Stocks and flows in the context of cointegration analysis
DOI:
https://doi.org/10.26485/10.26485/SPE/2020/114/15Keywords:
cointegration, macroeconomics, I(2) analysisAbstract
Background: Stocks and flows – key economic categories are considered in the context of their role in the mechanism of cointegration dependencies, in particular in achieving equilibrium in the economy.
Research purpose: The aim of the analysis was to combine a highly mathematical one- and multi-dimensional cointegration analysis with the basic macroeconomic mechanisms, as well as to show the differences in selected economic doctrines in the light of the degree of integration of variables and the type of macroeconomic dependencies in different time horizons. The same research goal was to prove that a co-integration analysis is a necessary (but not sufficient) condition to verify most assumptions, e.g. the hypothesis of money neutrality in the long run. Another goal is to order knowledge from the borderline of advanced statistical methods and economic theory, especially in those areas where misunderstandings occur at the intersection of these sub-disciplines.
Methods: The cointegration analysis for I(1) and I(2) variables was carried out on the basis of simple dynamics equations as well as VECM models used in a multidimensional approach. Differences between the role of stocks and flows in the mechanism of achieving equilibrium in the economy were discussed. These questions – relatively simple in I(1) systems become more complicated in the case in of the stochastic trends I(2) presence.
Conclusions: The third type of economic categories called accelerants has been introduced to better distinguish between long-, medium- and short-run relationships in I(2) domain. Even a simple integration analysis can provide important recommendations for economic policy. Combining the integration analysis with the stocks-flows-accelerants macroeconomic approach can be an additional test tool, important because classic simple stationarity tests of DGP processes have low power. Proper determination of the order of integration of such processes is necessary to avoid identifying the so-called spurious regressions, and these in turn are already an incentive for wrong decisions at every levels of the economy. Of particular importance, however, are the indications resulting from linking stocks-flows considerations with a multidimensional cointegration analysis. Combining these issues with the possibility of decomposing the processes of achieving the state of eguilibrium in the economy for the short-run cyclical and long-run horizon should belong to the canon of making economic decisions. An important supplement should be the analysis of the sources of shocks that violate the equilibrium state of the system and the estimation of time of impact of such shocks.
Downloads
References
Blangiewicz M., Charemza W., Cointegration in Small Samples: Empirical Percentiles, Drifting Moments and Customized Testing, Oxford Bulletin of Economics and Statistics 1990/52, s. 303–315.
Bystrov V., Measuring the Natural Rates of Interest in Germany and Italy, Central European Journal of Economic Modelling and Econometrics 2018/10/4, s. 333–353.
Dobija D., Klimczak M., Development of accounting in Poland: Market efficiency and the value relevance of reported earnings, The International Journal of Accounting 2010/45/3, s. 356–374.
Engle R.F., Granger C.W.J., Cointegration and Error Correction: Representation, Estimation and Testing, Econometrica 1987/55, s. 251–276.
Goczek Ł., Kania-Morales J., Analiza porównawcza efektywności rynków papierów wartościowych ze szczególnym uwzględnieniem kryzysu w latach 2007−2009, Bank i Kredyt 2015/1, s. 41–90.
Grabowski W., Welfe A., Global stability of dynamic models, Economic Modelling 2011/28/3, s. 782–784.
Granger C.W.J., Some Properties of Time Series Data and Their Use in Econometric Model Specification, Journal of Econometrics 1981/16, s. 121–130.
Hamilton J.D., Time Series Analysis, Princeton University Press 1994.
Johansen S., A Representation of Vector Autoregressive Processes Integrated of Order 2, Econometric Theory 1992/8, s. 188–202.
Juselius K., Cointegrated VAR Model. Methodology and Applications, Oxford University Press, Oxford 2006.
Juselius K., Inflation, Money Growth and the I(2) Analysis, w: A. Welfe (red.), New Directions in Macromodelling, Elsevier, Amsterdam 2004, s. 69–106.
Juselius K., Price Convergence in the Long Run and Medium Run. An I(2) Analysis of Six Price Indices, w: R. Engle, H. White (red.), Cointegration, Causality and Forecasting, Festschrift in Honour of Clive W.J. Granger, Oxford University Press, Oxford 1999, s. 301–325.
Kelm R., Majsterek M., The I(2) Analysis of Money Demand and Inflation in Poland in the Transition Period 1995–2005, w: W. Welfe, A. Welfe (red.), Proceedings of the 32-th Conference „Macromodels’2005”, Chair of Econometric Models and Forecasts, Łódź 2006, s. 49–72.
Koop G., Ley E., Osiewalski J., Steel M.F.J., Bayesian Analysis of Long Memory and Persistence Using ARFIMA Models, Journal of Econometrics 1997/76, s. 77–105.
Kufel T., “Nonsense Correlation between Time Series” – historia badań symulacyjnych procesów zintegrowanych, w: Dynamiczne modele ekonometryczne, Materiały zgłoszone na VII Ogólnopolskie Seminarium Naukowe 4–6 września 2001, Wydawnictwo Uniwersytetu Mikołaja Kopernika, Toruń 2001.
Kurita T., Modelling Time Series Data of Monetary Aggregates Using I(2) and I(1) Cointegration Analysis, Bulletin of Economic Research 2013/65/4, s. 372–388.
Kydland F., Prescott E., Rules Rather Than Discretion: The Inconsistency of Optimal Plans, Journal of Political Economy 1977/85/3, s. 473–491.
Lütkepohl H., New Introduction to Multiple Time Series Analysis, Springer Verlag, Berlin Heidelberg 2005.
Majsterek M., Modelowanie systemów skointegrowanych, Bank i Kredyt 2014/45/5, s. 435–466.
Majsterek M., Wielowymiarowa analiza kointegracyjna w ekonomii, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2008.
Majsterek M., Zmienne zintegrowane w stopniu drugim w modelowaniu ekonometrycznym, Przegląd Statystyczny 2003/50/2 s. 97–116.
Welfe A., Modelowanie nierównowagi, Przegląd Statystyczny 1991/2, s. 117–133.
Welfe A., The Price-Wage Inflationary Spiral: The Mixed Economy Case, Fakultät für Wirtschaftwissenschaften und Statistik Universität Konstanz 1994, Diskussionpapier, No. 13.
Welfe A., Kębłowski P., Majsterek M., Price-wage System with Taxation: I(1) and I(2) Analysis, w: W. Welfe, A. Welfe, Proceedings of the 34-th Conference “Macromodels’07”, Chair of Econometric Models and Forecasts, Łódź 2008, s. 213–231.
Welfe A., Majsterek M., Wage and Price Inflation in Poland in the Period of Transition: The Cointegration Analysis, Economics of Planning 2002/35, s. 205–219.
Wróblewska J., Common Trends and Common Cycles – Bayesian Approach, Central European Journal of Economic Modelling and Econometrics 2015/7/2, s. 91–110.