Condition of the post-reclamation Przykona reservoir (Turek, Poland): water and sediment chemistry

Autor

  • Igor Śniady Adam Mickiewicz University, Faculty of Geographical and Geological Sciences
  • Milena Zięba Adam Mickiewicz University, Faculty of Human Geography and Planning
  • Julia Wojciechowska Adam Mickiewicz University, Faculty of Human Geography and Planning
  • Mikołaj Majewski Adam Mickiewicz University, Faculty of Geographical and Geological Sciences
  • Marcin Siepak Adam Mickiewicz University, Faculty of Geographical and Geological Sciences

Słowa kluczowe:

water chemistry, bottom sediments, post-mining area, lignite coal mines, Przykona reservoir, pit lake

Abstrakt

The work discusses the water and sediment geochemistry of the post-reclamation Przykona water reservoir. The analysis mainly focuses on the reservoir's through-flow nature, given that its post-mining history has not resulted in any important contamination of its waters. In the water, cations (Na+, NH4+, K+, Ca2+ and Mg2+) and anions (Cl, NO3, NO2 and SO42−) were examined using ion chromatography (IC). Metals (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the water and sediment were analysed using inductively coupled plasma mass spectrometry (ICP-QQQ). Extractions with 3 mol/L HCl were used to prepare sediment samples. It was shown that the Teleszyna River waters on the side of its inflow have significantly higher contents of all elements than do the reservoir waters. In addition, CA chemometric analysis allowed the samples to be divided into two groups. The first included samples from the Teleszyna River inflow and those closest to it, while the second included samples from the river outflow and those close to it. A comparison of elemental concentrations in the reservoir's waters and the river inflow and outflow indicate that the river's waters undergo purification as they flow through the reservoir. This is confirmed by analysis of metals in bottom sediments at the Teleszyna River inflow, where sedimentation of metals transported by the river takes place. In addition, calculations of the Igeo, CF and PLI indices clearly confirmed the lack of toxicity of the deposited metals.

Bibliografia

Al Heib M., Varouchakis E.A., Galetakis M., Renaud V., Burda J. 2023. A framework for as-sessing hazards related to pit lakes: application on European case studies. Environmental Earth Sciences 82: 365.

Aleksander-Kwaterczak U., Kostka A. 2015. Transport i akumulacja metali ciężkich w osadach dennych. In: U. Aleksander-Kwaterczak, D. Ciszewski (eds) Zanieczyszczenie osadów metalami ciężkimi. Transport, akumulacja, remobilizacja, remediacja. AGH Cracow.

Amirshenava S., Osanloo M. 2022. Strategic planning of post-mining land uses: A semi-quantitative approach based on the SWOT analysis and IE matrix. Resources Policy 76: 102585.

Bojakowska I., Sokołowska G. 1998. Geochemiczne klasy czystości osadów wodnych. Przegląd Geologiczny 46(1): 49-54.

Box G.E., Cox D.R. 1964. An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological) 26(2): 211-252.

Chuchro M. 2011. Environmental data analysis using data mining methods. Studia Informatica 32(2A): 417-428.

Doupé R.G., Lymbery A.J. 2005. Environmental risks associated with beneficial end uses of mine lakes in southwestern Australia. Mine Water and the Environment 24: 134-138.

El-Sayed S.A., Moussa E.M.M., El-Sabagh M.E.I. 2015. Evaluation of heavy metal content in Qaroun Lake, El-Fayoum, Egypt. Part I: Bottom sediments. Journal of Radiation Research and Applied Sciences 8(3): 276.

Fagiewicz K. 2013a. Shaping the water conditions in the postmining areas (a case-study of brown coal mine „Adamów”). Civil and Environmental Engineering Reports 11: 41-53.

Fagiewicz K. 2013b. Post-mining landscape ecology – analysis of selected problems, the case of Adamów brown coal basin. Civil and Environmental Engineering Reports 11: 55-66.

Frankowski M., Zioła A., Siepak M., Siepak J. 2008. Analysis of heavy metals in particular granulometric fractions of bottom sediments in the Mała Wełna River (Poland). Polish Journal of Environmental Studies 17(3): 343--350.

Friedland G., Grüneberg B., Hupfer M. 2021. Geochemical signatures of lignite mining products in sediments downstream a fluvial-lacustrine system. Science of The Total Environment 760: 143942.

Gammons C.H., Harris L.N., Castro J.M., Cott P.A., Hanna B.W. 2009. Creating lakes from open pit mines: processes and considerations – with emphasis on northern environments. Canadian Technical Report of Fisheries and Aquatic Sciences 2826: 1-27.

Gąsiorowski M., Stienss J., Sienkiewicz E., Sekudewicz I. 2021. Geochemical Variability of Surface Sediment in Post-Mining Lakes Located in the Muskau Arch (Poland) and Its Relation to Water Chemistry. Water, Air and Soil Pollution 232: 108.

Gerwin W., Raab T., Birkhofer K., Hinz C., Letmathe P., Leuchner M., Roß-Nickoll M., Rüde T., Trachte K., Wätzold F., Lehmkuhl F. 2023. Perspectives of lignite post-mining landscapes under changing environmental conditions: what can we learn from a comparison between the Rhenish and Lusatian region in Germany? Environmental Sciences Europe 35: 36.

Golder Associates 2017. Literature Review of Global Pit lakes. Pit lake – Case Studies. Report Number: 1777450.

Goździejewska A., Skrzypczak A., Florczyk A., Szwed L. 2019. Post-mining and technological reservoirs in brown coal mines – ecological features and similarities to natural ecosystems. In: M. Cała, J. Schlenstedt, A. Ostręga (eds) The Reclamation and Revitalisation of Post-Mining Areas in Poland and Germany. Planning, Natural and Cultural Considerations. AGH Cracow.

Goździejewska A.M., Koszałka J., Tandyrak R., Grochowska J., Parszuto K. 2021. Functional responses of zooplankton communities to depth, trophic status, and ion content in mine pit lakes. Hydrobiologia 848: 2699-2719.

Helios-Rybicka E., Calmano W., Breeger A. 1995. Heavy metals sorption/desorption on compet-ing clay minerals; an experimental study. Applied Clay Science 9: 369-381.

Huang Y., Zhang D., Xu Z., Yuan S., Li Y., Wang L. 2017. Effect of overlying water pH, dissolved oxygen and temperature on heavy metal release from river sediments under laboratory conditions. Archives of Environmental Protection 43(2): 28-36.

Kasztelewicz Z. 2008. Lignite deposits in Poland and perspectives of their utilization. Polityka Energetyczna 11(1): 181-200.

Kasztelewicz Z. 2014. Approaches to post-mining land reclamation in polish open-cast lignite mining. Civil and Environmental Engineering Reports 12: 55-67.

Kasztelewicz Z., Klich J., Sypniowski S. 2010. Reclamation of post-exploitation terrains in Polish lignite mining. Zeszyty Naukowe Uniwersytetu Zielonogórskiego. Inżynieria Środowiska 137(17): 16-26.

Kaźmierczak U., Strzałkowski P. 2019. Environmentally Friendly Rock Mining – Case Study of the Limestone Mine “Górażdże”, Poland. Applied Sciences 9(24): 5512.

Klapper H., Schultze M. 1995. Geogenically acidified mining lakes – living conditions and possibilities of restoration. Internationale Revue der Gesamten Hydrobiologie 80: 639-653.

Klaver G., Van Os B., Negrel P., Petelet-Giraud E. 2007. Influence of hydropower dams on the composition of the suspended and riverbank sediments in the Danube. Environmental Pollution 148(3): 718.

Klemm W., Greif A., Broeckaert J.A.C., Siemens V., Junge F.W., van der Veen A., Schultze M., Duffek A. 2005. A study on arsenic and the heavy metals in the Mulde River system. Acta Hydrochimica et Hydrobiologica 33: 475-491.

Kuriata-Potasznik A., Szymczyk S., Pilejczyk D. 2018. Effect of bottom sediments on the nutrient and metal concentration in macrophytes of river-lake systems. Annales de Limnologie – International Journal of Limnology 54: 1.

Kuriata-Potasznik A., Szymczyk S., Skwierawski A. 2020. Influence of Cascading River-Lake Systems on the Dynamics of Nutrient Circulation in Catchment Areas. Water 12: 1144.

Kuriata-Potasznik A., Szymczyk S., Skwierawski A., Glińska-Lewczuk K., Cymes I. 2016. Heavy Metal Contamination in the Surface Layer of Bottom Sediments in a Flow-Through Lake: A Case Study of Lake Symsar in Northern Poland. Water 8(8): 358.

Linnik P., Zhezherya V., Linnik R. 2023. Bioavailability and migration features of metals in “bottom sediments – water” system under the action of different environmental factors. Chemistry Journal of Moldova. General, Industrial and Ecological Chemistry 18(1): 9-27.

Madhavi M., Nuttall W.J. 2019. Coal in the twenty-first century: a climate of change and uncertainty. Proceedings of the Institution of Civil Engineers Energy 172(2): 46-63.

Marszelewski W. 2023. New pit lakes in central Poland and their functioning in the period of climate warming. Studia BAS 2: 217-231.

Marszelewski W., Dembowska E.A., Napiórkowski P., Stolarczyk A. 2017. Understanding Abiotic and Biotic Conditions in Post-Mining Pit Lakes for Efficient Management: A Case Study (Poland). Mine Water and the Environment 36: 418-428.

Martin J., Meybeck M. 1979. Elemental mass-balance of material carried by major world rivers. Marine Chemistry 3(7): 173-206.

Mazerski J. 2009. Chemometeria praktyczna – zinterpretuj wyniki swoich pomiarów. Wyd. MALAMUT: 23-49.

McCullough C.D., Schultze M. 2018. Engineered river flow-through to improve mine pit lake and river values. Science of the Total Environment 640-641: 217-231.

Müller G. 1981. The heavy metal pollution of the sediments of Neckars and its tributary. A Stock Taking Chemische Zeit 150: 157-164.

Orlikowski D., Szwed L. 2009. Wodny kierunek rekultywacji w KWB „Adamów” SA – inwestycją w przyszłość regionu. Górnictwo i Geoinżynieria 33 (2): 351-361.

Pasieczna A. (ed.) 2012. Atlas geochemiczny Polski (digital edition). Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy.

Pietrzykowski M., Krzaklewski W. 2018. Reclamation of Mine Lands in Poland. In: M.N.V. Prasad, P.J.D. Favas, S.K. Maiti (eds) Bio-Geotechnologies for Mine Site Rehabilitation, 3rd ed. Elsevier: 493-513.

Placek-Lapaj A., Grobelak A., Fijalkowski K., Singh B.R., Almås Å.R., Kacprzak M. 2019. Post-Mining soil as carbon storehouse under polish conditions. Journal of Environmental Management 238: 307-314.

Polak K., Klich J. 2009. Water reclamation conditions in post-mining lands based on the Przykona water reservoir. Biuletyn Państwowego Instytutu Geologicznego 436: 373-378.

Przybyła C., Kozdrój P., Sojka M. 2015. Application of Multivariate Statistical Methods in Water Quality Assessment of River-Reservoirs Systems (on the Example of Jutrosin and Pakosław Reservoirs, Orla Basin). Annual Set The Environment Protection 17: 1125-1141.

Przybyszewski D., Kruszyńska M. 2019. Changes in the landscape and the problem of development of areas after extraction of rock resources illustrated with the example of the vicinity of Tarnowa (Central Poland). Acta Universitatis Lodziensis. Folia Geographica Physica 18: 41-51.

Rabajczyk A. 2007. The possibilities of using analysis of metal forms occurring in surface waters in environmental monitoring. Monitoring Środowiska Przyrodniczego 8: 19-27.

Rahmonov O., Różkowski J., Klys G. 2022. The Managing and Restoring of Degraded Land in Post-Mining Areas. Land 11(2): 269.

Różkowski K., Polak K., Cała M. 2010. Wybrane problemy związane z rekultywacją wyrobisk w kierunku wodnym. Górnictwo i Geoinżynieria 34(4): 517-525.

Sakellari C., Roumpos C., Louloudis G., Vasileiou E. 2021. A Review about the Sustainability of Pit Lakes as Rehabilitation Factor after Mine Closure. Materials Proceedings 5(1): 52.

Schultze M., Pokrandt K.H., Hille W. 2010. Pit lakes of the Central German lignite mining district: Creation, morphometry and water quality aspects. Limnologica 40: 148-155.

Siepak M., Sojka M. 2017. Application of multivariate statistical approach to identify trace elements sources in surface waters: A case study of Kowalskie and Stare Miasto reservoirs, Po-land. Environmental Monitoring and Assessment 189: 364.

Siepak M., Lewandowska A., Sojka M. 2023. Variability in the Chemical Composition of Spring Waters in the Postomia River Catchment (Northwest Poland). Water 15(1): 157.

Skwierawski A., Sidoruk M. 2014. Heavy metal concentrations in the sediment profiles of the anthropogenically transformed Plociduga reservoir. Ecological Chemistry and Engineering 21(1): 79-88.

Sojka M., Siepak M., Gnojska E. 2013. Assessment of Heavy Metal Concentration in Bottom Sediments of Stare Miasto Predam Reservoir on the Powa River. Annual Set The Environment Protection 15: 1916-1928.

Sojka M., Siepak M., Jaskuła J., Wicher-Dysarz J. 2018. The Heavy Metals Transport in River-Reservoir System: A Case Study of Stare Miasto Reservoir and Powa River, Central Poland. Polish Journal of Environmental Studies 27(4): 1725-1734.

Sojka M., Jaskuła J., Siepak M. 2019a. Heavy Metals in Bottom Sediments of Reservoirs in the Lowland Area of Western Poland: Concentrations, Distribution, Sources and Ecological Risk. Water 11: 56.

Sojka M., Kałuża T., Siepak M., Strzeliński P. 2019b. Heavy metals concentration in the bottom sediments of the mid-forest reservoirs. Sylwan 163(8): 694-704.

Sojka M., Choiński A., Ptak M., Siepak M. 2020. The variability of lake water chemistry in the Bory Tucholskie National Park (northern Poland). Water 12: 394.

Sojka M., Choiński A., Ptak M., Siepak M. 2021. Causes of variations of trace and rare earth elements concentration in lakes bottom sediments in the Bory Tucholskie National Park, Poland. Scientific Reports 11: 244.

Sojka M., Jaskuła J., Barabach J., Ptak M., Zhu S. 2022. Heavy metals in lake surface sediments in protected areas in Poland: concentration, pollution, ecological risk, sources and spatial distribution. Scientific Reports 12: 15006.

Solon J., Borzyszkowski J., Bidłasik M., Richling A., Badora K., Balon J., Brzezińska-Wójcik T., Chabudziński Ł., Dobrowolski R., Grzegorczyk I., Jodłowski M., Kistowski M., Kot R., Krąż P., Lechnio J.R., Macias A., Majchrowska A., Malinowska E., Migoń P., Myga-Piątek U., Nita J., Papińska E., Rodzik J., Strzyż M., Terpiłowski S., Ziaja W. 2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica 91(2): 143-170.

Soni A.K., Mishra B., Singh S. 2014. Pit lakes as an end use of mining: A review. Journal of Mining and Environment 5(2): 99-111.

Stachowski P., Kraczkowska K., Liberacki D., Oliskiewicz-Krzywicka A. 2018a. Water Reservoirs as an Element of Shaping Water Resources of Post-Mining Areas. Journal of Ecological Engineering 19(4): 217-225.

Stachowski P., Liberacki D., Kraczkowska K. 2018b. Rehabilitation concept of the reservoir including its surroundings on the devastated land. Acta Scientiarum Polonorum. Administratio Locorum 17(1): 75-85.

Szczepiński J., Fiszer J., Stachowicz Z., Szczepanik P. 2010a. Reclamation of polish lignite open pits by flooding. Biuletyn Państwowego Instytutu Geologicznego 441: 167-174.

Szczepiński J., Fiszer J., Stachowicz Z., Szczepanik P. 2010b. Water management in abandoned lignite open pits in Poland. In: A. Zuber, J. Kania, E. Kmiecik (eds) XXXVIII IAH Congress, Groundwater Quality Sustainability Krakow, 12–17 September 2010, Extended Abstracts.

Takeno N. 2005. Atlas of Eh-pH Diagrams. Geological Survey of Japan Open File Report No. 419.

Tomilson D., Wilson J., Harris C., Jeffrey D. 1980. Problems in assessment of heavy metals in estuaries and the formation of pollution index. Helgoländer Meeresuntersuchungen 33: 566-575.

Umbría-Salinas K., Valero A., Jan J., Borovec J., Chrastný V., Petrash D.A. 2021. Redox-driven geochemical partitioning of metal(loid)s in the iron-rich anoxic sediments of a recently flooded lignite mine pit: Lake Medard, NW Czechia. Journal of Hazardous Materials Advances 3: 100009.

Varol M. 2013. Dissolved heavy metal concentrations of the Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey. Chemosphere 93(6): 954.

Walna B., Siepak M. 2012. Heavy metals: Their pathway from the ground, groundwater and springs to Lake Góreckie (Poland). Environmental Monitoring and Assessment 184: 3315-3340.

Widera M. 2022. Zarys geologii okolic Poznania, Turku i Konina ze szczególnym odniesieniem do geologii kenozoiku i geomorfologii. Bogucki Wyd. Naukowe: 55-57.

Pobrania

Opublikowane

2024-05-09

Jak cytować

Śniady, I., Zięba, M., Wojciechowska, J., Majewski, M., & Siepak, M. (2024). Condition of the post-reclamation Przykona reservoir (Turek, Poland): water and sediment chemistry. Acta Geographica Lodziensia, 114, 19–34. Pobrano z https://czasopisma.ltn.lodz.pl/Acta-Geographica-Lodziensia/article/view/2344

Numer

Dział

Artykuły