Classification of esker morphology on soft beds in the area of the Saalian and Elsterian Glaciations in Poland

Słowa kluczowe: eskers, morphometry, glacialgeomorphology, N-channels, permeable substrate, Polish Lowlans

Abstrakt

The study provides a morphologic classification of eskers formed on a soft bed in Poland during the Saalian and Elsterian Glaciations. The classification is based on morphometry, including esker fragmentation, length, sinuosity, ridge elongation and presence of tributary ridges. Five esker types and a total of ten subtypes were distinguished. The most common esker types to the south of the LGM in Poland include 1a – continuous, short, straight esker ridges, 1b – continuous, short, sinuous esker ridges, and 4c – segmented, long, sinuous eskers. The eskers were formed in subglacial N-, R-, N-R and open channels. A synchronous model of esker formation was dominant, but some time-transgressively formed eskers consisting of beads also occur. The analysed eskers have common features with eskers on a hard bed and some of them originated in a similar way, but many eskers exhibit dissimilarity due to different conditions of their formation. The study shows that current esker morphogenetic classifications need to be extended to also include the character of eskers on soft beds.

Bibliografia

Ahokangas E., Ojala A.E.K., Tuunainen A., Valkama M., Palmu J.P., Kajuutti K., Mäkinen J. 2021. The distribution of glacial meltwater routes and associated murtoo fields in Finland. Geomorphology 389: 107854. https://doi.org/10.1016/j.geomorph.2021.107854

Ashley G.M., Warren W.P. 1997. The ice-contact environment. Quaternary Science Reviews 16: 629-634.

Aylsworth J.M., Shilts W.W., Russell H.A.J., Pyne D.M. 2012. Eskers around the Keewatin Ice Divide: Northwest Territories and Nunavut. Geological Survey of Canada, Open File 7047. https://doi.org/10.4095/290075

Banerjee I., McDonald B.C. 1975. Nature of esker sedimentation. In: A.V. Jopling, B.C. McDonald (eds) Glaciofluvial and Glaciolacustrine Sedimentation: Society of Economic Paleontologists and Mineralogists Special Publication 23: 132-154.

Boulton G.S., Lunn R., Vidstrand P., Zatsepin S. 2007. Subglacial drainage by groundwater-channel coupling, and the origin of esker systems: part II-theory and simulation of a modern system. Quaternary Science Reviews 26: 1091- -1105. https://doi.org/10.1016/j.quascirev.2007.01.006

Boulton G.S., Hagdorn M., Maillot P.B., Zatsepin S. 2009. Drainage beneath ice sheets: groundwater-channel coupling, and the origin of esker systems from former ice sheets. Quaternary Science Reviews 28: 621-638. https:/doi.org/10.1016/j.quascirev.2008.05.009

Brennand T.A. 1994. Macroforms, large bedforms and rhythmic sedimentary sequences in subglacial eskers, south-central Ontario: implications for esker genesis and meltwater regime. Sedimentary Geology 91: 9-55.

Brennand T.A. 2000. Deglacial meltwater drainage and glaciodynamics: Inferences from Laurentide eskers, Canada. Geomorphology 32: 263-293. https://doi.org/10.1016/S0169-555X(99)00100-2

Brennand T.A., Shaw J., 1996. The Harricana glaciofluvial complex, Abitibi region, Quebec: its genesis and implications for meltwater regime and ice-sheet dynamics. Sedimentary Geology 102: 221–262.

Buraczyński J., Superson J. 1992. Eskers and kames of Hrubieszów Basin (Lublin Upland). Kwartalnik Geologiczny 36: 361--374.

Burke M.J., Woodward J., Russell A.J., Fleisher P.J. 2009. Structural controls on englacial esker sedimentation: Skeiethararjokull, Iceland. Annals of Glaciology 50: 85-92.

Burke M.J., Brennand T.A., Perkins A.J. 2012. Transient subglacial hydrology of a thin ice sheet: insights from the Chasm esker, British Columbia, Canada. Quaternary Science Reviews 58: 30-55.

Burke M.J., Brennand T.A., Sjogren D.B., 2015. The role of sediment supply in esker formation and ice tunnel evolution. Quaternary Science Reviews 115: 50-77. https://doi.org/10.1016/j.quascirev.2015.02.017

Clark P.U., Walder J.S. 1994. Subglacial drainage, eskers, and deforming beds beneath the Laurentide and Eurasian ice sheets. Geological Society of America Bulletin 106: 304-314. https://doi.org/10.1130/0016-7606(1994)106<0304:SDEADB>2.3.CO;2

Delaney C. 2001. Esker formation and the nature of deglaciation: the Ballymahon Esker, Central Ireland. North West Geography 1: 23-33. https://doi.org/10.1057/rt.2010.9

Dewald N., Lewington E.L.M., Livingstone S.J., Clark C.D., Storrar R.D. 2021. Distribution, Characteristics and For-mation of Esker Enlargements. Geomorphology 392: 107919. https://doi.org/10.1016/j.geomorph.2021.107919

Dylik J. 1952. Peryglacjalne struktury w plejstocenie środkowej Polski. Biuletyn Państwowego Instytutu Geologicznego 66: 53–113.

Dylik J. 1953. O peryglacjalnym charakterze rzeźby środkowej Polski. Acta Geographica Lodziensia 4.

Dzieduszyńska D., Petera-Zganiacz J., Roman M. 2020. Vistulian periglacial and glacial environments in central Poland: an overview. Geological Quarterly 64(1): 54-73. https://dx.doi.org/10.7306/gq.1510

Fard A.M. 2003. Large dead-ice depressions in flat-topped eskers: Evidence of a Preboreal jökulhlaup in the Stockholm area, Sweden. Global and Planetary Change 35: 273-295. https://doi.org/10.1016/S0921-8181(02)00131-5

Fard A.M., Gruszka B. 2007. Subglacial conditions in a branching Saalian esker in north--central Poland. Sedimentary Geology 193: 33-46. https://doi.org/10.1016/j.sedgeo.2006.03.029

Fitzsimons S.J. 1991. Supraglacial eskers in Antarctica. Geomorphology 4: 293–299. https://doi.org/10.1016/0169-555X(91)90011-X

Frydrych M. 2016. Structural and textural response to dynamics of fluvioglacial processes of the Rzymsko esker sediments, Central Poland. Geology, Geophysics & Environment 42(4): 411-428. https://doi.org/10.7494/geol.2016.42.4.411

Frydrych M. 2020. Kształtowanie wybranych ozów i form pokrewnych obszaru staroglacjalnego Niżu Polskiego w świetle badań geomorfologicznych i sedymentologicznych (unpublished PhD Thesis). University of Lodz, Łódź.

Frydrych M. 2021. Complex genesis of N-channel eskers illustrated with the example of an esker near Tosie (east-central Poland). Acta Universitatis Lodziensis, Folia Geographica Physica 20: 13-25. https:// doi. org/10.18778/1427-9711.20.02

Frydrych M. 2022. Morphology of eskers in Po-land, southward of the Last Glacial Maximum. Geomorphology 415: 108418. https://doi.org/10.1016/j.geomorph.2022.108418

Geoportal [Spatial Information Infrastructure]. 2022. Hypsometry and 1:10000 topographic maps. Head Office of Geodesy and Cartography. Poland. Online: https://mapy.geoportal.gov.pl/wss/service/PZGIK/NMT/GRID1/WMS/Hypsometry; https://mapy.geoportal.gov.pl/wss/service/img/guest/TOPO/Mapserver/WMSServer (accessed 10.02.2022).

Hall A., van Boeckel M. 2020. Origin of the Baltic Sea basin by Pleistocene glacial erosion. Gff 142: 237–252. https://doi.org/10.1080/11035897.2020.1781246

Hewitt I.J., Creyts T.T. 2019. A Model for the Formation of Eskers. Geophysical Research Letters 46: 6673-6680. https:/doi.org/10.1029/2019GL082304

Hooke R.L. 1984. On the role of mechanical energy in maintaining subglacial water conduits at atmospheric pressure. Journal of Glaciology 30: 180-187. https://doi.org/10.1017/S0022143000005918

Hubbard B., Nienow P. 1997. Alpine subglacial hydrology. Quaternary Science Reviews 16: 939-955.

Jaksa A., Rdzany Z. 2002. Sedymentologiczny zapis dynamiki deglacjacji Wysoczyzny Rawskiej na przykładzie Wału Rylska. Acta Universitatis Nicolai Copernici, Geografia, XXXII, Nauki Matematyczno-Przyrodnicze 109: 169-181.

Jewtuchowicz S. 1962. Studia z geomorfologii glacjalnej północnej części Sörkappu. Acta Geographica Lodziensia 11: 1-75.

Kamb B. 1987. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. Journal of Geophysical Research 92: 9083-9100. https://doi.org/10.1029/JB092iB09p09083

Lewington E.L.M. 2020. New insights into subglacial meltwater drainage pathways from the ArcticDEM. (unpublished PhD Thesis). University of Sheffield, Sheffield. https://etheses.whiterose.ac.uk/29127/

Lewington E.L.M., Livingstone S.J., Clark C.D., Sole A.J., Storrar R.D. 2020. Large-scale integrated subglacial drainage around the former Keewatin Ice Divide, Canada reveals interaction between distributed and channelised systems. 22nd EGU General Assembly: 1-48.

Lindner L., Marks L., Nita M. 2013. Climatostratigraphy of interglacials in Poland: Middle and Upper Pleistocene lower boundaries from a Polish perspective. Quaternary International 292: 113-123. https://doi.org/10.1016/j.quaint.2012.11.018

Livingstone S.J., Storrar R.D., Hillier J.K., Stokes C.R., Clark C.D., Tarasov L. 2015. An ice-sheet scale comparison of eskers with modelled subglacial drainage routes. Geomorphology 246: 104-112. https://doi.org/10.1016/j.geomorph.2015.06.016

Livingstone S.J, Lewington E.L.M., Clark C.D., Storrar R.D., Sole A.J., McMartin I., Dewald N., Ng F. 2020. A quasi-annual record of time-transgressive esker formation: implications for ice sheet reconstruction and subglacial hydrology. The Cryosphere 14: 1989-2004. https://doi.org/10.5194/tc-2019-273

Marks, L., Jóźwik, K. 2020. International Quaternary Map of Europe (IQUAME 2500) – Polish part. Ministry of the Environment, Warsaw.

Marks L., Dzierżek J., Janiszewski R., Kaczorowski J., Lindner L., Majecka A., Ma-kos M., Szymanek M., Tołoczko-Pasek A., Woronko B. 2016. Quaternary stratigraphy and palaeogeography of Poland. Acta Geologica Polonica 66: 403-427. https://doi.org/10.1515/agp-2016-0018

Mäkinen J. 2003. Time-transgressive deposits of repeated depositional sequences within interlobate glaciofluvial (esker) sediments in Köyliö, SW Finland. Sedimentology 50: 327-360. https://doi.org/10.1046/j.1365-3091.2003.00557.x

Michalska Z. 1969. Problems of the origin of eskers based on the examples from Central Poland. Geographia Polonica 16: 105-119.

Michalska Z. 1971. Zagadnienia genezy ozów na tle wybranych przykładów z obszaru Polski Środkowej. Studia Geologica Polonica 36: 1-152.

Mojski J.E. 2005. Ziemie polskie w czwartorzędzie. Zarys morfogenezy. Państwowy Instytut Geologiczny, Warszawa.

Nye J.F. 1973. Water at the bed of the glacier. Symposium on the Hydrology of Glaciers, International Association of Sciencific Hydrology, IAHS Publications 95: 189-194.

Perkins A.J., Brennand T.A., Burke M.J. 2016. Towards a morphogenetic classification of eskers: Implications for modelling ice sheet hydrology. Quaternary Science Reviews 134: 19-38. https://doi.org/10.1016/j.quascirev.2015.12.015

Petera-Zganiacz J. 2011. Changes in the development of frost wedges in the middle Warta valley deposits (Central Poland). Geologija 53 (1/73): 15-20. https://dx.doi.org/10.6001/geologija.v53i1.1614

Rdzany Z. 2009. Rekonstrukcja przebiegu zlodowacenia warty w regionie łódzkim. Wyd. Uniwersytetu Łódzkiego, Łódź.

Ringrose S. 1982. Depositional processes in the development of eskers in Manitoba. In: R. Davidson-Arnott, W. Nickling, B.D. Fahey (eds) Research in Glacial, Glaciofluvial and Glaciolacustrine Systems. Proceedings of the 6th Guelph Symposium on Geomorphology (1980). Geo-Books, Norwich: 117-137.

Roman M. 2016. Sukcesja osadowa i etapy formowania ozu gostynińskiego, Równina Kutnowska, centralna Polska. Annales Universitatis Mariae Curie-Sklodowska, sectio B – Geographia, Geologia, Mineralogia et Petrographia 71(1): 9-27. http://dx.doi.org/10.17951/b.2016.71.1.9

Roman M., Dzieduszyńska D., Petera-Zganiacz J. 2014. Łódź Region and its northern vicinity under Vistulian Glaciation conditions. Quaestiones Geographicae 54: 55- -68. https://doi.org/10.2478/quageo-2014-0038

Rotnicki K. 1960. Przegląd zagadnień dotyczących ozów. Czasopismo Geograficzne 31(1): 191-218.

Röthlisberger H. 1972. Water Pressure in Subglacial Channels. Journal of Glaciology 2: 177–203.

Salamon T., Mendecki M. 2021. A rare signature of subglacial outburst floods developed along structural ice weaknesses in the southern sector of the Scandinavian Ice Sheet during the Drenthian Glaciation, S Poland. Geomorphology 378: 107593. https://doi.org/10.1016/j.geomorph.2021.107593

Saunderson H.C. 1975. Sedimentology of the Brampton esker and its associated deposits: an empirical test of theory. In: A.V. Jopling, B.C. McDonald (eds) Glaciofluvial and Glaciolacustrine Sedimen- tation 23: 155-176. https://doi.org/10.2110/pec.75.23.0155

Shreve R.L. 1972. The movement of water in glaciers. Journal of Glaciology 11: 205--214. https://doi.org/10.3189/S002214300002219X

Shreve R.L. 1985. Esker characteristics in term of glacial physics, Katahdin esker system, Maine. Geological Society of America Bulletin 96: 639–646. https://doi.org/10.1130/0016-7606(1985)96<639:ECITOG>2.0.CO;2

Stoker B.J., Livingstone S.J., Barr I.D., Ruffell A., Storrar R.D., Roberson S. 2021. Variations in esker morphology and internal architecture record time-transgressive deposition during ice margin retreat in-Northern Ireland. Proceedings of the Geologists' Association 132: 409-425. https://doi.org/10.1016/j.pgeola.2021.03.002

Storrar R.D., Stokes C.R., Evans D.J.A. 2014. Morphometry and pattern of a large sample (>20 000) of Canadian eskers and implications for subglacial drainage beneath ice sheets. Quaternary Science Reviews 105: 1-25. https://doi.org/10.1016/j.quascirev.2014.09.013

Storrar R.D., Ewertowski M., Tomczyk A.M., Barr I.D., Livingstone S.J., Ruffell A., Stoker B.E.N.J., Evans D.J.A. 2020. Equifinality and preservation potential of complex eskers. Boreas 49: 211-231. https://doi.org/10.1111/bor.12414

Szuman I., Kalita J.Z., Ewertowski M.W., Clark C.D., Livingstone S.J., Kasprzak L. 2021. GIS dataset: geomorphological record of terrestrial-terminating ice streams, southern sector of the Baltic Ice Stream Complex, last Scandinavian Ice Sheet, Poland. Earth System Science Data 13: 4635-4651. https://doi.org/10.5194/essd-13-4635-2021

Szupryczyński J. 1965. Eskers and kames in the Spitsbergen area. Geographia Polonica 6: 127–140.

Terpiłowski S., Zieliński T., Mroczek P., Zieliński P., Czubla P., Fedorowicz S. 2021. New evidence for the rank of the Wartanian cold period (Pleistocene, MIS 6): a case study from E Poland. Annales Societatis Geologorum Poloniae 91: 327-345. https://doi.org/10.14241/asgp.2021.20

Walder J.S., Fowler A. 1994. Channelized subglacial drainage over a deformable bed. Journal of Glaciology 40: 3-15, 134. https://doi.org/10.3189/S0022143000003750

Wright H.E. 1973. Tunnel valleys, glacial surges, and subglacial hydrology of the Superior Lobe, Minnesota. In: R.F. Black, R.P. Goldthwait, H.B. Willman (eds) The Wisconsinan Stage 136: 251-276. https://doi.org/10.1130/MEM136-p251

Wysota W. 1990. Geneza ozu nowodworskiego, w świetle analizy strukturalnej jego osadów. Acta Universitatis Nicolai Copernici, Geografia 22: 3-22.

Opublikowane
2022-12-20
Dział
Artykuły