Slab (one-tile) surface energy balance scheme: model description and preliminary validation for an urban site and a wetland site

Autor

  • Krzysztof Fortuniak University of Lodz, Faculty of Geographical Sciences, Institute of Climatology and Hydrology
  • Mariusz Siedlecki University of Lodz, Faculty of Geographical Sciences, Institute of Climatology and Hydrology
  • Włodzimierz Pawlak University of Lodz, Faculty of Geographical Sciences, Institute of Climatology and Hydrology
  • Jan Górowski University of Lodz, Doctoral School of Exact and Natural Sciences

DOI:

https://doi.org/10.26485/AGL/2024/117/10

Słowa kluczowe:

numerical modelling, surface energy balance, urban climate, wetlands

Abstrakt

Adequate modelling of the heat balance of different surface types is key to improving high-resolution numerical weather forecasts. The problem is particularly relevant in urbanised areas, which, due to their significant accumulation of infrastructure and high population density, are particularly vulnerable to the effects of climate change. The paper presents an exhaustive description of the surface energy balance model developed by the Department of Meteorology and Climatology at the University of Lodz over the past two decades. The model uses a simple slab approach, wherein the canopy layer is regarded as a flat surface (a tile) with specific “bulk” physical parameters (radiative, aerodynamic, thermodynamic and hydrological). It was initially developed for use in urban areas, but since it is based on rather general parametrisations of surface–atmosphere fluxes, it can be applied to any land cover with specific “surface slab” parameters. Here we compare the model outputs with the measured flux data from two very distinct ecosystems: an urban setting and a wetland. Despite its simplicity, the model generally represents well the features of the heat balance of both wetlands and urban areas. The la-  tent heat flux is best represented and the sensible heat flux and the radiation balance somewhat less well, probably due to the assumption that all energy exchange occurs on an infinitesimal flat active surface.

Bibliografia

Best M.J. 1998. A Model to Predict Surface Temperatures. Boundary-Layer Meteorology 88(2): 279-306. https://doi.org/10.1023/A:1001151927113

Brutsaert W. 1982. Evaporation into the Atmosphere. Springer Netherlands.

https://doi.org/10.1007/978-94-017-1497-6

Chen F., Dudhia J. 2001. Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review 129(4): 569-585. https://doi.org/10.1175/1520-0493(2001)129 <0569:CAALSH>2.0.CO;2

Cheval S., Amihăesei V.A., Chitu Z., Dumitrescu A., Falcescu V., Irașoc A., Micu D.M., Mihulet E., Ontel I., Paraschiv M.G., Tudose N.C. 2024. A systematic review of urban heat island and heat waves research (1991–2022). Climate Risk Management 44: 100603.

https://doi.org/10.1016/j.crm.2024.100603

Dickinson R.E., Henderson-Sellers A., Rosenzweig C., Sellers P.J. 1991. Evapotranspiration models with canopy resistance for use in climate models, a review. Agricultural and Forest Meteorology 54(2–4): 373-388.

Dolman A.J., Gash J.H.C., Roberts J., Shuttleworth W.J. 1991. Stomatal and surface conductance of tropical rainforest. Agricultural and Forest Meteorology 54(2–4): 303-318.

Fortuniak K. 2003. A slab surface energy balance model (SUEB) and its application to the study on the role of roughness length in forming an urban heat island. Acta Universitatis Wratislaviensis – Studia Geograficzne 75: 368-377.

Fortuniak K., Pawlak W. 2015. Selected Spectral Characteristics of Turbulence over an Urbanized Area in the Centre of Łódź, Poland. Boundary-Layer Meteorology 154(1): 137-156.

Fortuniak K., Pawlak, W., Siedlecki M. 2013. Integral Turbulence Statistics Over a Central European City Centre. Boundary-Layer Meteorology 146(2): 257-276.

https://doi.org/10.1007/s10546-012-9762-1

Fortuniak K., Pawlak W., Siedlecki M., Chambers S., Bednorz L. 2021. Temperate mire fluctuations from carbon sink to carbon source following changes in water table. Science of the Total Environment 756. https://doi.org/10.1016/j.scitotenv.2020.144 071

Fortuniak K., Pawlak W., Bednorz L., Grygoruk M., Siedlecki M., Zieliński M. 2017. Methane and carbon dioxide fluxes of a temperate mire in Central Europe. Agricultural and Forest Meteorology 232: 306-318.

https://doi.org/10.1016/j.agrformet.2016.08.023

Grimmond C.S.B., Best M., Barlow J., Arnfield A.J., Baik J.J., Baklanov A., Belcher S., Bruse M., Calmet I., Chen F., Clark P., Dandou A., Erell E., Fortunia, K., Hamdi R., Kanda M., Kawai T., Kondo H., Krayenhoff S., Williamson T. 2009. Urban Surface Energy Balance Models: Model Characteristics and Methodology for a Comparison Study. In Meteorological and Air Quality Models for Urban Areas. Springer Berlin Heidelberg: 97-123.

Grimmond C.S.B., Blackett M., Best M.J., Barlow J., Baik J.J., Belcher S.E., Bohnenstengel S.I., Calmet I., Chen F., Dandou A., Fortuniak K., Gouvea M.L., Hamdi R., Hend- ry M., Kawai T., Kawamoto Y., Kondo H., Krayenhoff E.S., Lee S.H., Zhang N. 2010. The international urban energy balance models comparison project: First results from phase 1. Journal of Applied Meteorology and Climatology 49(6): 1268-1292. https://doi.org/10.1175/2010JAMC2354.1

Grimmond C.S.B., Blackett M., Best M.J., Baik J.J., Belcher S.E., Beringer J., Bohnenstengel S.I., Calmet I., Chen F., Coutts A., Dandou A., Fortuniak K., Gouvea M.L., Hamdi R., Hendry M., Kanda M., Kawai T., Kawamoto Y., Kondo H., Zhang N. 2011. Initial results from Phase 2 of the international urban energy balance model comparison. International Journal of Climatology 31(2): 244-272. https://doi.org/10.1002/joc.2227

Ho J.Y., Shi Y., Lau K.K.L., Ng E.Y.Y., Ren C., Goggins W.B. 2023. Urban heat island effect-related mortality under extreme heat and non-extreme heat scenarios: A 2010–2019 case study in Hong Kong. Science of The Total Environment 858: 159791.

IPCC. 2024. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Cambridge University Press (Issue 1). Online: https://www.ipcc.ch/report/ar6/wg3/ (last access: 09.01.2024).

Lipson M.J., Grimmond S., Best M., Abramowitz G., Coutts A., Tapper N., Baik J., Beyers M., Blunn L., Boussetta S., Bou‐Zeid E., De Kauwe M.G., de Munck C., Demuzere M., Fatichi S., Fortuniak K., Han B., Hendry M.A., Kikegawa Y., Pitman A.J. 2023. Evaluation of 30 urban land surface models in the Urban‐PLUMBER project: Phase 1 results. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.4589

Lwasa S.K., Seto C., Bai X., Blanco H., Gurney K.R., Kılkış Ş., Lucon O., Murakami J., Pan J., Sharifi A., Yamagata Y. 2022. Urban systems and other settlements. In: P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley (eds.) Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change: 861-952.

Mascart P., Noilhan J., Giordani H. 1995. A modified parameterization of flux-profile relationships in the surface layer using different roughness length values for heat and momentum. Boundary-Layer Meteorology 72(4): 331-344. https://doi.org/10.1007/BF00708998

Nazarian N., Lipson M., Norford L.K. 2023. Multiscale modeling techniques to document urban climate change. In: Urban Climate Change and Heat Islands. Elsevier: 123-164.

https://doi.org/10.1016/B978-0-12-818977-1.00004-1

Offerle B., Grimmond S., Fortuniak K., Kłysik K., Oke T.R. 2006. Temporal variations in heat fluxes over a central European city centre. Theoretical and Applied Climatology 84(1–3): 103-115.

Oke T.R. 1973. City size and the urban heat island. Atmospheric Environment (1967) 7(8): 769-779.

Oke T.R. 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society 108(455): 1-24. https://doi.org/10.1002/qj.49710845502

Pawlak W., Fortuniak K., Siedlecki M. 2011. Carbon dioxide flux in the centre of Łódź, Poland-analysis of a 2-year eddy covariance measurement data set. International Journal of Climatology 31(2): 232-243. https://doi.org/10.1002/joc.2247

Pawlak W., Fortuniak K., Siedlecki M., Zieliński M. 2016. Urban – Wetland contrast in turbulent exchange of methane. Atmospheric Environment 145: 176-191.

Rosenzweig C., Solecki W.D., Romero-Lankao P., Mehrotra S., Dhakal S., Ali Ibrahim S. (eds.). 2018. Climate Change and Cities. Cambridge University Press.

https://doi.org/10.1017/9781316563878

Seto K.S., Dhakal S., Bigio A., Blanco H., Delgado G.C., Dewar D., Huang L., Inaba A., Kansal A., Lwasa S., McMahon J.E., Müller D.B., Murakami J., Nagendra H., Ramaswami A. 2014. Human Settlements, Infrastructure and Spatial Planning. In: O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, J.C. Minx (eds.) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press. Cambridge, United Kingdom and New York, USA: 923-1000.

Opublikowane

2024-11-18

Jak cytować

Fortuniak , K., Siedlecki , M., Pawlak , W., & Górowski , J. (2024). Slab (one-tile) surface energy balance scheme: model description and preliminary validation for an urban site and a wetland site. Acta Geographica Lodziensia, 117, 135–145. https://doi.org/10.26485/AGL/2024/117/10

Numer

Dział

Artykuły