0

(λ)m

j!(m− 2j)!
(2x)m−2jum+j

=
∞∑

m=0

um

[m/2]∑
j=0

(−1)j (λ)m−j

m!(m− j)!
(2x)m−jum+j .(5)
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In the latter transformation we have used a summation trick ([Rnv 60], p. 58):

∞∑
m=0

m∑
j=0

C(m, j) =
∞∑

m=0

[m/2]∑
j=0

C(j,m− j).(6)

By definition (4) the development (5) yields an explicit formula

Cλ
m(x) =

[m/2]∑
j=0

(−1)j(λ)m−j

j!(m− 2j)!
(2x)m−2j(7)

which in turn leads to the hypergeometric representation

Cλ
m(x) =

Γ(m+ 2λ)
Γ(m+ 1)Γ(2λ)2F1

( −m,m+ 2λ
λ+ 1

2

∣∣∣∣1 − x

2

)
;(8)

see [B,E 75] or [Rnv 60], p. 279, formula (15). Note that the polynomial Cλ
j has the

degree j. This implies that polynomials Cλ
0 , C

λ
1 , . . . , C

λ
m form a basis in the space of

polynomials with degrees not exceeding m.

(5.2) Remark. Determination of coordinates with respect to the abovementioned
basis may become easier with information that the system Cλ

j , j = 0, 1, . . . ,m, is
orthogonal over the interval [−1, 1] with respect to the elementary weight

g(x) := (1 − x2)λ− 1
2 .(9)

An important example is

(2x)m

m!
=

[m/2]∑
j=0

(λ+m− 2j)
j!(λ)m+1−j

Cλ
m−2j(x);(10)

see [Rnv 60], p. 283. It leads to the following fundamental identity:

(5.3) Gegenbauer formula. For ν ∈ (λ,+∞):

Cν
m(x) =

[m/2]∑
j=0

cjC
λ
m−2j(x),(11)

where

cj =
(m− 2j + λ)Γ(λ)(ν − λ)jΓ(m+ ν − j)

j!Γ(ν)Γ(m + λ− j + 1)
.(12)

With representation (8) one rewrites the Gegenbauer formula (11) as hypergeo-
metric identity. Namely, for every λ ∈ (0, ν):

2F1

( −m,m+ 2ν
ν + 1

2

∣∣∣∣1 − x

2

)
=

[m/2]∑
j=0

ρj · 2F1

(
2j −m,m− 2j + 2λ

λ+ 1
2

∣∣∣∣1 − x

2

)
(13)

with positive coefficients

ρj :=
m!(2λ)m−2

(m− 2j)!(2ν)m
cj > 0, j = 1, . . . , [m/2].(14)
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Proof. Here we expand the reasoring given in [Kzr 88]; for a proof of Gegenbauer’s
formula see also [A,G 86]. In order to determine coefficients cj = cj(m, ν, λ) in (11)
one substitutes (10) into (7), where in the latter ν is written instead of λ. This yields

cj =
Γ(λ)
Γ(ν)

(λ +m− 2j)
j!

j∑
p=0

(−1)p

(
j
p

)
Γ(ν +m− p)

Γ(λ+m− p+ j + 1)
.(15)

The sum in (15) is rewritten as follows:

j∑
p=0

(−1)p

(
j
p

)
Γ(ν +m− p)

Γ(λ+m− p+ j + 1)
(16)

=
Γ(ν +m)

Γ(λ+m− j + 1)

∞∑
p=0

(−1)p
(j −m− λ)p

p!(1 −m− ν)p

=
Γ(ν +m)

Γ(λ+m− j + 1)2F1

⎛
⎝−j, j −m− λ

1 −m− ν

∣∣∣∣1
⎞
⎠

=
Γ(ν +m)

Γ(λ+m− j + 1)
(1 + λ− j − ν)j

(1 − ν −m)j
,

where (in the last transformation) Chu-Vandermonde theorem was used; see [Slt 66],
p. 28 or [Ths 92], p. 39.

Finally (15) and (16) yield the desired representation (11) with

Cj(m, ν, λ) =
Γ(λ)
Γ(ν)

(m− 2j + λ)(ν − λ)j

j!
Γ(m+ ν − j)

Γ(m+ λ− j + 1)
.(17)

Equivalently; see [Hua 63]:

cj(m, ν, λ) =
(m− 2j + λ)

j!
Γ(λ)
Γ(ν)

Γ(j + ν − λ)
Γ(ν − λ)

Γ(m+ ν − j)
Γ(m+ λ− j + 1)

.(18)

1.3. De Branges functions have negative derivatives

In view of (II.75) the desired inquality τ ′k ≤ 0 is reduced to

F (x) := 3F2

( −m+ k,m+ 2k + 2, k + 1
2

2k + 1, k + 3
2

∣∣∣∣x
)

≥ 0, x ∈ (0, 1).(19)

The latter follows by applying a suitable Rainville operator to both sides of (13)
provided independent (and intelligent) choices of ν and λ are made.

Indeed, let us choose ν in such a way that parameters of 2F1 on the left-hand
side of (13) agree with initial parameters of F = 3F2 in (19). This can be done
with ν := k + 1. Consider now the Rainville operator which takes 2F1 in (13) onto
F = 3F2 in (19). It is R(k+ 1

2 ; 2k+1). Applying this Rainville operator to both sides
of (13) (with (1 − x)/2 replaced by x) yields
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F (x) =
[m/2]∑
j=0

ρj · 3F2

(
2j −m,m− 2j + 2λ, k + 1

2

λ+ 1
2 , 2k + 1

∣∣∣∣x
)
, x ∈ (0, 1).(20)

Obviously F does not depend on λ. But an intelligent choice of λ makes the Clausen
identity applicable to all 3F2 on the right-hand side of (20). Indeed, it is sufficient
to take λ := k + 1

2 . Since the right-hand side of (20) is now positive we can see that
F ≥ 0. �

With the above we have cleared the condition (II.2) on. p. 68. The remaining
condition (II.4) will be delt with in the next (last) chapter.

2. De Branges functions satisfy initial conditions

2.1. Watson summation lemma

This result concerns terminating 3F2 series. G. N. Watson published it under the title
A note on generalized hypergeometric series in the Proc. London Math. Soc. (2) 23
(1925) p. xiii (his portrait is presented in Biogr. Mems Fell. Royal Soc. (London)
1966, no. 12, 520–530 in the obituary article by E. T. Whittaker; see doi:10.1098/
rsbm.1066.0026). He originally stated it as follows. For n even

3F2

(−n, λ, 2λ+ 2μ+ n− 1
2λ, λ+ μ

∣∣∣∣1
)

(21)

=
n!Γ

(
λ+ 1

2n
)

Γ
(
μ+ 1

2n
)

Γ(2λ)Γ(λ + μ)(
1
2n
)
!Γ
(
λ+ μ+ 1

2n
)

Γ(2λ+ n)Γ(λ)Γ(μ)
,

while for n odd the left-hand side of (21) equals 0. For details see [Wts 25].
In order to conform (21) to our notation (m instead of n, c instead of λ, and b

instead of c+ μ− 2−1) we restate it as follows.

(4) Watson summation lemma. Assume m ∈ {0, 1, 2, . . .}. For even m the
Clausen function satisfies

3F2

( −m, 2b+m, c

b+ 1
2 , 2c

∣∣∣∣1
)

=

(
1
2

)
m/2

(
b− c+ 1

2

)
m/2(

b+ 1
2

)
m/2

(
c+ 1

2

)
m/2

,(22)

while for m odd the left-hand side of (22) is zero.

(5) Remark. This formulation agrees with [Hnr 86a], p. 609; see also [Bly 35], p. 16,
and [Whp 29], p. 118. We shall deduce Lemma (4) from a more general Watson
theorem; see the next section.

Now, with m := n− k, b = k + 1, c = k + 1
2 , we apply Lemma (4) to 3F2 in the

formula (75). This yields τ ′k(0) = 0 for n − k odd. For n − k even, say n − k = 2s,
we have
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3F2

( −m,m+ 2k + 2, k + 1
2

k + 3
2 , 2k + 1

)
=

(
1
2

)
s

(1)s(
k + 3

2

)
s

(k + 1)s

(23)

and by

(2k + 2)2s

(2s)!
=

22s(k + 1)s

(
k + 3

2

)
s

22s
(

1
2

)
s

(1)s

(24)

the final result is

−τ
′
k(0)
k

=
{

0 if n− k is odd,
1 if n− k is even.

(25)

We know that de Branges’ functions satisfy de Branges equations. Hence, at t = 0,

τk(0) − τk+1(0) = −
(
τ ′k(0)
k

+
τ ′k+1(0)
k + 1

)
, k = 1, . . . , n.(26)

In view of (24) the right-hand side is always 1. Summing up the latter n + 1 − k

equations (25) yields the desired condition (II.4)

τk(0) =
n∑

ν=k

τν(0) − τν+1(0) =
n∑

ν=k

1 = n+ 1 − k.(27)

This ends our detailed description of de Branges proof. �

(6) Remark. With (22) the condition (II.4) is cleared. De Branges’ theorem has been
verified again, twenty five years after the original discovery.

(7) Remark. It would be interesting to derive the Watson formula (22) from a more
general summation theorem. Yet, the role of convergence conditions in the non-
terminating case needs further explanations. So far for proof of Watson’s formula
we have to refer to a very important and elegant idea in Watson’s original paper
[Wts 25].

2.2. Watson summation theorem

There are many proofs of Watson’s lemma. Perhaps one should make the distinction
between “geometric” and “algebraic” approach. Original proof in [Wts 25] is geo-
metric in the sense that it appeals to orthogonality. On the other hand the proof in
[Bly 35], p. 16, is based on formal operations on series. We verify Watson’s lemma
immediately, replacing b by 2b− a and then a by −m in the following, more general
result

(8) Watson summation theorem. We have

3F2

(
a, b, c

1
2 (a+ b+ 1), 2c

∣∣∣∣1
)

= Γ
(

1
2 , 2c,

1
2a+ 1

2b+ 1
2 ,

1
2 − 1

2a− 1
2b+ c

1
2 + 1

2a,
1
2 + 1

2b,
1
2 − 1

2a+ c,− 1
2b+ c

)
.(28)
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Quite recently a new proof of (28) has been found by Arjun K. Rathie and
R. B. Paris [R,P]. We shall describe it in the next section. It uses only two sum-
mation theorems for 2F1 and an auxiliary lemma. The rest of the present section is
devoted to preliminaries.

(9) First summation theorem of Gauss. Hypergeometric function 2F1 satisfies

2F1

(
a, b

c

∣∣∣∣1
)

= Γ
(
c, c− a− b

c− a, c− b

)
, Re(c− a− b) > 0.(29)

For the proof see Lucy Joan Slater [Slt 66], p. 29.

(10) Second summation theorem of Gauss. Hypergeometric function 2F1 sat-
isfies

2F1

(
a, b; 1

2
a
2 + b

2 + 1
2

)
= Γ

(
1
2 ,

a
2 + b

2 + 1
2

a
2 + 1

2 ,
b
2 + 1

2

)
.(30)

For the proof see Bateman, Erdélyi, vol. I, formula 50. Note that in [Slt 66] the
formula 1.7.1.9 on p. 32 is incompatible with the result quoted in [B,E 77].

(11) Auxiliary lemma (Rathie and Paris). Assume 2c �= −1,−2, . . . . For every
k ∈ {0, 1, 2, . . .} we have

(c)k

(2c)k
=

[k/2]∑
m=0

2−k−2mk!(
c+ 1

2

)
m
m!(k − 2m)!

,(31)

where [k/2] denotes the integer part of k/2.

Proof. The ratio of Pochhammer symbols on the left-hand side of (31) is rewritten
as Γ expression. The latter is calculated by reversing the first summation theorem
of Gauss. The result is

(c)k

(2c)k
= 2P−k

2F1

( − 1
2k,

1
2 − 1

2k; 1
c+ 1

2

)
= 2−k

[k/2]∑
m=0

(− 1
2k
)
m

(
1
2 − 1

2k
)
m(

c+ 1
2

)
m
m!

.(32)

The needed formula (31) follows in view of an elementary identity(
−1

2
k

)
m

(
1
2
− 1

2
k

)
m

=
2−2mk!

(k − 2m)!
.(33)

We can now present what follows.

2.3. A new proof of Watson’s theorem by Rathie and Paris

Denote by S the left-hand side of (28) written as Clausen series. By (32):
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S =
∞∑

k=0

(a)k(b)k(
a
2 + b

2 + 1
2

)
k

1
k!

(c)k

(2c)k
(34)

=
∞∑

k=0

(a)k(b)k(
a
2 + b

2 + 1
2

)
k
k!

[k/2]∑
m=0

2−k−2mk!(
c+ 1

2

)
m
m!(k − 2m)!

=
∞∑

k=0

[k/2]∑
m=0

(a)k(b)k(
a
2 + b

2 + 1
2

)
k

2−k−2m(
c+ 1

2

)
m
m!(k − 2m)!

.

We now change the order of summation according to the formula (8) on p. 57 in
[Rnv]:

∞∑
k=0

[k/2]∑
m=0

A(m, k) =
∞∑

m=0

∞∑
k=0

A(m, k + 2m).(35)

The result is

S =
∞∑

m=0

∞∑
k=0

(a)k+2m(b)k+2m2−k−4m(
a
2 + b

2 + 1
2

)
k+2m

(
c+ 1

2

)
m

m!k!(36)

=
∞∑

m=0

(a)2m(b)2m2−4m(
a
2 + b

2 + 1
2

)
2m

(
c+ 1

2

)
m

m!
∞∑

k=0

(a+ 2m)k(b+ 2m)k2−k(
a
2 + b

2 + 1
2 + 2m

)
k
k!

.

In the last line the sum over k is rewritten as the 2F1 series. Its value is found with
the second Gauss summation theorem. Namely:

2F1

(
a+ 2m, b+ 2m; 1

2
a
2 + b

2 + 1
2 + 2m

)
= Γ

(
1
2 ,

a
2 + b

2 + 1
2

a
2 + 1

2 ,
b
2 + 1

2

) (
a
2 + b

2 + 1
2

)
2m(

a
2 + 1

2

)
m

(
b
2 + 1

2

)
m

.(37)

When (37) is substituted into (36) we get after a simple computation with Pochham-
mer symbols

F = Γ
(

1
2 ,

a
2 + b

2 + 1
2

a
2 + 1

2 ,
b
2 + 1

2

) ∞∑
m=0

(
1
2a
)
m

(
1
2b
)
m(

c+ 1
2

)
m

,(38)

where, as in (1), F stands for 3F2. Evaluating the sum with the first Gauss summa-
tion theorem we get on the right-hand side of (38) four Γ-s in the numerator and
four Γ-s in the denominator. This is the desired formula (28). �

The last section is devoted to the past.

2.4. Understanding the past

Great mathematical discovery gives an opportunity for deeper understanding of pre-
vious developments. We have mentioned the work of A. Cayley. First published proof
of the product formula (78) was given by W. Orr (1899). Another proof, based on sys-
tematic use of g.h.f., was offered in 1927 by F. W. J. Whipple, an astronomer famous
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for discovering elliptical character of meteorite trajectories. The next impulse came
from G. Hardy (1877–1947) who got interested in results on g.h.f. rediscovered by
S. Ramanujan, a talented mathematician from Madras. Hardy inspired W. N. Bailey,
a lecturer from Manchester, to write a monograph [Bly 35] devoted to known results
on g.h.f. This book quotes the Watson summation lemma.

G. N. Watson, a pupil of F. S. Macaulay at St. Paul School, was matriculated
to Trinity College, Cambridge. His teachers, besides Hardy, were Whittaker (who
soon moved to Edinburgh) and Barnes (bishop of Birmingham). He attended also
some lectures given by Berry, Hobson, Forsyth and conducted correspondence with
Lord Rayleigh. Watson graduated as Senior Wrangler in 1907, meaning that he was
ranked first among those who were awarded First Class degrees. He become Trinity
fellow in 1910. His interest included solvable cases of quintic equation. From 1918 to
1951 Watson was Mason professor of Pure Mathematics at Birmingham. In [Wts 25]
(quoted by Bailey) Watson wrote:

In a recently published paper Proc. Camb. Phil. Soc. 21 (1923), 492–503,
entitled “A chapter from Ramanujan’s Note-Book”, Prof. Hardy has given
a catalogue of all the known cases in which a series of the type 3F2 with
last element unity is expressible in terms of Gamma functions. Inciden-
tally he quoted formula which I had discovered (. . . ) Prof. Hardy pointed
out that it was a special case of a formula discovered by Ramanujan, and
I did not attach any particular importance to it. But since the formula
plays a moderately important part in Mr. Whipple’s paper, it seems worth
while to supplement his paper by giving my own proof of it. This proof
was suggested to me by the proof which I constructed of a formula con-
cerning the square of a Bessel function discovered by Prof. Jolliffe. (See
my Theory of Bessel functions, par. 16.3).

(12) Remark. Macaulay is better known as the author of the The Algebraic Theory
of Modular Systems, Cambridge 1916; see [ME 77], vpl. 3, p. 69.

(13) Remark. In 1995 an unpublished Watson’s lecture on solvable quintics (1918)
has been found in the library of Birmingham University by Bruce L. Berndt (Urbana,
Illinois).

Now let us look at Oxford. J. L. Burchnall has completed with honours his un-
dergraduate education at Christ Church just before the outbreak of the First World
War. After brave service he taught at Army School at Oxford, then took an aca-
demic position at Durham. In the years 1939–1951 Burchnall was Professor of Math-
ematics at Durham. A large part of his mathematical work was done jointly with
T. W. Chaundy. Their research on differential operators brought connections with
algebraic geometry, and the knowledge of differential equations was a guiding light
in their persevered research on special functions.

In 1926 the study of complex differential equations, much in the tradition of En-
glish school (Forsyth and others) was undertaken in places far away from London.
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In a newly founded Egyptian University in Cairo the chair of Mathematics was of-
fered to E. L. Ince, who published there well known monograph Ordinary differential
equations. Recall that Ince was a student of Chrystal and Whittaker.

The influence of English school was also felt beyond the Atlantic. In 1922 Math-
ematics Department of Michigan University was joined in by Ruel Vance Churchill
who worked there until 1966. The selection of materials for his book Fourier Series
and the Boundary Problems was influenced (among others) by results of Carslaw,
Watson and Hobson. He was an advisor to Earl D. Rainville who in 1939 de-
fended Ph. D. dissertation Linear differential invariance under operators related to
the Laplace transformation.

Earl D. Rainville (1907–1966) received his B. A. at the University of Colorado
(1930). In 1941 he began working at Michigan, where he wrote several very readable
textbooks including now classic Special Functions. He advised eight Ph. D. students;
the first of them (1946) was Sister Mary Celine Fasenmyer (see Amer. Math. Monthly
56 (1949), 14). Her work Some generalized hypergeometric polynomials contains an
algorithm for deducing recurrence relations between hypergeometric expressions.
Similar algorithms were used in recent computer experiments related to de Brange’s
theorem.

Afer 1950 a great centre for classical analysis was created at Stanford, Califor-
nia. Among prominent members of the Mathematics Department were Bergman,
Löwner, Pólya, Royden, Schiffer, and Szegö, The name of M. Schiffer (1911–1997)
[F,O,O] is inseparable from the Bieberbach conjecture (his paper with Z. Charzyński
[C,S 60] presents an application of Grunsky inequalities to the proof of |a4| ≤ 4). He
entered the University in Bonn where he studied mathematics under Bieberbach,
Schmidt and Issai Schur. Schiffer’s first paper Finiteness theorems of invariant the-
ory, published in 1934 in Mathematische Zeitschrift, was written under supervision
of I. Schur (Schur’s lectures in Berlin [Sch 68] were prepared for print by H. Grunsky).
Later, motivated by the Bieberbach conjecture, he developed a method now known
as Schiffer’s variation. It got him Ph. D. at the Hebrew University of Jerusalem in
1938. In 1952 Schiffer became professor of mathematics at Stanford University.

(13) Remark. De Branges’ discovery was a part of a larger attempt (de Branges’
response [Brn 94] to the Steele prize). We are very fortunate. Some of us may fol-
low the indicated path. To quote “Apology”: David Hilbert is said to have assigned
the Riemann Hypothesis as a thesis problem to his student Erhard Schmidt. Con-
temporary mathematicians are invited to enhance their efforts toward the Riemann
Hypothesis. De Branges’ “Apology” deserves very careful reading.
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[Gsp] G. Gasper, A short proof of an inequality used by de Branges in his proof of the
Bieberbach, Robertson and Milin conjectures, Complex Variables 7 (1986), 45–50.

[Gsy] H. Grunsky, Koeffizientenbedingungen für schlichte abbilde meromorphe Funktionen,
Math. Z. 45 (1939), 29–61.

[Hll] E. Hille, Analytic Function Theory I, II, Ginn and Co., New York 1962.

[Hnr 86a] P. Henrici, Applied and Computational Complex Analysis, three volumes, Vol. 3
(dedicated to S. Bergman). Wiley, New York 1986.

[Hnr 86b] —, Product theorems for formal hypergeometric series, Preprint 09318 -86 Math-
ematical Sciences Research Institute, Berkeley 1986.

[Hua] L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Clas-
sical Domains, Translations of Math. Monographs 6, AMS, Providence, 1963.

[Inc] E. L. Ince, Ordinary Differential Equations, Dover, New York 1926.
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[K,�L] J. Krzyż and J. �Lawrynowicz, Elementy analizy zespolonej, WNT, Warszawa 1981.

[K,S] W. Koepf and D. Schmersau, On de Branges theorem, Complex Variables 15 (1996),
213–230.

[Krv ] J. Korevaar, Ludwig Bieberbach’s conjecture and its proof by Louis de Branges,
Amer. Math. Monthly 93 (1986), 505–514.

[Kzr] N. Kazarinoff, Special functions and the Bieberbach conjecture, Amer. Math. Monthly
95 (1988), 689–696.
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[Smr] W. Smirnow, Matematyka wyższa, vol. 3, cz. 2, PWN, Warszawa 1965.

[Spn] D. C. Spencer, Some problems in conformal mapping, Bull. Amer. Math. Soc. 53
(1947), 417–439.

[Stn] P. K. Suetin, Classical Orthogonal Polynomials, Nauka, Moskva 1979 (Russian).

[Ths ] W. H. Thomas II, Introduction to real orthogonal polynomials, Thesis, Naval Post-
graduate School, Monterey, CA 1992.

[Whp 25] F. J. W. Whipple, A group of generalized hypergeometric series..., Proc. London
Math. Soc. (2) 23 (1925), 104–114.

[Whp 29] —, On a formula implied in Orr’s theorems concerning the products of hyperge-
ometric series, Journal London Math. Soc. 4 (1929), 48–50

[Wts] G. N. Watson, A note on generalized hypergeometric series, Proc. London Math. Soc.
(2) 23 (1925), xiii–xv.

Department of Mathematical Analysis

Cardinal Stefan Wyszyński University
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TWIERDZENIE DE BRANGES’A
A UOGÓLNIONE FUNKCJE HIPERGEOMETRYCZNE III
PODSTAWOWE W�LASNOŚCI FUNKCJI DE BRANGES’A

S t r e s z c z e n i e
Spojrzenie na relacjȩ (II.37) wskazuje, że tożsamość Clausena stosuje siȩ do 3F2, gdy

jeden z górnych parametrów jest średnia̧ arytmetyczna̧ pozosta�lych górnych parametrów
i – co wiȩcej – po pomnożeniu przez 2 lub dodaniu do 1/2 daje parametry dolne. Gdyby
tożsamość Clausena da�la siȩ bezpośrendio zastosować do funkcji (1), nierówność F (x) ≥ 0
by�laby oczywista. Niestety, sytuacja ta nie zachodzi. Pomimo to, nierówność tȩ można
udowodnić poprzez przedstawienie F jako skończonej sumy wyrazów, do której tożsamość
Clausena da siȩ zastosować. Za Kazarinowem [Kzr 88] sprowadzamy zagdnienie do funkcji
hipergeometrycznych 2F1 używaja̧c operatora Rainville’a i wzoru Gegenbauera.

W ostatnim rozdziale kończymy dowód de Branges’a przez sprawdzenie warunku (II.4).
Potrzebne warunki pocza̧tkowe τk(0) = n− k + 1 sa̧ wyprowadzone z klasycznego wyniku
G. N. Watsona.
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Carathéodory convergence theorem . . . . . 54
Cayley-Orr theorem . . . . . . . . . . . . . . . . . . . . 83
Clausen function 3F2 . . . . . . . . . . . . . . . . . . . 78
Clausen differential equation . . . . . . . . . . . 80
Clausen identity . . . . . . . . . . . . . . . . . . . . . . . . 83
Clausen identity (proof using g.h.e.) . . . . 83
conditions (1)–(4) . . . . . . . . . . . . . . . . . . . . . . 73
conformal automorphism . . . . . . . . . . . . . . . 49
de Branges differential system . . . . . . . . . . 72
de Branges functions τk . . . . . . . . . . . . . . . . 72
de Branges functional . . . . . . . . . . . . . . . . . . 72
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TELEPARALLEL EQUIVALENT OF GENERAL RELATIVITY:
A CRITICAL REVIEW

Summary
After reminder of some facts concerning general relativity (GR) we pass to teleparallel

gravity. We are confining to the special model of the teleparallel gravity, which is popular
recently, called the teleparallel equivalent of general relativity (TEGR). We are finishing
with conclusion and some general remarks.

1. Introduction and standard formulation of GR

As it is known GR is a modern geometrical theory of gravity which simultaneously
gives a mathematical model of the physical spacetime.

The mathematical model of the physical spacetime in GR is given by a pseudo-
Riemannian differential manifold (Haussdorff, paracompact, connected, inextensible,
orientable) (M4, gL). Here gL means a Lorentzian metric which satisfies Einstein
equations

G ν
μ =

8πG
c4

T ν
μ(1)

(α, β, γ, ..., μ, ν, ...,= 0, 1, 2, 3). We will identify geometrical objects with the sets
of their components. Greek indices mean coordinate components of the geometrical
objects.

So, gL, is a dynamical object.
Here G ν

μ is the so-called Einstein tensor, T ν
μ is the matter energy-momentum

tensor (the source of the gravitational field), c is the velocity of light in vacuum, and
G means Newtonian gravitational constant.
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The mathematical model of the physical spacetime in GR is originated from
Einstein Equivalence Principle (EEP) [1]. The main ingredient of this Principle is
universality of the free falls of the test bodies in a given gravitational field.

GR reduces the gravitational interactions to some geometric aspects of the space-
time. Namely, we have:

1. gL = gravitational potentials,

2.
{α

β γ

}
= gravitational strengths, and

3. Rα
βγδ(

{}
) = strengths of the gravitational tidal forces.

The symmetry group of the GR is the infinite group Diff M4.
The Levi-Civita connection

{α

β γ

}
is symmetric, metric and torsion-free.

Usually one uses in GR a maximal atlas of the local charts (local maps, coor-
dinate patches) and implicite coordinate frames (natural frames, holonomic frames)
and coframes

({∂μ}, {dxα}) and coordinate components of the geometrical objects.
Every coordinate transformation

xα′
= xα′

(xβ), det
[∂xα′

∂xβ

] �= 0(2)

changes coordinate frames and coframes, and coordinate components of the geomet-
rical objects in standard way.

In the introductory relativity textbooks [2] one usually says about coordinate
transformations and about transformations of the coordinate components of the ge-
ometrical objects. In fact, it is sufficient. Also some conservative specialist on tensor
analysis follow this way [3]. But one can use in GR (and in tensor calculus also)
arbitrary frames, especially non-holonomic (or anholonomic) frames and coframes
({h μ

a (x)}, {hb
α(x)}) : h μ

a (x)hb
μ(x) = δb

a, (a, b, c, d, ...,= 0, 1, 2, 3). Latin indices
(= anholonomic indices) numerate vectors and covectors.

The anholonomic frames and coframes are not connected with local coordinates,
e.g., they are neutral under coordinate transformations. Instead of we have

∂α = hb
α(x)∂b, dxα = h α

a (x)dxa,(3)

or, equivalently,

	ea := ∂a = h β
a (x)∂β , ϑb := dxb = hb

μ(x)dxμ.(4)

Here (x) := {xα} are spacetime coordinates, and {xa} mean tangent space coor-
dinates. In GR every tangent space is endowed with Minkowski structure.

For coordinate frames and coframes one has

	ea = δβ
a∂β , ϑb = δb

μdx
μ.(5)

Some remarks are in order:

1. {	ea(x)} ≡ {∂a(x)} is a coordinate frame in tangent space Tx(M4, gL), and
{ϑb} ≡ {dxb} is a coordinate coframe in the dual space space T ∗

x (M4, gL).
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Differential forms ϑb = dxb = hb
μ(x)dxμ are not integrable for anholonomic

frames {hb
μ(x)} : dϑb �= 0.

2. Henceforth we will consequently use an old tensorial terminology of J. A. Schou-
ten, and S. Go�la̧b, i.e., we will call {h β

a (x)} “frame” instead of {	ea(x)}, and
{hb

μ(x)} “coframe” instead of {ϑb}. It will useful in passing to teleparallel
gravity because majority of the authors working in this field uses this termi-
nology.

3. We permanently use standard Einstein summation convention.

As we see, anholonomic frames and coframes in our terminology connect the
partial derivatives ∂α and ∂b, and differentials dxα with dxa. They also connect an-
holonomic components of the geometrical objects (denoted by Latin indices) with
their coordinate components (denoted by Greek indices). Namely, one has (coordi-
nates {xμ} are fixed) for a tensor field of the type (r,s)

T a1...ar

b1...bs
(x) = ha1

μ1
(x)...har

μr
(x)h ν1

b1
(x)...h νs

bs
(x)T μ1...μr

ν1...νs
(x),(6)

and, conversely

T μ1...μr
ν1...νs

(x) = h μ1
a1

(x)...h μr
ar

(x)hb1
ν1

(x)...hbs
νs

(x)T a1...ar

b1...bs
(x).(7)

For a linear and metric connection ω one obtains. From here we confine to an-
holonomic tetrads and cotetrads (see below).

ωa
bc(x) = h ν

c (x)ωa
bν(x),(8)

where

ωa
bν(x) = ha

λ(x)Γλ
μν(x)h μ

b (x) + ha
ρ(x)∂νh

ρ
b (x)(9)

is so-called spin connection. Conversely, we have

Γρ
μν(x) = h ρ

a (x)hb
μ(x)ωa

bν(x) + h ρ
a (x)∂νh

a
μ(x).(10)

In GR one usually uses the anholonomic frames {h μ
a (x)} and dual coframes

{hb
μ(x)} which form the so-called orthonormal tetrad and cotetrad fields. These

fields are defined as follows

ha
μ(x)hb

ν(x)ηab = gμν(x),(11)

or, equivalently

h μ
a (x)h ν

b (x)gμν(x) = ηab.(12)

Here ηab = diag(1,−1,−1,−1) is the Minkowski metric of the tangent spaces
Tx(M4, gL) and gμν(x) means the spacetime metric gL.

The transformations of the spacetimes coordinates act only on spacetime indices
(Greek indices) in standard way, whereas on the tangent space indices (Latin indices)
act only local or global Lorentz transformations, e.g.,

h′aμ = Λa
b(x)hb

μ(x),(13)
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where

Λa
b(x)ηacΛc

d(x) = ηbd.(14)

For a global Lorentz transformation one has Λa
b = const.

Tetrads are not uniquely determined by the given spacetime metric gμν(x) but
only up to local Lorentz transformations, i.e., up to six arbitrary functions. It is be-
cause a metric has only ten independent components and a tetrad field has sixteen in-
dependent components. So, for a given metric gμν(x) there exists ∞6 different classes
of tetrad fields {h μ

a (x)} which satisfy (11–12). One class of the tetrad [
{
h μ

a (x)
}

]
means these tetrads which are connected by a global Lorentz transformation.

Contrary, given tetrad field {h μ
a (x)} determines unique metric

gμν(x) = ha
μ(x)hb

ν(x)ηab,(15)

where

ha
μ(x)h μ

b (x) = δa
b .(16)

In GR fundamental role plays the spacetime metric gμν(x) (it is an observable),
whereas the orthonormal tetrads (they are not observables) play only an auxiliary
role: they simplify calculations and they enable us to introduce spinors into spacetime
structure.

The physical foundations and standard formulation of the GR have very good
observational evidence. Observational consequences of the Einstein equations were
confirmed up to 0, 003% in Solar System (weak gravitational field), and up to 0, 05%
in binary pulsars (strong gravitational field). We mean here EEP, Einstein equations
and mathematical model (M4, gL) of the physical spacetime. Universality of the free
falls was confirmed up to 10−14 and some other consequences of the EEP were
confirmed up to 10−23 (see, e.g., [1].).

So, up to now, we do not need to modify or generalize GR (Ockham razor).
We would like to emphasize that we have no free parameter in GR.
Fascinating is that despite this the theory has passed all the stringent tests with

favour. In the proposed generalized gravity theories one has many free parameters,
e.g., one has 28 free parameters in metric-affine gravity. These parameters can be
adjusted in order to have agreement with experience.

2. Teleparallel gravity

This is a gravity with an absolute parallelism, i.e., with curve independent parallelism
of distant vectors and tensors.

In this old approach (since 1928; renewed recently) the mathematical model of
the physical spacetime is based on Weitzenböck geometry (= teleparallel geometry
or geometry with absolute parallelism).

The geometry of such a kind is uniquely determined by the given tetrad field
{h μ

a }(x). Namely, one has (coordinates {xα} are fixed):
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1. Metric gμν(x) := ha
μ(x)hb

ν(x)ηab.

2. Teleparellel connection (Weitzenböck’s connection) Γρ
μν := h ρ

a (x)∂νh
a
μ(x).

Here h μ
a (x)hb

μ(x) = δb
a.

The teleparallel Weitzenböck connection has non-vanishing torsion

T ρ
μν := Γρ

νμ − Γρ
μν

iff the tetrads {h μ
a (x)} are anholonomic, and it has identically vanishing curvature

Rρ
θμν(Γ), where

Rρ
θμν(Γ) := ∂μΓρ

θν − ∂νΓρ
θμ + Γρ

σμΓσ
θν − Γρ

σνΓσ
θμ.(17)

Important remarks are in order:

1. Weitzenböck connection is metric, i.e.,

∇ρgμν := ∂ρgμν − Γα
μρgαν − Γα

νρgμα ≡ 0.(18)

But the other possible covariant derivative

∇̃gμν(x) := ∂ρgμν − Γα
ρμgαν − Γα

ρνgμα,(19)

is different from zero because Weitzenböck connection is not symmetric.

2. Torsion of the Weitzenböck connection is entirely determined by the Schouten-
Van Danzig anholonomy object Ωa

bc(x), where

Ωa
bc(x) := h β

b (x)h γ
c (x)

[
∂γh

a
β(x) − ∂βh

a
γ(x)

]
.(20)

The anholonomity object measures anholonomy of the used tetrad field: for a
holonomic tetrads {h μ

a (x)} one has Ωa
bc(x) ≡ 0. Namely, we have

T ρ
μν(x) = h ρ

a (x)hb
μ(x)hc

ν(x)Ωa
bc(x).(21)

3. One has the following relation between the components of the Weitzenböck
connection Γρ

μν(x) and between the components {ρ
μν}(x) of the Levi-Civita

connection for the metric gμν(x)

Γρ
μν(x) = {ρ

μν}(x) +Kρ
μν(x),(22)

where

Kρ
μν(x) :=

1
2
(
T ρ

μ ν + T ρ
ν μ − T ρ

μν

)
(23)

is the contortion tensor.

4. For Weitzenböck connection Γρ
μν(x)

ωa
bν(x) ≡ 0 ⇒ ωa

bc ≡ 0,(24)

i.e., this connection identically vanishes in the tetrads {h μ
a (x)} which have

determined it.
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Greek, i.e., holonomic indices are raised and lowered with the spacetime met-
ric gμν and the Latin, i.e., anholonomic indices, are raised and lowered with the
Minkowski metric ηab.

The class of the tetrads
[{h μ

a (x)}] connected by global Lorentz transformations
with Λa

b = const determines the same Weitzenböck connection and geometry. On
the other hand, the any two tetrad fields {h′aμ(x)}, {ha

μ(x)} which are connected
by a local Lorentz transformation

h′aμ(x) = Λa
b(x)hb

μ(x)(25)

determine two different Weitzenböck connections, Γ̄ρ
μν(x) and Γρ

μν(x) and two dif-
ferent Weitzenböck geometries.

So, the set of the all tetrads
({h μ

a (x)}) splits onto disjoint classes (∞6 classes)
which determine different Weitzenböck connections and geometries. ∞6 classes be-
cause the local Lorentz transformations depend on six arbitrary functions.

In consequence, the symmetry group of a teleparallel gravity consists of the group
Diff M4 and the global Lorentz group.

In the following we will confine to the very special case of the teleparallel gravity,
namely we will confine to the so-called teleparallel equivalent of general relativity
(TEGR).

The TEGR is a recent approach to teleparallel gravity which is mainly developed
by mathematicians and physicists from Brasil (see, e.g., [4]).

One can look on TEGR as a new trial to rescue torsion in theory of grav-
ity because, up to now, no experiment confirmed the Riemann-Cartán torsion. The
Riemann-Cartan torsion is the torsion in the Riemann-Cartán geometry. This gener-
alized metric geometry endowed with curvature and torsion was proposed by many
authors since 1970 [5] as a geometric model of the physical spacetime. In our opinion
lack of experimental evidence, many ambiguities to whose torsion leads, topological
triviality of torsion and Ockham razor rather disqualify this model [6]..

The details of the standard approach to TEGR read.
One starts with the given metric gμν(x). This metric determines (up to lo-

cal Lorentz transformations) the anholonomic tetrad {h μ
a (x)} and dual cotetrad

{ha
μ(x)} fields, which satisfy

ha
μ(x)hb

ν(x)ηab = gμν(x),(26)

ha
μ(x)h μ

b (x) = δa
b .(27)

Then, these fields determine the Weitzenböck connection

Γρ
μν(x) = h ρ

a (x)∂νh
a
μ(x),(28)

which satisfies {ρ

μν

}
(x) = Γρ

μν(x) −Kρ
μν(x).(29)

Here
{ρ

μν

}
(x) is the Levi-Civita connection for the metric gμν(x).
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For the Weitzenböck connection Γρ
μν(x) one has

Rρ
θμν(Γ) ≡ Rρ

θμν({}) +Qρ
θμν ≡ 0.(30)

Here

Rρ
θμν(Γ) := ∂μΓρ

θν − ∂νΓρ
θμ + Γρ

σμΓσ
θν − Γρ

σνΓσ
θμ,(31)

Rρ
θμν({}) := ∂μ{ρ

θν} − ∂ν{ρ
θμ} + {ρ

σμ}{σ
θν} − {ρ

σν}{σ
θμ},(32)

and

Qρ
θμν := DμK

ρ
θν −DνK

ρ
θ μ +Kρ

σμK
σ
θν −Kρ

σνK
σ
θμ.(33)

Dμ is the Levi-Civita covariant derivative expressed in terms of the Weitzenböck
connection, i.e.,

Dρv
μ := ∂ρv

μ +
(
Γμ

λρ −Kμ
λρ

)
vλ.(34)

Rρ
θμν(Γ) is the main curvature tensor of the Weitzenböck geometry. Main cur-

vature tensor because one can consider other curvatures in Weitzenböck geometry,
e.g., Riemannian curvature [7].

The Authors which work on TEGR, by use the fundamental formulas (26, 29,
30) of the Weitzenböck geometry, rephrase, step by step, all the formalism of the
purely metric GR in terms of the Weitzenböck connection Γρ

μν(x) and its torsion
T ρ

μν(x) (mainly in terms of torsion).
For example:

1. The Einstein Lagrangian for GR

LE = (−)α
√
|g|R({}) + ∂μw

μ,(35)

where g := det
[
gμν

]
, and

wμ := α
√

|g|(gαβ
{μ

αβ

}
+ gαμ

{γ

αγ

})
(36)

is rephrased to the form

αhSρμνTρμν =: LTEGR,(37)

where h = det
[
ha

μ

]
=
√|g|. One obtains in fact ∞6 different LTEGR because

LTEGR, like LE is invariant only under global Lorentz group. Despite that
the field equations (39, 40) are locally Lorentz invariant. We could get localy
Lorentz invariant LTEGR if we rephrased L = (−)α

√|g|R({}) and

Sρμν = (−)Sρνμ :=
1
2
[
Kμνρ − gρνTαμ

α + gρμTαν
α

]
.(38)

2. The vacuum Einstein equations[
R ρ

λ ({}) − 1
2
δ ρ
λ R({})

]√|g| = 0(39)

are rephrased to the form

∂σ

(
hS σρ

λ ) − 4α(−1)
(
ht ρ

λ

)
= 0,(40)
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where

t ρ
λ = ha

λJ
ρ

a + 4αΓμ
λνS

νρ
μ ,(41)

and

J ρ
a = (−)4αh λ

a S
νρ

μ T μ
νλ + 4αh ρ

a S
αβγTαβγ ,(42)

and so on,

α := c4/16πG.

Then, these authors call the obtained formal reformulation of GR in terms of the
Weitzenböck geometry the teleparallel equivalent of the general relativity (TEGR)
and conclude: “Gravitational interaction can be described alternatively in terms of
curvature, as it is usually done in GR, or in terms of torsion, in which case we have
the so-called teleparallel gravity. Whether gravitation requires a curved or torsional
spacetime, therefore, turns out to be a matter of convention”. They also assert that
TEGR “is better than the original GR” because, e.g., “in TEGR one can separate
gravity from inertia (on the connection level) and this separation reads”{α

βγ

}
= Γα

βγ −Kα
βγ .(43)

Following the authors which work on TEGR, the left hand side term of the above
“separation formula”, ({α

βγ}), represents gravity and inertia and the right hand side
terms describe inertia, (Γα

βγ), and gravitation, (Kα
βγ), respectively.

Of course, such separation contradicts EEP and is impossible in standard formu-
lation of the GR.

We cannot agree with such statements. In our opinion, the “teleparallel equivalent
of GR” (What kind of equivalence?) is only formal and geometrically trivial, non-
unique (see below) rephrase of GR in terms of the Weitzenböck geometry. Such
rephrase is, of course, always possible not only with GR but also with any other
purely metric theory of gravity.

In our opinion, we have no profound physical motivation for expression of the
gravitational interaction in terms of the teleparallel torsion because the Weitzenböck
torsion is entirely expressed in terms of the Van Danzig and Schouten anholonomity
object Ωa

bc(x). So, the torsion of the teleparallel Weitzenböck connection describes
only anholonomy of the used tetrad field and, therefore, it is not connected neither
with the real geometry of the physical spacetime nor with real gravity, e.g., one can
introduce Weitzenböck torsion already in flat Minkowski spacetime.

Weitzenböck torsion could only describe the inertial forces in the framework
of the special relativity. In special relativity anholonomic tetrads really represent
non-inertial frames..

Contrary, the Levi-Civita part of the Weitzenböck connection, as independent of
tetrads, can have and surely has the physical and geometrical meaning. The Levi
Civita connection depends only on metric. It is independent of the tetrads which
determine the same spacetime metric.

Further ctitical remarks on TEGR.
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1. TEGR is nothing new. In fact, it is exactly the old tetrad formulation of
GR given in the very distant past by C. Möller [8] but expressed in terms
of anholonomy of the tetrads instead of in terms of tetrads exclusively (As it
was in Möller papers). For example, despite that the TEGR field equations
are expressed in terms of torsion of the Weitzenböck geometry, they form the
system of the 10 partial differential equations of the 2nd order on 16 tetrads
components, like the 10 field equations of the Möller’s tetrad formulation of
GR. Solving the TEGR equations in vacuum (or in matter) we are looking for
the tetrad components

{
h μ

a (x)
}

for apriori given general form of the metric
gμν(x); not for the components of torsion. Weitzenböck connection and its
torsion are calculated later [9].

Therefore, the notation of the Lagrangian and the field equations of TEGR
in terms of Weitzenböck torsion is only a camouflage: TEGR is simply the
Möller’s tetrad formulation of GR, and, like Möller’s formulation of GR, de-
termines uniquely the metric only.

We would like to emphasize that one can find all the results of the TEGR
including the TEGR energy-momentum tensor for pure gravity in the old
Möller’s papers. This ‘tensor” is one of the most important results obtained in
the framework of TEGR.

2. TEGR is not unique. This follows from the fact: given metric, gμν(x) has
10 intrinsic components and determines only 10 components of the tetrads
field

{
h μ

a (x)
}

which has 16 intrinsic components. It is a consequence of the
known fact that a given metric determines tetrad field up to local Lorentz
transformations, which form the local, six-parameters, ortochronous Lorentz
group L↑

+ defined as follows

L↑
+ =

{
Λa

b(x) : Λa
b(x)ηacΛc

d(x) = ηbd,

det
[
Λa

b(x)
]

= 1, Λ0
0 ≥ 1

}
.(44)

The ten field equations of GR (or TEGR) determine the metric and also de-
termine only ten components of the tetrad field. The remaining six components
are lefting arbitrary functions of the spacetime coordinates

{
xα
}

and can be
arbitrarily established. It is a consequence of the local Lorentz invariance of
the TEGR and GR field equations.

So, for the given metric, gμν(x), (GR) there exist ∞6 different classes of tetrad
fields (TEGR) and, in consequence, ∞6, different Weitzenböck connections
Γρ

μν(x) (and geometries). Each of these connections satisfies the equations{ρ

μν

}
(x) = Γρ

μν(x) −Kρ
μν(x).(45)

In the above equations the left hand side is independent of tetrads; it depends
only on metric gμν(x), whereas the both terms on the right hand side depend on
the class of the tetrads. (One) class of tetrads := the set of tetrads

[{
h μ

a (x)
}]
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which are connected by global Lorentz transformations. Class of tetrads de-
termines the same Weitzenböck connection and geometry. Different classes of
tetrads are connected by local Lorentz transformations and determine different
Weitzenböck connections and geometries.

As a result we obtain ∞6 different Lagrangians (37) for TEGR and ∞6 dif-
ferent TEGR. This fact was already known C. Möller in context of his tetrad
formulation of GR. Namely, Möller, in fact, also has obtained ∞6 different
tetrad formulations of GR because, the 10 field equations of his tetrad for-
mulation of GR, identical with Einstein equations (1), determine the tetrad
field up to local Lorentz transformations, i.e., up to six arbitrary functions.
These field equations determine the metric only. The same situation we have
of course in the framework of the TEGR because the 10 field equations (40),
like Möller’s equations, are locally Lorentz invariant. In order to have field
equations which would determine tetrad field completely (apart from constant
Lorentz rotations) Möller has developed tetrad theory of gravity in which one
has sixteen field equations onto sixteen tetrad components.

3. The authors which work on TEGR assert that the formula (43) (or (45)) gives
separation of inertia

(
Γρ

μν(x)
)

from gravity
(
Kρ

μν(x)
)
.

Such speculative separation allows them, among other things, to introduce
an energy-momentum tensor for gravity. It is in fact a family of ∞6 different
tensors the same as the family of the tensors which has been obtained many
years ago by C. Möller without any separation in his tetrad formulation of GR.
But this separation is illusoric because there exist ∞6 different separations of
the form (43) (or (45)) for given

{α

βγ

}
, i.e., we have no separation inertia from

gravity in TEGR (in agreement with EEP).

In consequence, we have no unique gravitational energy-momentum tensor in
TEGR.

4. The experts on TEGR transform trivially the geodesic equations of GR

d2xα

ds2
+
{α

βγ

}dxβ

ds

dxγ

ds
= 0(46)

onto the forces equations

d2xα

ds2
+ Γα

βγ

dxβ

ds

dxγ

ds
= Kα

βγ

dxβ

ds

dxγ

ds
(47)

by putting in (46): {α

βγ

}
= Γα

βγ −Kα
βγ .(48)

The forces equations (47) remind the GR equations of motion for a charged
test particle when the both fields, electromagnetic and gravitational, simulta-
neously act on the particle
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d2xα

ds2
+
{α

βγ

}dxβ

ds

dxγ

ds
=
Q

m
Fα

β

dxβ

ds
.(49)

Here Q, m denote electric charge and mass of the particle respectively and
Fα

β mean electromagnetic field acting on the particle. The right hand side of
(49) is the electromagnetic force per unit mass which acts on the particle.

The specialists on TEGR try to attach some physical meaning to the force equa-
tions (47), namely following them, the right hand side of (47) describes gravitational
force acting on the particle, whereas the term Γα

βγ(dxβ/ds) (dxγ/ds) describes in-
ertial force.

But there exist ∞6 different reformulatios of the geodesic equations (46) to the
form (47) with different Γα

βγ and Kα
βγ . Which one of them is correct, i.e., which

one of them gives correct inertial force and correct gravitational force?
Talking about equivalence of TEGR with GR is misleading because there exist

∞6 different TEGR in consequence of the local Lorentz invariance of the field
equations (40). But we must emphasize that every TEGR determines unique and
the same metric structure of the spacetime as GR does. So, from the metric point
of view, the different TEGR are equivalent.

Here we have the same kind of “equivalence” as the “equivalence” between a given
metric gμν(x) (10 functions) and a tetrad field (16 functions), which satisfies

ha
μ(x)hb

ν(x)ηab = gμν(x)

i.e., we have no equivalence. Remark also that metric and tetrads are different geo-
metric objects.

Incorrect is also statement of the specialists on TEGR that Weitzenböck geom-
etry is flat, like Minkowski geometry. In fact, e.g., Riemannian curvature of such
geometry is non-zero. Also the curvature tensor R̃α

βγδ(Γ) where

R̃α
βγδ(Γ) := ∂γΓα

δβ − ∂δΓα
γβ + Γα

γσΓσ
δβ − Γα

δσΓσ
γβ(50)

is different from zero.
The tensor R̃α

βγδ(Γ) differs from the former main curvature tensor Rα
βγδ(Γ)

(see the formula (31)) by transposition lower indices in Γα
βγ(x). For Riemannian

geometry, owing to symmetry of the Levi-Civita connection, these both tensors are
identically equal.

Resuming, in our opinion, TEGR is nothing new. It is camouflaged, the very old
tetrad formulation of GR given by C. Möller, and it, by no means is better than
standard GR. Contrary, standard GR is surely better than any TEGR because
GR is invariant under any change of tetrads, whereas TEGR is not. TEGR, like
any teleparallel gravity, is invariant only under global Lorentz rotations of tetrads.

We will finish with some general remarks about teleparallel gravity.
It should be emphasized that there exist many other approaches to teleparellel

gravity, different from TEGR, and which generalize GR. At the first time such
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approach to gravity was considered already by A. Einstein (“Fernparallelismus” in
1928 [10]) and then by C. Möller (1978), Pellegrini and Plebański [11], Hayashi and
Shirafuji [12], and others. Recently the teleparallel approach to gravity is developed
by F. B. Estabrook, Y. Itin, and L. Schücking [13].

In these other approaches to teleparallel gravity the gravitational Lagrangian is
built from irreducible torsion componets or from tetrads immediately, and contains,
in general, three free parameters to be determined by experiments. This Lagrangian
is invariant under Diff M4 and has also global Lorentz symmetry.

The fundamental geometric object are tetrads which determine spacetime metric
and Weitzenböck connection, and, therefore, all the local Weitzenböck geometry of
the physical spacetime.

In vacuum, we have in these approaches sixteen 2nd order field equations on six-
teen tetrad components. The field equations should determine the tetrads field h μ

a (x)
up to constant Lorentz rotations, i.e., up to global Lorentz group, and owing that,
should determine a unique Weitzenböck geometry. But tetrads are not observables:
they are very alike to the electromagnetic potentials. Moreover, there are problems
with physical interpretation of the six additional tetrads components (10 compo-
nents can describe gravitational field, but what about remaining 6 components?)
and these theories suffer from badly posed Cauchy problem [14].
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TELEPARALELNY EKWIWALENT OGÓLNEJ TEORII
WZGLȨDNOŚCI: UWAGI KRYTYCZNE

S t r e s z c z e n i e
Po przedstawieniu podstawowych faktów z ogólnej teorii wzglȩdności oraz z telepa-

ralelnej grawitacji, ograniczam siȩ do analizy specjalnego modelu teleparalelnej grawitacji
nazwanego przez jego twórców teleparalelnym ekwiwalentem ogólnej teorii wzglȩdności
(w skrócie TEGR). Model ten by�l (i jest) ostatnio intensywnie badany g�lȯwnie przez
matematyków i fizyków z Brazylii.

W pracy pokazujȩ, że TEGR jest zakamuflowanym, starym, tetradowym sformu�lowa-
niem ogólnej teorii wzglȩdności, dokonanym w latach 60-tych i 70-tych XX-go wieku przez
C. Möllera i podkreślam, że TEGR jest niejednoznacznym i trywialnym przeformu�lowa-
niem ogólnej teorii wzglȩdności, które nie może dać nic lepszego niż standardowe sformu�lo-
wanie tej teorii (moim zdaniem, przeformu�lowanie to jest gorsze).
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GRADED POSETS INVERSE ZETA MATRIX FORMULA IIA
THE FORMULA OF INVERSE ζ-MATRIX FOR GRADED POSETS WITH THE FINITE
SET OF MINIMAL ELEMENTS VIA NATURAL JOIN OF MATRICES AND DIGRAPHS
TECHNIQUE – A. RELABELING AND EXERCISES

Summary
We arrive at the explicit formula for the inverse of zeta matrix for any graded posets

with the finite set of minimal elements following the first reference which is referred to as
SNACK that is Sylvester Night Article on Cobweb posets and KoDAG graded digraphs.
We start with a training in relabeling: examples and exercises.

1. Training in relabeling – Exercise

As we were and are to compare formulas from papers using different labeling – write
and/or learn to see formulas from the above and below Observations, definitions etc.
as for x, y, k, s ∈ N ∪ {0} on one hand and as for x, y, k, s ∈ N on the other hand.
Because of the comparisons reason we shall tolerate and use both being indicated
explicitly.

Let us start with picture Examples 9, 10, 11 of inverse zeta matrices subsequently
corresponding to picture Examples 1, 2, 5. For that to do it is enough for now to use
the recurrent definition of the Möbius function

μ(x, y) =
{ 1, x = y

−∑x≤z<y μ(x, z), x < y
.

Before doing that note that we deal with F -graded posets and contact Remark 1 for
notation and typical relations relevant below.
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Recall 2. What form of the August Ferdinand Möbius matrix we do expect by now.

Recall: (see Observation 3) – in the case of Möbius μ = ζ−1 matrix as it is obligatory
cr,r+1 = -1.

Recall (Remark 1) Markov property and observe by inspection that – in the case
of Möbius μ = ζ−1 matrix for cobweb posets it is obligatory to put

M (rF × (r + 2)F )

= −[I (rF × (r + 1)F ) I ((r + 1)F × (r + 2)F ) − I (rF × (r + 2)F )]

i.e.
M (rF × (r + 2)F ) = −[(r+1)F − 1]I (rF × (r + 2)F ) ,

thereby:
cr,r+2 = −[(r+1)F − 1]cr,r+1, cr,r+1 = −1.

– What about then with arbitrary F -graded posets (P,≤)?

In what follows we consider (consult the Remark 1) motivating examples and
then representative Examples 9, 10, 11, 12 of Möbius matrix. After that the looked
for Theorem 2 is stated for arbitrary F -graded posets (P,≤).

Motivating examples

Example 1. Let i = 1, ..., rF , k = 1, ..., (r+1)F , j = 1, ..., (r+2)F as now we consider
(Remark 1) xr,i ≺ ·xr+1,k where {xr,i} = Φr and {xr+1,k} = Φr+1 are independent
sets. Then

μ(xr,i, xr+2,j) = −
∑

xr,i≤z<xr+2,j

μ(xr,i, z) = −
⎛
⎝1 +

(r+1)F∑
k=1

μ(xr,i, xr+1,k)

⎞
⎠ ,

i.e.
μ(xr,i, xr+2,j) = +[(r + 1)F − 1] = cr,r+2 = −[(r + 1)F − 1]cr,r+1.

Example 2. From Example 1 we infer that as μ(xr,i, xr+2,j) = μ(xr , xr+2) then it is
now enough to consider what follows (xr , xr+3 any fixed):

μ(xr , xr+3) = −
∑

xr≤z<xr+3

μ(xr , z) = −
⎛
⎝1 +

∑
xr+1≤z<xr+3

μ(xr, z)

⎞
⎠

= −
⎛
⎝1 + (r + 1)Fμ(xr, xr+1) +

∑
xr+2≤z<xr+3

μ(xr , z)

⎞
⎠

= − (1 − (r + 1)F + (r + 2)Fμ(xr , xr+2)) ,

i.e.

μ(xr, xr+3) = −[(r + 2)F − 1]cr,r+2 = −[(r + 2)F − 1][(r + 1)F − 1].

Via straightforward induction we conclude that now for arbitrary r, s ∈ N ∪{0} and
for any cobweb poset the following is true.
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Theorem 2 for cobweb posets. (N ∪ {0}.)

cr,s = [s = r]− [s = r+ 1] + [s > r+](−1)s−r ((s− r − 1)F − 1)) ... (3F − 1)) (+1) =

= [s = r] − [s = r + 1] + [s > r + 1](−1)s−r
s−1∏

i=r+1

(iF − 1).

Let us see now how it works and how this theorem may be extended to general
case of arbitrary F -denominated poset. At first the representative Examples 9, 10,
11, 12 of Möbius matrix follow which might be derived right from the recurrent
definition of Möbius function without even referring to the above theorem.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 +1 +1 +1 −2 −2 −2 −2 +6 +6 +6 +6 +6 −24 · · ·
0 1 0 −1 −1 −1 +2 +2 +2 +2 −6 −6 −6 −6 −6 +24 · · ·
0 0 1 −1 −1 −1 +2 +2 +2 +2 −6 −6 −6 −6 −6 +24 · · ·
0 0 0 1 0 0 −1 −1 −1 −1 +3 +3 +3 +3 +3 −12 · · ·
0 0 0 0 1 0 −1 −1 −1 −1 +3 +3 +3 +3 +3 −12 · · ·
0 0 0 0 0 1 −1 −1 −1 −1 +3 +3 +3 +3 +3 −12 · · ·
0 0 0 0 0 0 1 0 0 0 −1 −1 −1 −1 −1 +4 · · ·
0 0 0 0 0 0 0 1 0 0 −1 −1 −1 −1 −1 +4 · · ·
0 0 0 0 0 0 0 0 1 0 −1 −1 −1 −1 −1 +4 · · ·
0 0 0 0 0 0 0 0 0 1 −1 −1 −1 −1 −1 +4 · · ·
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 · · ·
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 · · ·
. . . . . . . . . . . . . . . . · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Example 3: ζ−1
N . The Möbius function matrix μ = ζ−1 for the natural numbers i.e. N –

cobweb poset:

μN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I1×1 −I(1 × 2) +I(1 × 3) −2I(1 × 4) +6I(1 × 5)
O2×1 I2×2 −I(2 × 3) −2I(2 × 4) −6I(2 × 5)
O3×1 O3×2 I3×3 −I(3 × 4) +3I(3 × 5)
O4×1 O4×2 O4×3 I4×4 −I(4 × 5)
O5×1 O5×2 O5×3 O5×4 I5×5

... etc. ... and so on ...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Note. μ has of course natural join inherited structure, of course.

Example 4: μN = ζ−1
N . The block presentation of the Möbius function matrix μ = ζ−1 for

the natural numbers i.e. N-cobweb poset.
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The secret (?) code for this KoDAG is given by its KoDAG self-evident code-triangle
of the coding matrix C(μF )(a starting part of it shown below):

C(μN ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

+1 −1 +1 −2 +6 −24
−0 +1 −1 +2 −6 +24
+0 −0 +1 −1 +3 −12
−0 +0 −0 +1 −1 +4
+0 −0 +0 −0 +1 −1
. . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 +0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +0 −0 · · ·
0 1 −1 +0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +0 · · ·
0 0 1 −1 −1 +1 +1 +1 −2 −2 −2 −2 −2 +8 +8 +8 · · ·
0 0 0 1 0 −1 −1 −1 +2 +2 +2 +2 +2 −8 −8 −8 · · ·
0 0 0 0 1 −1 −1 −1 +2 +2 +2 +2 +2 −8 −8 −8 · · ·
0 0 0 0 0 1 0 0 −1 −1 −1 −1 −1 +4 +4 +4 · · ·
0 0 0 0 0 0 1 0 −1 −1 −1 −1 −1 +4 +4 +4 · · ·
0 0 0 0 0 0 0 1 −1 −1 −1 −1 −1 +4 +4 +4 · · ·
0 0 0 0 0 0 0 0 1 0 0 0 0 −1 −1 −1 · · ·
0 0 0 0 0 0 0 0 0 1 0 0 0 −1 −1 −1 · · ·
0 0 0 0 0 0 0 0 0 0 1 0 0 −1 −1 −1 · · ·
0 0 0 0 0 0 0 0 0 0 0 1 0 −1 −1 −1 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 −1 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 · · ·
. . . . . . . . . . . . . . . . . · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Example 5: ζ−1
F . The Möbius function matrix μ = ζ−1 for F=Fibonacci sequence:

μF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I1×1 −I(1 × 1) 0I(1 × 1) 0I(1 × 2) 0I(1 × 3)
O1×1 I1×1 −I(1 × 1) 0I(1 × 2) 0I(1 × 3)
O1×1 O1×1 I1×1 −I(1 × 2) +I(1 × 3)
O2×1 O2×1 O2×1 I2×2 −I(2 × 3)
O3×1 O3×1 O3×1 03×2 I3×3

... etc. ... and so on ...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Example 6: ζ−1
F . The block presentation of the Möbius function matrix μ = ζ−1 for

F=Fibonacci sequence.

Recall then and note here up and below the block structure:
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σ =

⎡
⎢⎢⎢⎢⎣
I1F ×1F B(1F × 2F ) B(1F × 3F ) B(1F × 4F ) B(1F × 5F ) B(1F × 6F )
02F ×1F I2F ×2F B(2F × 3F ) B(2F × 4F ) B(2F × 5F ) B(2F × 6F )
03F ×1F 03F ×2F I3F ×3F B(3F × 4F ) B(3F × 5F ) B(3F × 6F )
04F ×1F 04F ×2F 04F ×3F I4F ×4F B(4F × 5F ) B(4F × 6F )
... etc. ... and so on ...

⎤
⎥⎥⎥⎥⎦

where B(kF × (k + 1)F ) denote corresponding constant kF × (k + 1)F matrices in
the case of ζ or ζ−1 matrices for example, with matrix elements from the ring R=
2{1} , Z2 = {0, 1}, Z etc.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 +0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +0 −0 · · ·
0 1 −1 −1 −1 +2 +2 +2 −4 −4 −4 +8 +8 +8 −16 −16 · · ·
0 0 1 0 0 −1 −1 −1 +2 +2 +2 −4 −4 −4 +8 +8 · · ·
0 0 0 1 0 −1 −1 −1 +2 +2 +2 −4 −4 −4 +8 +8 · · ·
0 0 0 0 1 −1 −1 −1 +2 +2 +2 −4 −4 −4 +8 +8 · · ·
0 0 0 0 0 1 0 0 −1 −1 −1 +2 +2 +2 −4 −4 · · ·
0 0 0 0 0 0 1 0 −1 −1 −1 +2 +2 +2 −4 −4 · · ·
0 0 0 0 0 0 0 1 −1 −1 −1 +2 +2 +2 −4 −4 · · ·
0 0 0 0 0 0 0 0 1 0 0 −1 −1 −1 +2 +2 · · ·
0 0 0 0 0 0 0 0 0 1 0 −1 −1 −1 +2 +2 · · ·
0 0 0 0 0 0 0 0 0 0 1 −1 −1 −1 +2 +2 · · ·
0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 −1 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 −1 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 · · ·
. . . . . . . . . . . . . . . . . · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Example 7: ζ−1
F . The Möbius function matrix μ = ζ−1 for (1F = 2F = 1 and nF = 3

for n ≥ 2) the F = Fibonacci relative special sequence F constituting the label sequence

denominating cobweb poset associated to F -KoDAG Hasse digraph:

μF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I1×1 −I(1 × 1) +0I(1 × 3) −0I(1 × 3) +0I(1 × 3)
O1×1 +I1×1 −I(1 × 3) +2I(1 × 3) −4I(1 × 3)
O3×1 −O3×1 +I3×3 −I(3 × 3) +2I(3 × 3)
O3×1 +O3×1 −O3×3 +I3×3 −I(3 × 3)
O3×1 −O3×1 +O3×3 −03×3 +I3×3

... etc ... and so on ...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Example 8: ζ−1
F . The block presentation of the Möbius function matrix μ = ζ−1 for (1F =

2F = 1 and nF = 3 for n ≥ 2) the F = Fibonacci relative special sequence F constituting

the label sequence denominating cobweb poset associated to F -KoDAG Hasse digraph.
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The secret (?) code for this KoDAG is given by its KoDAG self-evident code-
triangle of the coding matrix C(μF ) (a starting part of it shown below):

C(μF ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 +0 −0 +0 −0
0 +1 −1 +2 −4 +8
0 −0 +1 −1 +2 −4
0 +0 −0 +1 −1 +2
0 −0 +0 −0 +1 −1
. . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 −1 +2 +2 +2 −4 −4 −4 +8 +8 +8 −16 −16 −16 · · ·
0 +1 +0 +0 −1 −1 −1 +2 +2 +2 −4 −4 −4 +8 +8 +8 · · ·
0 −0 +1 +0 −1 −1 −1 +2 +2 +2 −4 −4 −4 +8 +8 +8 · · ·
0 +0 −0 +1 −1 −1 −1 +2 +2 +2 −4 −4 −4 +8 +8 +8 · · ·
0 −0 +0 −0 +1 +0 +0 −1 −1 −1 +2 +2 +2 −4 −4 −4 · · ·
0 +0 −0 +0 −0 +1 +0 −1 −1 −1 +2 +2 +2 −4 −4 −4 · · ·
0 −0 +0 −0 +0 −0 +1 −1 −1 −1 +2 +2 +2 −4 −4 −4 · · ·
0 +0 −0 +0 −0 +0 −0 +1 +0 +0 −1 −1 −1 +2 +2 +2 · · ·
0 −0 +0 −0 +0 −0 +0 −0 +1 +0 −1 −1 −1 +2 +2 +2 · · ·
0 +0 −0 +0 −0 +0 −0 +0 −0 +1 −1 −1 −1 +2 +2 +2 · · ·
0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +1 +0 +0 −1 −1 −1 · · ·
0 +0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +1 0 −1 −1 −1 · · ·
0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +1 −1 −1 −1 · · ·
0 +0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +1 +0 +0 · · ·
0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +1 +0 · · ·
0 +0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +0 −0 +1 · · ·
. . . . . . . . . . . . . . . . · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Example 9: ζ−1
F . The Möbius function matrix μ = ζ−1 for (1F = 1 and nF = 3 for n ≥ 2)

the N relative special sequence F constituting the label sequence denominating cobweb

poset associated to F -KoDAG Hasse digraph:

μF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I1×1 −I(1 × 1) +2I(1 × 3) −4I(1 × 3) +8I(1 × 3)
O1×1 +I1×1 −I(1 × 3) +2I(1 × 3) −4I(1 × 3)
O3×1 −O3×1 +I3×3 −I(3 × 3) +2I(3 × 3)
O3×1 +O3×1 −O3×3 +I3×3 −I(3 × 3)
O3×1 −O3×1 +O3×3 −03×3 +I3×3

... etc. ... and so on ...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Example 10: ζ−1
F . The block presentation of the Möbius function matrix μ = ζ−1 for (1F = 1

and nF = 3 for n ≥ 2) the N relative special sequence F constituting the label sequence

denominating cobweb poset associated to F -KoDAG Hasse digraph.
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The secret (?) code for this KoDAG is given by its KoDAG self-evident code-
triangle of the coding matrix C(μF ) (a starting part of it shown below):

C(μF ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 +2 −4 +8 −16
0 +1 −1 +2 −4 +8
0 −0 +1 −1 +2 −4
0 +0 −0 +1 −1 +2
0 −0 +0 −0 +1 −1
. . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

From Observation 2 we infer what follows as obvious.

Oservation 3 (compare with Remark 1). The block structure of ζ and consequently
the block structure of μ for any graded poset with finite set of minimal elements
(including cobwebs) is of the type:

ζ =

⎡
⎢⎢⎢⎢⎣
I1, B1...

I2, B2...

I3, B3...

...

In, Bn...

⎤
⎥⎥⎥⎥⎦ ,

μ =

⎡
⎢⎢⎢⎢⎣
I1,−B1...

I2,−B2...

I3,−B3...

...

In,−Bn...

⎤
⎥⎥⎥⎥⎦ ,

n ∈ N ∪ {∞}, ζ, μ ∈ I(Π;R), where Ir = IrF ×rF and Br = B(rF × (r + 1)F ) as
introduced by Observation 2.

Recall 3. Recall then and note here up and below the block structure ζ and conse-
quently the block structure of μ for any graded poset P with finite set of minimal
elements (including cobwebs) which is proprietary characteristic for any σ ∈ I(P ;R)
where the ring R= 2{1}, Z2 = {0, 1}, Z etc.:

σ =

⎡
⎢⎢⎢⎢⎣
I1F ×1F M(1F × 2F ) M(1F × 3F ) M(1F × 4F ) M(1F × 5F ) M(1F × 6F )
02F ×1F I2F ×2F M(2F × 3F ) M(2F × 4F ) M(2F × 5F ) M(2F × 6F )
03F ×1F 03F ×2F I3F ×3F M(3F × 4F ) M(3F × 5F ) M(3F × 6F )
04F ×1F 04F ×2F 04F ×3F I4F ×4F M(4F × 5F ) M(4F × 6F )
... etc. ... and so on ...

⎤
⎥⎥⎥⎥⎦

where in the case of ⊕→-natural ζ or ζ−1 matrices, with matrix elements from the
ring R= 2{1}, Z2 = {0, 1}, Z etc the rectangle non-zero block matrices M(kF ×
(k+ 1)F ) denote corresponding connected graded poset characteristic kF × (k+ 1)F

matrices.
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Note then that

M(kF × (k + 1)F )r,s = ci,j,kB(kF × (k + 1)F )i,j

for i = 1, ..., kF and i = 1, ..., (k+1)F , where the rectangular “zero-one” B(kF ×(k+
1)F ) matrices were introduced by the Observation 2. Consult Remark 1 – apart from
the Petitio Principi motivating examples – for i = 1, ..., kF and i = 1, ..., (k + 1)F

as the layer 〈Φk −→ Φk+1〉 variables.

Note now the important fact. The relation

M(kF × (k + 1)F )i,j = ci,j,kB(kF × (k + 1)F )i,j ,

where
i = 1, ..., kF , i = 1, ..., (k + 1)F

does not fix uniquely the layer 〈Φk −→ Φk+1〉 coding matrix Ck,k+1 = (ci,j,k), i =
1, ..., kF , i = 1, ..., (k + 1)F for F -denominated arbitrary graded poset – except for
cobweb posets for which

B(kF × (k + 1)F ) = I(kF × (k + 1)F ).

In order to delimit this layer coding matrix uniquely we define en bloc the coding
matrix C(μF ) for all layers.

Definition. F -graded poset 〈Φ, μF 〉 coding matrix C(μF ).
Let k, r, s ∈ N ∪{0}. Then we define C(μF ) via ⊕→ originated blocks as follows:

C(μF ) = (cr,s)

where cr,s are coding matrix elements for F -denominated cobweb poset, hence

μF = ([r = s]IrF ,rF + [s > r]cr,sB(rF × sF )) ,

and where

ci,j,k ≡M(kF × (k + 1)F )i,j = ci,jB(kF × (k + 1)F )i,j ;

thus the following identifications are self-evident:

〈Φ, μF 〉 ≡ 〈Φ, ζF 〉 ≡ 〈Φ,≤〉 ≡ 〈Φ,C(μF )〉 .

Result: C(μF ) as well as block sub-matrices M(kF × (k + 1)F ) = (ci,j,k) where
k ∈ N ∪ {0} are defined i.e. are given unambiguously.

Specifically, in cobweb posets case: for ζ function (matrix) we have

M(kF × (k + 1)F ) = I(kF × (k + 1)F ),

while for ζ−1 = μ Möbius function (matrix) – from already considered examples’
prompt we have already deduced these unambiguous cr,s (see Theorem 2 for cobweb
posets – above). Namely:

M(rF × (r + 1)F ) = cr,r+1I(rF × (r + 1)F ).
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What about any F -denominated graded posets then? The answer now is of course
secured now to be the same as for F -cobweb posets. The answer is automatically
secured by the Definition 6. Just replace in the above Theorem 2 for cobweb posets
I(rF × (r + 1)F ) by B(rF × (r + 1)F ) and-or see the Theorem 2 below for the
corresponding recurrence equivalent to that from the Petitio Principi motivating
examples resulting recurrence relation definition for cr,s.

In order to be complete also with the next section content another important
example - the example of cover relation κΠ ∈ I(Π, R) matrix follows. Recall for that
purpose now Observation 1 and the Remark 1 as to conclude what follows.

Observation 4. (n ∈ N ∪ {∞}) The block structure of cover relation κΠ ∈ I(Π, R)
(χ (≺ ·Π) ≡ κΠ, ) is the following

κΠ = ⊕→n
k=1 κk =

=

⎡
⎢⎢⎢⎢⎣

01F ×1F I(1F × 2F ) 01F ×∞
02F ×1F 02F ×2F I(2F × 3F ) 02F ×∞
03F ×1F 03F ×2F 03F ×3F I(3F × 4F ) 03F ×∞

...

0nF ×1F ... 0nF ×nF I(nF × (n+ 1)F ) 0nF ×∞

⎤
⎥⎥⎥⎥⎦ ,

where κk is a cover relation of di-biclique

〈Φk → Φk+1〉, Ik ≡ I(kF × (k + 1)F ), k = 1, ..., n

and where – recall – I(s × k) stays for (s × k) matrix of ones i.e. [I(s × k)]ij = 1;
1 ≤ i ≤ s, 1 ≤ j ≤ k. while n ∈ N ∪ {∞} and consequently the block structure of
reflexive cover relation ηΠ ∈ I(Π, R) (χ (≤ ·Π) =≺ ·Π + δ ≡ ηΠ) is given by

=

⎡
⎢⎢⎢⎢⎣
I1F ×1F I(1F × 2F ) 01F ×∞
02F ×1F I2F ×2F I(2F × 3F ) 02F ×∞
03F ×1F 03F ×2F I3F ×3F I(3F × 4F ) 03F ×∞

...

0nF ×1F ... InF ×nF I(nF × (n+ 1)F ) 0nF ×∞

⎤
⎥⎥⎥⎥⎦ .

Specifically, if restricting to cobweb posets: for ζ function (matrix) we have B(kF ×
(k+ 1)F ) = I(kF × (k+ 1)F ), while for ζ−1 = μ Möbius function (matrix) we would
expect

B(rF × (r + 1)F ) = cr,r+1I(rF × (r + 1)F )

where ck,k+1 = [C(μF )]k,(k+1).
What is then the explicit formula for ck,k+1? It is of course equivalent to the

question: what is then the explicit formula for cr,s? Let us recapitulate our experience
till now in order to infer the closing answer: Theorem 2 and its equivalent proof
method.

Training in relabeling – Exercise. As we were and are to compare formulas from
papers using different labeling – write and learn to see formulas from the above and



128 A. K. Kwaśniewski

below Observations as for x, y, k, s ∈ N ∪ {0} on one hand and as for x, y, k, s ∈ N

on the other hand. Because of the comparisons repeatedly reason we shall tolerate
and use both being indicated explicitly if needed.
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SET OF MINIMAL ELEMENTS VIA NATURAL JOIN OF MATRICES AND DIGRAPHS
TECHNIQUE – B. WEIGHTED REFLEXIVE REACHABILITY RELATION

Summary
We arrive at the explicit formula for the inverse of zeta matrix for any graded posets

with the finite set of minimal elements following the first reference which is referred to as
SNACK that is Sylvester Night Article on Cobweb posets and KoDAG graded digraphs.
In SNACK the way to arrive at formula of the zeta matrix for any graded posets with the
finite set of minimal elements was delivered and explicit form was given. We present here
effective way toward the formula for the inverse of zeta matrix which is being unearthed
via adjacency and zeta matrix description of bipartite digraphs chains, the representatives
of graded posets with sine qua non essential use of digraphs and matrices natural join
introduced by the present author.

Namely, the bipartite digraphs elements of such chains amalgamate so as to form corre-
sponding cover relation graded poset digraphs with corresponding adjacency matrices being
amalgamated throughout natural join constituting adequate special database operation. As
a consequence apart from zeta function also the Möbius function explicit expression for any
graded posets with the finite set of minimal elements is being arrived at.

Purposely, on the way – special number theoretic code-triangles for KoDAGs are pro-
posed and apart from the author combinatorial interpretation of F -nomial coefficients an-
other related interpretation is inferred while referring to the number of all maximal chains
in the corresponding poset interval. The formula for August Ferdinand Möbius matrix is
also interpreted combinatorially.

2. Further training in relabeling

Recapitulation 2.1 (notation and the formula). The code C(μF ) matrix no more
secret.
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Notation. Upside down notation development continuation.

Recall:
nk = n(n+ 1)(n+ 2)...(n+ k − 1),

denote:
nk

F ≡ nF (n+ 1)F (n+ 2)F ...(n+ k − 1)F .

Denote (valid whenever defined for corresponding functions f of the natural number
argument or of an argument from any chosen ring):

f(rF )k = f(rF )f([r + 1]F )...f([r + k − 1]F ), n0 ≡ 1, n ∈ N ∪ {0} , Z,R, etc.,
f(rF )k = f(rF )f([r − 1]F )...f([r − k + 1]F ), n0 ≡ 1, n ∈ N ∪ {0} , Z,R, etc..

Define Krot-on-shift-functions Ks, s, r, i ∈ N ∪ {0} or Kroton functions in brief
-(Kroton = Croton = Codiaeum).

Definition (N ∪ {0} labels)

Ks(rF ) = [s > r][(r + 1)F − 1]s−r.

These of course constitute an upper triangle matrix with zeros on the diagonal for
s, r ∈ N ∪ {0}, (r = labels rows).

Note two cases:
Let s− r − 1 �= 0. Then

Ks(rF ) = [s > r]
s−1∏

i=r+1

(iF − 1).

Let s− r − 1 = 0. Then
Ks(rF ) = [s > r].

Now – with this N ∪ {0} labeling as established in this note (Remark 2.1) – per-
form simple calculations. Fibonacci sequence F = 〈1, 1, 2, 3, 5, 8, 13, 21, 34, ...〉 case
Example.

K2(1F ) = 1 , Ks(1F ) = 0 for s > 2;
K3(2F ) = 1 , Ks(2F ) = 0 for s > 3;
K4(3F ) = 1 , K5(3F ) = 1 , K6(3F ) = 2, K7(3F ) = 2 · 4 = 8, K8(3F ) = 8 · 12 = 96,
K9(3F ) = 96 · 20 = 1920 , and so on,
K5(4F ) = 1 , K6(4F ) = 1 · 4 , K7(4F ) = 4 · 7 = 14, K8(4F ) = 14 · 12 = 168,
K9(4F ) = 168 · [F8 − 1] =?, K10(4F ) = 3360 · [9F − 1] =?, and so on. Note that in
the course of the above the following was used (N ∪ {0} – labeling).

Lemma 2.1. (r, s ∈ N ∪ {0}. Obvious)

Ks+1(rF ) = Ks(rF ) • [sF − 1], Kr+1(rF ) = 1,
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N sequence case Example. This exercise has obvious outcomes in view of
Lemma 2.1. For the just check of results see absolute values of coding matrix matrix
elements from Example 9.

The next fact we mark as Lemma because of its importance.

Lemma 2.2. (Obvious – recapitulation). Let R = N,Z,..., any commutative ring.
For any graded F -denominated poset (hence connected) i.e. for any chain of sub-
sequent natural joins of bipartite digraphs (di-bicliques for KoDAGs) and with the
linear labeling of nodes fixed (s, r ∈ N ∪ {0} as in Remark 2.1. or s, r ∈ N):

μ = (δr,sIrF ×rF + [s > r]C(μF )r,sB(rF × sF ))

where C(μF )r,s ∈ R are given by Definition 6. while B(rF ×sF ) are nonzero matrices
introduced in the Observation 2.

Bearing in mind Definitions 6 and 7 and the the above Lemma 2.2 we see that
the Theorem 2 for cobweb posets extends to be true for all F -denominated posets.

Theorem 2. (Kwaśniewski). Let F be any natural numbers valued sequence. Then
for arbitrary F -denominated graded poset (cobweb posets included)

C(μF )r,s = cr,s = [r = s]+Ks(rF )(−1)s−r = [r = s]+[s > r](−1)s−r[(r+1)F−1]s−r,

with matrix elements from N or the ring R= 2{1} , Z2 = {0, 1}, Z etc.
i.e. for cobweb posets

μ =

⎡
⎢⎢⎢⎢⎣
μ1,1 μ1,2 c1,3I(1F × 3F ) c1,4I(1F × 4F ) c1,5I(1F × 5F ) c1,6I(1F × 6F )
μ2,1 μ2,2 c2,3I(2F × 3F ) c2,4I(2F × 4F ) c2,5I(2F × 5F ) c2,6I(2F × 6F )
μ3,1 μ3,2 I3F ×3F c3,4I(3F × 4F ) c3,5I(3F × 5F ) c3,6I(3F × 6F )
μ4,1 μ4,2 04F ×3F I4F ×4F c4,5I(4F × 5F ) c4,6I(4F × 6F )
... etc. ... and so on ... ...

⎤
⎥⎥⎥⎥⎦

with
μ1,1 = I1F ×1F , μ2,1 = 02F ×1F , μ3,1 = 03F ×1F , μ4,1 = 04F ×1F ,

μ1,2 = c1,2I1F ×2F , μ2,2 = I2F ×2F , μ3,2 = 03F ×2F , μ4,2 = 04F ×2F ,

where I(kF × (k + 1)F ) denotes (recall) kF × (k + 1)F matrix of all entries equal to
one. For any F -denominated poset replace I(kF × (k + 1)F ) by B(kF × (k + 1)F )
obtained from I(kF × (k + 1)F ) via replacing adequately (in accordance with Hasse
digraph) corresponding ones by zeros.

Another Proof. One may prove the above also as follows.
From motivating examples we know that μ(xr,i, xs,j) = μ(xr, xs). Observe then

how the recurrent definition of Möbius function matrix μ gives birth to daughter de-
scendant of μ i.e. the block structure of Möbius function coding matrix C(μ) imply-
ing for C(μ) a recurrence allowing simple solution simultaneously with combinatorial
interpretation of Kroton matrix K = (Ks(rF )) ≡ (Kr,s), where Ks(rF ) = |C(μ)r,s|.
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For that to do call back the recurrent definition of the Möbius function where
x, y ∈ Φ for Π = (Φ,≤) and where – note: μ(x, y) = −1 for x ≺ ·y:

μ(x, y) =
{ 1 ; x = y

−∑x≤z<y μ(x, z), x < y
.

The above recurrent definition of the Möbius function becomes – after linear order
labeling has been applied – either r, s, i ∈ N ∪ {0} – as fixed-stated in this note,
Remark 2.1 or r, s ∈ N – whereby r, s are block-row and block-column indexes
correspondingly – say it again – the above recurrent definition Möbius function in
the case of F -denominated graded posets becomes (cr,r+1 = −1)

cr,s =
{ 1 ; s = r

−∑r≤i<s cr,i, r < s
.

For that to see note that ∀x, y, z ∈ Φ, ∃ r, s, i ∈ N such that xr ∈ Φr , ys ∈ Φs,
zi ∈ Φi, hence for xr < ys ≡ r < s where (important!) r, s, i stay now for labels of
independent sets (levels) {Φk} i.e. label steps of La Scala i.e. label blocks. Thereby

cr,s = μ(xr , ys) = −
∑

xr≤z<ys

μ(xr, z) = −
∑

xr≤zi<ys

μ(xr , zi) =
∑

r≤i<s

cr,i.

(Bear in mind Lemma 2.2. in order to get back to μ matrix unblocked appearance
if needed.) From this recurrence the thesis follows.

How does this happens? 1) Let us put r = 1 just for the moment in order to
make an inspection via example (r stays for block-row label and k > 1) and 2) use
the Russian babushka in Babushka inspection i.e. apply the recurrent relation above
subsequently till the end - till the smallest of size 1 babushka is encountered which
is here cr,r+1 = −1. Use then trivial induction to state the validity of what follows
below for all relevant values of variables r, s ∈ N.

c1,k = −
∑

1≤i<k

c1,i =

⎛
⎝−

∑
1≤i<kF

⎞
⎠
⎛
⎝−

∑
1≤i<(k−1)F

⎞
⎠ ...

⎛
⎝−

∑
1≤i<3F

⎞
⎠ c1,2,

i.e.

c1,k = (−1)k−1

⎛
⎝ ∑

1≤i<kF

⎞
⎠ ...

⎛
⎝ ∑

1≤i<4F

⎞
⎠
⎛
⎝ ∑

1≤i<3F

⎞
⎠ (+1),

i.e.
c1,k = −[1 + 1 = k] + [k > 2](−1)k−1 (kF − 1)) ... (3F − 1)) (+1) =

= −[1 + 1 = k] + [k > 2](−1)k−1
k∏

i=2+1

(iF − 1).

Similarly we conclude that now for arbitrary r, s ∈ N

cr,s = [s = r] − [s = r + 1] + [s > r + 1](−1)s−r (sF − 1)) ... (3F − 1)) (+1) =
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= [s = r] − [s = r + 1] + [s > r + 1](−1)s−r
s∏

i=r+2

(iF − 1).

Equivalently we conclude that now for arbitrary r, s ∈ N ∪ {0}
cr,s = [s = r]− [s = r+ 1] + [s > r+](−1)s−r ((s− r − 1)F − 1)) ... (3F − 1)) (+1) =

= [s = r] − [s = r + 1] + [s > r + 1](−1)s−r
s−1∏

i=r+1

(iF − 1).

To colligate and to imagine hint. Starting from the left upper corner of La Scala
of ζ, μ,...,σ ∈ I(Π, R) down ⇓ is biunivoquely starting from the “bottom” or “root”
minimal elements level Φ0 up ⇑ the Hasse digraph (Π,≺ ·) uniquely representing
the “much, much more cobwebbed tree”’ – the digraph (Π,≤).

Descriptive – combinatorial interpretation: Once the formula has been observed-
derived as above the following turns out perceptible. Namely note that

1. for F = N , [s �= r], the Kroton matrix element |C(μN )r,s|, where

C(μN )r,s = cr,s = [s > r](−1)s−r [(r + 1)N − 1]s−r

is equal to the number of heads’ dispositions of maximal chains tailed at one vertex
of the r − th level and headed up at one vertex of the s-th level. This biunivoquely
corresponds to the number of summands = |C(μN )r,s| entering the recurrence cal-
culation of the C(μN ) matrix (“the Russian babushka in Babushka introspection”
with interchangeable signs) being in one to one correspondence with climbing up
Hasse digraph i.e. descending down the matrix μ La Scala along the way uniquely
encoded by the subjected to their heads disposition maximal chains

c =< xr, xr+1, ..., xs−1, xs >, xi ∈ Φi, i = r, r + 1, ..., s− 1, s

with the tail r and the head s fixed as start and the end points of the descending
down the La Scala blocks trip ( ≡ climbing up the levels of the graded Hasse digraph
〈Φ,≺ ·〉).

2. For the same interpretation in the general F -case apply the Upside Down
Notation Principle.

According to and from the above one extracts the obvious now property of Kroton
functions i.e. matrix elements of Kroton matrix K = (Ks(rF )) ≡ (Kr,s).

Lemma 2.3. (r, s ∈ N ∪ {0}).

Ks+1(rF ) = Ks(rF ) • [sF − 1], Kr+1(rF ) = 1

is equivalent to

Kr,s = −
∑

r≤i<s

(−1)s−iKr,i Kr+1(rF ) = 1, s > r.
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Remark 5. Colligation. Scrape together and proceed to collocate the above combi-
natorial interpretation with hyper-boxes from [9].

Recall Definitions 4 and 5. Recall: Cmax(Πn) is the set of all maximal chains of
Πn. Recall: Ck,n

max =
{

maximal chains in 〈Φk → Φn〉
}

. Consult now Section 3. in [9]
in order to view Cmax(Πn) or Ck,n

max as the hyper-box of points.
Namely [9] denoting with Vk,n the discrete finite rectangular F -hyper-box or

(k, n) − F -hyper-box or in everyday parlance just (k, n)-box

Vk,n = [kF ] × [(k + 1)F ] × ...× [nF ]

we identify (see Figure 7.) the following two just by agreement according to the
F -natural identification:

Ck,n
max ≡ Vk,n

i.e.
Ck,n

max =
{

maximal chains in 〈Φk → Φn〉
} ≡ Vk,n.

Fig. 7: A cobweb layer 〈Φ2 → Φ4〉 and equivalent hyper-box V2,4.

Exercise. Deliver the descriptive combinatorial interpretation of Kroton matrix in
the language of hyper-boxes from [9].

Recapitulation 2.2 (natural join). Recall that both ≤ partial order and ≺ · cover
relations are natural join of their bipartite correspondent chains, and this is exactly
the reason and the very source of the Theorem 2 validity and shape. This is also the
obvious clue statement for what follows. Note also that all on structure of any P
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poset’s information is coded by the ζ matrix – a characteristic function of ≤∈ P =
〈Φ,≤〉. In short: ζ and equivalently μ = ζ−1 are the Incidence algebra of P coding
elements. In brief – recall – the following identifications are self-evident:

〈Φ, μF 〉 ≡ 〈Φ, ζF 〉 ≡ 〈Φ,≤〉 ≡ 〈Φ,C(μF )〉 .

3. F -nomial coefficients and [Max] matrix of the N weighted
reflexive reachability relation

Call back now the Remark 1. Then consider the incidence algebra of the cobweb
poset Π as the algebra over (simultaneously) the ring R and the Boolean algebra
2{1}. Denote this incidence algebra by I(Π, R, 2{1})).

In the case R = 2{1} denote it by

I(Π, 2{1}) ≡ I(Π, 2{1}, 2{1}).

Then for ζ ∈ I(Π, 2{1}) we have of course ζ−1 = ζ (“reflexive reachability”), ζ−1
≤· =

ζ≤· (reflexive “cover”) and so on. This is of course true for any poset relevant algebra
i.e. for I(P, 2{1}) – graded posets with finite set of minimal elements – included.

Consider now the algebra I(Π,Z, 2{1})). We shall define now another characteristic
matrix [Max] as the matrix of the “N weighted” reflexive reachability relation. For
that to do recall that in case of I(Π, 2{1})

≤ = ≺ ·∗ = reflexive reachability of ≺ ·
≺ ·∗ ≡ (I− ≺ ·)−1 =≺ ·0@+ ≺ ·1@+ ≺ ·2@ + ...+ ≺ ·k@ + ... ≡ ⋃

k≥0 ≺ ·k,
where binary relations ≤ ⊂ Φ × Φ and ≺ · ⊂ Φ × Φ etc. as subsets are identified
with their matrices (see SNACK, [3, 2]), for example ≺ · ≡ κ. In the above the
Boolean powers of κ were in action while here below this are to be powers over the
R = N,Z, 2{1}, etc.

The [Max] matrix of the N weighted reflexive reachability relation is defined by
the over the ring Z power series formula

[Max] = (I− ≺ ·)−1 =≺ ·0+ ≺ ·1+ ≺ ·2 + ...+ ≺ ·k + ... =
∑
k≥0

κk = (I − κ)−1
.

Naturally

[Max]−1 = δ − κ ==

⎡
⎢⎢⎢⎢⎣
I1 −B1 zeros

I2 −B2 zeros
I3 −B3 zeros
...

In −Bn zeros

⎤
⎥⎥⎥⎥⎦
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where (recall from Section I. 1.5)

[Max]F = A0
F + A1

F + A2
F + ... = (1 − AF )−1 =

=

⎡
⎢⎢⎢⎢⎣
I1F ×1F B(1F × 2F ) B(1F × 3F ) B(1F × 4F ) B(1F × 5F ) ...

02F ×1F I2F ×2F B(2F × 3F ) B(2F × 4F ) B(2F × 5F ) ...

03F ×1F 03F ×2F I3F ×3F B(3F × 4F ) B(3F × 5F ) ...

04F ×1F 04F ×2F 04F ×3F I4F ×4F B(4F × 5F ) ...

... etc. ... and so on ...

⎤
⎥⎥⎥⎥⎦ .

Comment 6. Combinatorial interpretation of [Max].
[Max]s,t = the number of all maximal chains in the poset interval

[xs,i, xt,j ] = [xs, xt] ≡ [s, t],

where xs,i, xs ∈ Φs and xt,j , xt ∈ Φt for , say , s ≤ t with the reflexivity (loop)
convention adopted i.e. [Max]t,t = 1.

The above obvious statement being taken into the account, in view and in con-
formity with the environment of the Theorem 1 we arrive at the trivial and powerful
Theorem 3.

Theorem 3. Consider any F -cobweb poset with F being a natural numbers valued
sequence. Let xk ≡ k ∈ Φk and xt ≡ t ∈ Φn. Then

∑
i∈Φn

[Max]k,i ≡
nF∑
i=1

[Max]k,i = |Cmax〈Φk+1 → Φn〉| = n
m
F ,

where m = n− k.

Note that k,m, n are level labels (vertical) while i = 1, ..., nF stays for horizontal
– along the fixed level – label. With that in mind fixed we observe what follows.

Corollary 3.1. Consider any F -cobweb poset with F being a cobweb admissible se-
quence. Let xk ≡ k ∈ Φk and xn ≡ n ∈ Φn. Let n ≥ k ≡ (n−m) ≥ 2. Then

[Max]k,n |Φn| = n
m
F

i.e.

[Max]k,n =
(
n− 1
k − 2

)
F

(n− k + 1)F !

Corollary 3.2. Colligate with heads dispositions allied to the Theorem 2.

Consider any F -cobweb poset with F being a cobweb admissible sequence. Let xk ≡
k ∈ Φk and xm ≡ n ∈ Φn. Let l + 1 = n ≥ k ≡ (n−m) ≥ 2. Then

[Max]k,n |Φn| = n
m
F ,
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i.e. (
n− 1

n− 1 − k

)
F

(n− 1 − k)F ! =
(
n− 1
k

)
F

(n− 1 − k)F ! = [Max]k−2,n,

(
n− 1

n− 1 − k

)
F

=
[Max]k−2,n

(n− 1 − k)F !
,

i.e. (n− 1 = l) (
l

k

)
F

=
(

l

l − k

)
F

=
[Max]k−2,l+1

(l − k)F !
.

Note that k,m, n, l are level labels (vertical) and this is convention to be kept till
the end of this note.

The above obvious statement being taken into the account, in view and in conformity
with the environment of Theorems 1 and 2 we are prompt to extract the trivial and
powerful statement as the Theorem 4.

Theorem 4. Consider any F -cobweb poset with F being a cobweb admissible se-
quence. Let xk ≡ k ∈ Φk and xm ≡ n ∈ Φn. Let (l + 1) ≥ k ≥ 2. Then(

l

k

)
F

=
(

l

l − k

)
F

=
[Max]k−2,l+1

(l − k)F !
,

i.e.
(

l
k

)
F

= (l − k)F !’th fraction of the number of all maximal chains in the poset
interval [xk−2, xl+1], where xl ∈ Φl and xk ∈ Φk with the reflexivity (loop) convention
adopted i.e. [Max]n,n = 1.

Farewell Exercises

Problem-Exercise 3.1. Rewrite Markov property in F -nomials language.

Problem-Exercise 3.2. Find the inverse of
(

l
k

)
F

using the Theorem 4 and the knowl-
edge of [Max]−1. Compare with [11].
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[1] A. K. Kwaśniewski, Graded posets zeta matrix formula, Bull. Soc. Sci. Lettres �Lódź
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[3] A. K. Kwaśniewski, Cobweb posets and KoDAG digraphs are representing natu-
ral join of relations, their di-Bigraphs and the Corresponding Adjacency Matrices,
arXiv:math/0812.4066v1,[v1] Sun, 21 Dec 2008 23:04:48 GMT.
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[6] A. K. Kwaśniewski, How the work of Gian Carlo Rota had influenced my group re-
search and life, arXiv:0901.2571 [v4] Tue, 10 Feb 2009 03:42:43 GMT.
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[19] A. K. Kwaśniewski, Combinatorial interpretation of the recurrence relation for Fi-
bonomial coefficients, Bull. Soc. Sci. Lettres �Lódź 54 Ser. Rech. Deform. 44 (2004),
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FORMU�LA NA MACIERZ MÖBIUSA DOWOLNEGO,
CZȨŚCIOWO UPORZA̧DKOWANEGO, ZBIORU Z GRADACJA̧ II
– B. RELACJA WAŻONEJ REFLEKSYJNEJ OSIA̧GALNOŚCI

S t r e s z c z e n i e
W czȩści IIB wskazuje siȩ bezpośredni sposób otrzymywania macierzy Möbiusa dowol-

nego czȩściowo uporza̧dkowanego zbioru z gradacja̧ z wyprowadzonej jawnej formu�ly na
postać tej macierzy dla szczególnych czȩściowo uporza̧dkowanych zbiorów ze stopniowaniem
zwanych ,,cobweb posets”.

Cel ten jest osia̧gniȩty dziȩki owych ,,cobweb posets” jako i dowolnych (posets) czȩściowo
uporza̧dkowanych zbiorów ze stopniowaniem (gradacja̧) o skończonej liczbie elementów
minimalnych utożsamieniu ze z�la̧czeniem naturalnym (natural join) �lańcuchów grafów dwu-
dzielnych.

Odzwierciedla to skutkuja̧co struktura i macierzy sa̧siedztwa i macierzy Möbiusa wszys-
tkich acyklicznych grafów skierowanych zwanych diagramami Hasse tych ,,posetów” z gra-
dacja̧. Jest to mianowicie postać sekwencyjnego z�la̧czenia naturalnego macierzy sk�ladowych
�lańcuchów grafów dwudzielnych.

W przypadku szczególnych czȩściowo uporza̧dkowanych zbiorów ze stopniowaniem zwa-
nych ,,cobweb posets” stanowia̧cych w z�la̧czaniu naturalnym cia̧gi Kompletnych Grafów
dwudzielnych – uporza̧dkowanych (ordered) oraz skierowanych i acyklicznych (DAG’s) au-
tor na cześć Profesora Kazimierza Kuratowskiego nazwa�l owe grafy Hasse’go – KoDAGs.
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Summary
In the paper calculations of substitute resistances, capacitances and inductances of

electric network having fractal shaped parameters have been made. Components of the
network: resistors, capacitors or inductors are connected either in series or parallel, the val-
ues of whose consecutive elements constitute a geometric progression. The derived formulae
for the border cases have been discussed. The obtained results are not only limit but may
also be helpful in designing some electric network.

1. Introduction

The electrical resistance R is a physical quantity that is defined by the formula:

R =
U

I
,(1)

where U is the voltage and I the current intensity [1]. In practice, the resistance
is realized by the resistor that is represented graphically by the symbol below, see
Fig. 1. The resistor’s resistance is conventionally denoted by the letter R.

Resistors can be connected together in series, parallel or combinations of both, to
produce more complex chains or networks. A good example of a simple circuit made
up of a combination of series and parallel resistors is shown in Fig. 2. The simplest
connection of resistors connected in series as shown in Fig. 3 will be examined. The
chain should be replaced with one resistor that will be as effective as two resistors
coupled together. The resistance of this single resistor is called a substitute resistance
of the combination and denoted by RS (the letter S stands for the English word to
substitute).
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Fig. 1: The symbol of a resistor.

Fig. 2: The simple network of resistors.

Fig. 3: Connection two resistors in series.

The value of the substitute resistance Rs, see Fig. 4, can be calculated employing
the formula (1). Thus,

R1 =
U1

I
,(2)

R2 =
U2

I
,(3)

RS =
U

I
.(4)

The supply voltage U is equal to the sum of voltages U1 and U2, in accordance
with the Kirchhoff’s second law, and the current intensity is the same for both
resistors (Kirchhoff’s first law). It can be written as:

U = U1 + U2.(5)

From the equations (2–4), U1, U2, U are determined and replaced with (5). Thus,
we obtain

RSI = R1I +R2I.(6)
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Fig. 4: Calculation of the substitute resistance two resistors connected in series.

Fig. 5: Calculation of the substitute resistance two resistors connected in parallel.

By dividing both sides (6) by I we obtain

RS = R1 +R2.(7)

In a general case of n resistors connected in series, there is

RS =
n∑

i=1

Ri.(8)

Two resistors connected in parallel will be examined, see Fig. 5. Similarly as
before, the equations can be written as follows:

R1 =
U

I1
,(9)

R2 =
U

I2
,(10)

RS =
U

I
.(11)

In this case, in accordance with the Kirchhoff’s second law, the voltage across both
resistors is the same and is equal to U , whereas current intensities I1, I2 flowing
through each resistor satisfy the condition
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I = I1 + I2.(12)

From the equations (9–11), I1, I2, I are determined and replaced with (12), and
then both sides of the obtained equation are divided by U . Thus, we obtain

1
RS

=
1
R1

+
1
R2

,(13)

or

RS =
1

1
R1

+ 1
R2

.(14)

In a general case of n resistors in parallel, there occurs

RS =
1

n∑
i=1

1
Ri

.(15)

The electrical capacity C is an electrical quantity that is defined by the equation

C =
Q

U
,(16)

where Q is the electric charge and U is the voltage. The capacitance is realized
by means of the capacitor that has been represented graphically in Fig. 6. The ca-
pacitor’s capacitance is denoted conventionally by C. Similarly as before, our de-
liberations lead to the following formulae for the substitute capacitance CS of the
capacitors connected in series

CS =
1
n∑

i=1

1
Ci
,(17)

as well as for those connected in parallel

CS =
n∑

i=1

Ci.(18)

In the equation (16), U is the denominator, and therefore with the capacitors con-
nected in series, the reciprocals of their individual capacitances should be added up,
and with capacitors in parallel, their capacitances need to be summed up. In other
words, quite the reverse as it is in the case of the resistors in parallel vs. in series.
The inductance L is a physical quantity that is defined by the equation

L =
ϕ

I
,(19)

where ϕ is the magnetic stream and I is current intensity. In practice, inductance is
realized by means of a coil that is represented graphically in Fig. 7, and its inductance
is conventionally denoted by L. Similarly as before, our deliberation leads us to a
conclusion that if the adjacent coils do not affect each other magnetically, e.g. if they
are separated by a considerable distance, then for the coils in series, the formula
applies
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Fig. 6: The symbol of a capacitor. Fig. 7: The symbol of a coil.

Fig. 8: Scheme of the complex network of resistors.

LS =
n∑

i=1

Li,(20)

and for the parallel coils

LS =
1

n∑
i=1

1
Li

.(21)

With a more complex combination of resistors made up of m chains with n

resistors in each chain, as shown in Fig. 8, we can derive from the equations (15) and
(18)

RS =
1

m∑
i=1

1∑
n
j=1 Rij

,(22)

In the last case, the resistances Rij may be treated as the elements of a rectangular
matrix with m rows and n columns.

Let us now examine the properties of fractals. No comprehensive, broad or narrow
definition of a fractal will be provided here, as it is still a matter of debate among
mathematicians [2]. We will only consider the major defining feature of a fractal,
which is self-similarity – that is the structure of a fractal is made up of parts that look
like the original structure itself, or that its structure is similar at all scales. A good
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example of elementary fractals are the Cantor Set and the Sierpiński Gasket, also
known as the Sierpiński Carpet [3] named after the Polish mathematician Waclaw
Sierpiński [3].

The method of constructing the Cantor Set has been demonstrated in Fig. 9. The
set is divided successively into three parts and the centre of the partition is removed.
This process is iterated ad infinitum over all of the subsets that arise after successive
iterations. A similar technique can be applied to construct the Sierpinski Carpet,
see Fig. 10. In this case, an equilateral triangle is divided into four smaller, upside
down triangles whose side lengths are equal to half the side length of the original
or proceeding triangle. Then, the central, reversed sub-triangle is removed out the
divided triangle. This process is iterated an infinite number of times over all of the
triangles that have been obtained after successive divisions.

Fig. 9: Construction of the Cantor’s holed set.

Fig. 10: Construction of the Sierpiński gasket.
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2. The substitute resistance of the network of fractal resistors

A chain of n resistors in series will be reviewed and presented in Fig. 11. Suppose
that the resistance i of this resistor satisfies the condition

Ri = R1q
i−1 (1 ≤ i ≤ n), R1 > 0, q ∈ R+.(23)

This is valid for q > 0, as negative resistances have no physical meaning with respect
to ordinary resistors. If n→ ∞, then the chain is said to be self-similar. Each element
of the chain that has appeared after the removal of one resistor on the left-hand
side and marked with a dashed line has the same structure as the chain before
the removal. The substitute resistance RS of the chain, according to the obtained
equation (8), is defined by the equation

RS =
n∑

i=1

Ri.(24)

The resistances follow a geometric progression whose sum of the n terms RS , called
a row is determined by the following formulae [4]:

RS = R1
1 − qn

1 − q
for q �= 1,(25)

RS = nR1 for q = 1.(26)

Let’s find out how RS behaves at n→ ∞ for different values of q.
If q > 0, then from the equation (25) is obtained

lim
n→∞RS = R1 lim

1 − qn

1 − q
= ∞, because lim

n→∞ qn = ∞.(27)

This implies that that such a chain has infinite resistance and in accordance with
the formula (4) the electric current cannot flow through it.

If q < 1, then from the equation (25) is obtained

lim
n→∞RS = R1 lim

n→∞
1 − qn

1 − q
=

R1

1 − q
, because lim

n→∞ qn = 0.(28)

The implication is that the resistance of the chain is finite. The closer isq to 1, the
higher is the resistance, and in accordance to the formula (4) the electric current is
able to flow through it. The lower is the intensity I of the electric current, the closer
is the value of q to 1.

Suppose q = 1, from the equation (26) is obtained

lim
n→∞RS = R1 lim

n→∞n = ∞(29)

which implies that, in accordance with the equation (4), the current will not flow
through such a chain, as its resistance is infinite.

Let’s examine the network of n resistors in parallel, as shown in Fig. 12, if the i
resistance of the resistor satisfies the condition (23), that is, R1 = R1q

i−1
i Also this

circuit has a fractal structure. In accordance with (15), the substitute resistance of
this circuit is determined by
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Fig. 11: The fractal network of resistors connected in series.

Fig. 12: The fractal network of resistors connected in parallel.

RS =
1

n∑
i=1

1
Ri

.(30)

To compute the sum in the denominator of the equation (30) it is worth noting the
relationship

1
R1

=
1

R1qi−1
=
(

1
R1

)(
1
q

)i−1

.(31)

The equation (31) describes a geometrical progression whose i term is equal to
1/R1, the first term 1/R1, and the quotient is 1/q. According to formula (25) and
(26), the sum in the denominator of (30) equals:

n∑
i=1

1
R1

=
1
R1

1 −
(

1
q

)n

1 − 1
q

for q �= 1,(32)

n∑
i=1

1
R1

=
n

R1
for q = 1.(33)

After replacing equations (32) and (33) with (30) we obtain:

RS = R1

1 − 1
q

1 −
(

1
q

)n for q �= 1,(34)
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RS =
R1

n
for q = 1.(35)

Now, let us examine how RS behaves, if n→ ∞ at different values of q. If q = 1.
The formula (34) implies

lim
n→∞RS = R1 lim

n→∞
1 − 1

q

1 −
(

1
q

)n = R1

(
1 − 1

q

)
because lim

n→∞

(
1
q

)n

= 0.(36)

This carries an implication that, in this case, the resistance is finite and obviously
positive, which enables the electric current to flow through such a circuit.

If q < 1, it is given from the formula (34)

lim
n→∞RS = R1 lim

n→∞
1 − 1

q

1 −
(

1
q

)n = 0 because lim
n→∞

(
1
q

)n

= ∞.(37)

This implies that the resistance in such a circuit is zero, and according to the equa-
tion (4), this would result in an instantaneous jump to an infinitely strong current
that could cause a short circuit. In this case, in accordance with the formula (23),
an infinite number of decreasingly low resistances would be connected, so that even-
tually the resistance would reach the zero value.

Let’s examine one more case, where q = 1. It follows from the equation (35) that

lim
n→∞RS = R lim

n→∞
1
n

= 0.(38)

Also in this case, there would be a short circut, as successive similar resistors
would be connected, however, in increasing numbers, and eventually the network’s
resistance would decrease to zero.

3. The substitute capacitance of the network
of fractal capacitors

Let’s consider a chain of n capacitors connected in series, as in Fig. 13, in which i

capacitance of the capacitor is expressed by

Ci = C1q
i−1(1 ≤ i ≤ n), C1 > 0, q ∈ R+.(39)

By applying (17) and acting in a similar way as in the case of a chain of resistors in
parallel, we obtain

CS = C1

1 − 1
q

1 −
(

1
q

)n for q �= 1,(40)

and

CS =
C1

n
for q = 1.(41)
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After using (36), the border value CS for n → ∞ and q > 1 similarly as for the
resistors in parallel is

CS = C1

(
1 − 1

q

)
for q > 1.(42)

which means that in order to obtain the finite capaticance of such a chain it is nec-
essary to connect capacitors with increasingly higher capacitance. It will be possible
then to accumulate a finite charge on this chain. If q < 1, then the border value
CS , after applying the equation (37) is CS = 0, and thus the chain has zero capaci-
tance and one cannot accumulate an electric charge on it. Similarly, for q = 1 after
applying (38), CS = 0 is obtained.

Now a network of capacitors will be taken into consideration with a structure as
presented in Fig. 14. By applying (18) and acting in a similar way as in the case of
the resistors in series, we can derive formulas:

CS = C1
1 − qn

1 − q
for q �= 1,(43)

and

CS = nC1 for q = 1.(44)

Fig. 13: The fractal network of capacitors connected in series.

Fig. 14: The fractal network of capacitors connected in parallel.

The border values CS for n→ ∞ can be obtained by analogy from formulae (27–29).
There occurs then:

1. CS = ∞ for q > 1, which means that the capacitors with increasingly high
capacitance are connected, and the network has an infinite capacitance, and
so an infinite charge would accumulate on it, which is physically impossible;
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2. CS = C1/(1 − q), which means that capacitors of decreasing capacitances are
connected and the network’s capacitance as well and the charge accumulated
on it are finite,

3. CS = ∞ for q = 1, and so capacitors are connected, of constant capacitance,
but their numbers, and the circuit capacitance and the charge are also infinite.

4. The substitute inductance of the network of fractal coils

It has been assumed that the inductance of the i coil in the chain of coils connected
in series, see Fig. 15, is determined by the formula

Li = L1q
i−1(1 ≤ i ≤ n), L1 > 0, q ∈ R+.(45)

Fig. 15: The fractal network of coils connected in series.

In this case, we make use of an analogy with the series resistors and obtain:

LS = L1
1 − qn

1 − q
for q �= 1,(46)

and

LS = nL1 for q = 1.(47)

The results from the analysis of the border cases for n → ∞ are similar to those of
resistors in series.

Suppose the i inductivity in the network of parallel coils, see Fig. 16, is satisfied by
the formula (45). Drawing on analogy of resitors connected in parallel, the formulas
are derived:

LS = L1

1 − 1
q

1 −
(

1
q

)n for q �= 1,(48)

LS =
L1

n
for q = 1.(49)

The analysis of the border cases for the coil network is similar to that for the
parallel resistors.

For the clarity’s sake and easier comparisons, computation results for the substi-
tute resistances, capacitances ind inductivities have been gathered in Tab. 1.
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Fig. 16: The fractal network of coils connected in parallel.

Table 1. The list of the formulas on the substitute resistances RS , capacitances CS

and inductances LS of the fractal networks.
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5. Conclusions

1. By applying a geometric progression, we could calculate the substitute re-
sistances, capacitances and inductances of some networks of fractal resistors,
capacitors and coils, on the assumption that the resistance, capacitance and
inducance ratios of consecutive elements are constant.

2. It has been demonstrated that the results obtained are correct physicswise in
respect to the border case, where the numbers of n, m elements are becoming
infinite (n,m→ ∞).

3. Reasoning by analogy played a crucial role in obtaining fast results.

4. The method presented can also be applied to calculate substitute or resultant
values of other physical quantities, e.g. equivalent focal values of the thin set,
close-up lenses, or the resultant electric field strength of a series of point charges
[5, 6]. Our knowledge of the values of these substitute or resultant quantities
is of vital importance in the field of physics and technology.
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ZASTȨPCZE OPORNOŚCI, POJEMNOŚCI I INDUKCYJNOŚCI
PEWNYCH SIECI O STRUKTURZE FRAKTALNEJ

S t r e s z c z e n i e
W pracy obliczono zastȩpcze parametry, takie jak: oporności, pojemności elektryczne

i indukcyjności, pewnych sieci o strukturze z�lożonych tych elementów. Oporniki, konden-
satory i cewki indukcyjne zosta�ly po�la̧czone szeregowo albo równolegle. Wartości wszystkich
rozpatrywanych elementów tworzy�ly cia̧g geometryczny. Przedyskutowano wyprowadzone
wzory w przypadkach granicznych. Wzory te maja̧ nie tylko znaczenie poznawcze, ale moga̧
być również użyteczne przy projektowaniu obwodów elektrycznych.
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